Gastropoda, Pulmonata, Helicidae)

Total Page:16

File Type:pdf, Size:1020Kb

Gastropoda, Pulmonata, Helicidae) Ruthenica, 2012, vol. 22, No. 2: 93-100. © Ruthenica, 2012 Published October 20, 2012 http: www.ruthenica.com On the origin of Cochlopupa (= Cylindrus auct.) obtusa (Gastropoda, Pulmonata, Helicidae) Anatoly A. SCHILEYKO A.N. Severtzov Institute of Ecology and Evolution of Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, RUSSIA; e-mail: [email protected] ABSTRACT. Land snail Cochlopupa obtusa (Drapar- py) is widely-used for the species of Helicidae dur- naud, 1805) is an endemic of Eastern Alps. The mol- ing many tens of years. Unfortunately, this name is lusk has very unusual for helicids pupilloid shell, but invalid because it is junior homonym of Cylindrus its reproductive tract is quite typical for the subfamily Batsch, 1789 (Gastropoda, Conidae) (type species Ariantinae (Helicidae). Neither this species nor any Conus textile Linnaeus, 1758, by subsequent desig- similar forms are totally absent in fossil deposits (the nation Dubois and Bour, 2010). earliest records of C. obtusa conventionally dated by the “pre-Pleistocene”). According to suggested hy- At the same time the generic name Cylindrus pothesis, this species is very young and was formed Fitzinger is a junior objective synonym of Cochlo- within the existing area at the end of Würm glaciation pupa Jan, 1830 with type species Pupa obtusa due to mutation of some representative of Ariantinae. Draparnaud, 1805 (by monotypy). Thus, the correct binomen for the representative of Helicidae in ac- cordance with the rules of the ICZN must be Coch- Introduction lopupa obtusa (Draparnaud, 1805). Some years ago I have written that I directed a In Eastern Alps, on the territory of Austria, lives petition to the International Commission on Zoo- a very peculiar species of the Helicidae family – logical Nomenclature where I ask to conserve the Cochlopupa obtusa (Draparnaud, 1805) (Fig. 1A). name by Fitzinger [Schileyko, 2006: 1786]. In fact, Externally this species is so drastically differs from at that time I did not send the petition (for reasons all other Helicidae, that it has been separated in not related to the case), but it is now evident that the independent genus constituting a separate mono- petition is not necessary. typic tribe Cylindruini [Schileyko, 2006]. At the So, formally the position of the genus and spe- same time, anatomical features clearly indicate that cies is follow: this species undoubtedly belongs to the Helicidae family [Martens, 1895; Sturany, Wagner, 1914; Schi- Fam. Helicidae Rafinesque, 1815 leyko, 1996] (Fig. 1B). This species is so strange that Adensamer [1937: 100] conventionally called Subfam. Ariantinae Mörch, 1864 the species “living fossil” (“lebendes Fossil”), al- though he himself understood that this term in the Genus Cochlopupa Jan, 1830 given case is not correct. Jan, 1830: 5 (Pupa subgen.); The peculiarity of Cochlopupa obtusa area is Cylindrus Fitzinger, 1833: 107, type species – Pupa obtusa that the snails live at altitudes of 1600-2500 m Draparnaud, 1805, by monotypy; nom. praeocc., non above sea level and is presented by 150 fully isolat- Batsch, 1789 (Gastropoda, Conidae). ed colonies (or groups of colonies) [Bisenberger et Type species – Pupa obtusa Draparnaud, 1805, al., 1999; Klemm, 1961, 1974] (Fig. 2). Backhuys by monotypy. [1969] names such a phenomenon “elevation ef- fect”. It is essential, that the animals conduct a Discussion: facts and interpretations secretive mode of life (they inhabit limestone rock slides) and have very limited individual activity. To understand the reasons of appearance of such The purpose of this publication is the analysis of an unusual shell of Cochlopupa obtusa and the the facts concerning the possible ways and time of formation of such a peculiar area, we must answer origin of this peculiar species. four somewhat interrelated questions: 1. How could On the generic name be formed such a peculiar area? 2. Where the spe- cies has originated? 3. Who could be an ancestor of The generic name Cylindrus Fitzinger, 1833 (type this species? 4. When the species could appear (i.e. species Pupa obtusa Draparnaud, 1805 by monoty- geological age of the species)? 94 A. A. Schileyko FIG. 1. Cochlopupa obtusa from Sengsengebirge, Hocher Nock, Haltersitz, 30 July, 2009. A – shell. B – reproductive tract and open penis. AG – albumen gland; DS – diverticle of spermathecal stalk; F – flagellum; MG – mucus gland; P – penis; PP – papilla of penis; PR – penial retractor; RS – reservoir of spermatheca; St – stylophore. РИС. 1. Cochlopupa obtusa из Зенгзенгебирге, Хохер Нок, Хальтерзитц, 30 июля 2009. А – раковина. В – репродуктив- ный тракт и вскрытый пенис. AG – белковая железа; DS – дивертикул протока семеприемника; F – флагеллум (бич); MG – слизистая железа; P – пенис; PP – папилла пениса; PR – ретрактор пениса; RS – резервуар семеприемника; St – стилофор. 1. Way of formation of the Cochlopupa 1909], but the fate of Cochlopupa obtusa is reason- area ably traced only after the very last and the most powerful glaciation (Würm), which ended, on geo- To answer the first question (taking into account logical scale, quite recently – just 10-12 thousand the characteristics of the area), it is appropriate to years ago. search among external factors, primarily the geo- The analyses of microfossilized plant pollens logical history of the Eastern Alps, (in particular, found in geological deposits, has chronicled the the history of climate and glaciations), and the dramatic changes in the European environment dur- presence of suitable (calcified) soil. ing the Würm glaciation. During the height of this Since the Oligocene, Mediterranean geosyncli- glaciation, ca 24,000-10,000 years ago, significant nal area has undergone intensive folding (Alpine part of the territory of Austrian Alps (except for the orogeny). Actually the Alps as a mountain system easternmost parts) was covered with thick ice fields emerged in the upper Miocene, i.e. about 10 million [van Husen, 1987] (Fig. 2). Thus, all Recent mala- years ago [Popov et al., 2009], but what is known cofauna of Eastern Alps arose due to invasion from about malacofauna of the Eastern Alps before the adjacent territories or from some refugia within last glacial time, does not contribute to understanding 10-12 thousand years [Ložek, 1982], since, I am the history of the species and its area. As said repeating, at the time of Würmian glaciation most above, there are serious reasons to believe that the of surface of Eastern Alps (except for easternmost formation of the Cochlopupa area is connected, in parts) has been covered with ice shield. Herbert Ant particular, with glaciations. [1969: 249] writes that “Keineswegs ist aber die In total, during the Holocene 4 glacial periods Annahme berechtight, dass es im Sinne einer Tabu- took place in the Eastern Alps [Penck, Brückner, la-rasa-Theorie zur völligen Auslöschung gekom- On the origin of Cochlopupa obtusa 95 FIG. 2. Localities of Cochlopupa obtusa [after Klemm, 1973] superimposed on the map of Würm glaciation in Eastern Alps [after van Husen, 1987]. Asterisk – Vienna. Square – Klagenfurt. Circle – Innsbruck. Triangle – Salzburg. Thick line indicates the border of Austria. РИС. 2. Места находок Cochlopupa obtusa [из: Klemm, 1973], наложенные на карту Вюрмского оледенения в Восточных Альпах [по: van Husen, 1987]. Звёздочка – Вена. Квадрат – Клагенфурт. Кружок – Инсбрук. Треугольник – Зальц- бург. Толстая линия обозначает границу Австрии. men ist” (“by no means is reasonable to assume that climate the lace of Cochlopupa area is gradually in terms of tabula rasa theory it [fauna] has come to becoming increasingly sparse due to the extinction of the complete obliteration”); nevertheless we must populations which inhabited the lower parts of slopes, accept the fact that the elements of malacofauna are i.e., figuratively speaking, the snails were raised fol- preserved only at the margins of the ice fields, and lowing the snow line, and the area eventually ac- among these elements Cochlopupa obtusa has ne- quired the modern appearance. I would like to remind ver been found. and underline once more, that, judging from actual Thus, I see two possibilities to explain the pres- situation, ancestors of Cochlopupa obtusa, whoever ence of the species in the Eastern Alps and peculiar- they were, lived in rather cold places. ities of its range: either snails migrated from some- Taking into consideration mode of life of Co- where, or the species appeared here. Since nothing chlopupa (secretive, little active), random dispersal like Cochlopupa in Europe is absent and apparently ways, such as passive migrations of snails from one never was, I am inclined to assume that the second isolated mountain to another by wind, birds, large way is the only possible one, and Cochlopupa ob- flying insects, etc., could theoretically occur, but tusa originated in situ. the likelihood of such events is extremely low. More- Based on the above, I propose a hypothesis that, over, such events, considering the number of colo- in my opinion, could explain the formation of such nies of Cochlopupa obtusa, must have been repeat- a kind of area. ed often enough (at least 149 times); this circum- At the end of the Würm glaciation, 10-12 thou- stance additionally lowers the probability of pas- sand years ago, when glaciers began to melt rapidly, sive dispersal of the snails. the climate of the East-Alpine region was still cool, Finally, we must also bear in mind that these and this cold-loving species has been widespread snails live almost everywhere (at these altitudes) over the discussed territory. During subsequent where there is limestone. This may indicate either a warming of climate the populations lived in the high dispersal capacity of the species or that its valleys of the Eastern Alps, got in adverse condi- initial distribution was much less sparse (almost tions and become extinct; with further warming of unbroken). Taking into account the above, I am 96 A. A. Schileyko definitely inclined to the second supposition. Oth- phenomenon: the most glaring example – muta- erwise, it turns out that as soon as somewhere ap- tions in the direction of whorls coiling.
Recommended publications
  • Arianta 6, 2018
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Arianta Jahr/Year: 2018 Band/Volume: 6 Autor(en)/Author(s): diverse Artikel/Article: Abstracts Talks Alpine and other land snails 11-27 ARIANTA 6 and correspond ecologically. For instance, the common redstart is a bird species breeding in the lowlands, whereas the black redstart is native to higher altitudes. Some species such as common swift and kestrel, which are originally adapted to enduring in rocky areas, even found a secondary habitat in the house facades and street canyons of towns and big cities. Classic rock dwellers include peregrine, eagle owl, rock­thrush, snowfinch and alpine swift. The presentation focuses on the biology, causes of threat as well as conservation measures taken by the national park concerning the species golden eagle, wallcreeper, crag martin and ptarmigan. Birds breeding in the rocks might not be that high in number, but their survival is all the more fascinating and worth protecting as such! Abstracts Talks Alpine and other land snails Arranged in chronological order of the program Range­constrained co­occurrence simulation reveals little niche partitioning among rock­dwelling Montenegrina land snails (Gastropoda: Clausiliidae) Zoltán Fehér1,2,3, Katharina Jaksch­Mason1,2,4, Miklós Szekeres5, Elisabeth Haring1,4, Sonja Bamberger1, Barna Páll­Gergely6, Péter Sólymos7 1 Central Research Laboratories, Natural History Museum Vienna, Austria; [email protected]
    [Show full text]
  • Pulmonata, Helicidae) and the Systematic Position of Cylindrus Obtusus Based on Nuclear and Mitochondrial DNA Marker Sequences
    © 2013 The Authors Accepted on 16 September 2013 Journal of Zoological Systematics and Evolutionary Research Published by Blackwell Verlag GmbH J Zoolog Syst Evol Res doi: 10.1111/jzs.12044 Short Communication 1Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway; 2Central Research Laboratories, Natural History Museum, Vienna, Austria; 33rd Zoological Department, Natural History Museum, Vienna, Austria; 4Department of Integrative Zoology, University of Vienna, Vienna, Austria; 5Department of Zoology, Hungarian Natural History Museum, Budapest, Hungary New data on the phylogeny of Ariantinae (Pulmonata, Helicidae) and the systematic position of Cylindrus obtusus based on nuclear and mitochondrial DNA marker sequences 1 2,4 2,3 3 2 5 LUIS CADAHIA ,JOSEF HARL ,MICHAEL DUDA ,HELMUT SATTMANN ,LUISE KRUCKENHAUSER ,ZOLTAN FEHER , 2,3,4 2,4 LAURA ZOPP and ELISABETH HARING Abstract The phylogenetic relationships among genera of the subfamily Ariantinae (Pulmonata, Helicidae), especially the sister-group relationship of Cylindrus obtusus, were investigated with three mitochondrial (12S rRNA, 16S rRNA, Cytochrome c oxidase subunit I) and two nuclear marker genes (Histone H4 and H3). Within Ariantinae, C. obtusus stands out because of its aberrant cylindrical shell shape. Here, we present phylogenetic trees based on these five marker sequences and discuss the position of C. obtusus and phylogeographical scenarios in comparison with previously published results. Our results provide strong support for the sister-group relationship between Cylindrus and Arianta confirming previous studies and imply that the split between the two genera is quite old. The tree reveals a phylogeographical pattern of Ariantinae with a well-supported clade comprising the Balkan taxa which is the sister group to a clade with individuals from Alpine localities.
    [Show full text]
  • Moluscos Del Perú
    Rev. Biol. Trop. 51 (Suppl. 3): 225-284, 2003 www.ucr.ac.cr www.ots.ac.cr www.ots.duke.edu Moluscos del Perú Rina Ramírez1, Carlos Paredes1, 2 y José Arenas3 1 Museo de Historia Natural, Universidad Nacional Mayor de San Marcos. Avenida Arenales 1256, Jesús María. Apartado 14-0434, Lima-14, Perú. 2 Laboratorio de Invertebrados Acuáticos, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Apartado 11-0058, Lima-11, Perú. 3 Laboratorio de Parasitología, Facultad de Ciencias Biológicas, Universidad Ricardo Palma. Av. Benavides 5400, Surco. P.O. Box 18-131. Lima, Perú. Abstract: Peru is an ecologically diverse country, with 84 life zones in the Holdridge system and 18 ecological regions (including two marine). 1910 molluscan species have been recorded. The highest number corresponds to the sea: 570 gastropods, 370 bivalves, 36 cephalopods, 34 polyplacoforans, 3 monoplacophorans, 3 scaphopods and 2 aplacophorans (total 1018 species). The most diverse families are Veneridae (57spp.), Muricidae (47spp.), Collumbellidae (40 spp.) and Tellinidae (37 spp.). Biogeographically, 56 % of marine species are Panamic, 11 % Peruvian and the rest occurs in both provinces; 73 marine species are endemic to Peru. Land molluscs include 763 species, 2.54 % of the global estimate and 38 % of the South American esti- mate. The most biodiverse families are Bulimulidae with 424 spp., Clausiliidae with 75 spp. and Systrophiidae with 55 spp. In contrast, only 129 freshwater species have been reported, 35 endemics (mainly hydrobiids with 14 spp. The paper includes an overview of biogeography, ecology, use, history of research efforts and conser- vation; as well as indication of areas and species that are in greater need of study.
    [Show full text]
  • Molluscs of the Dürrenstein Wilderness Area
    Molluscs of the Dürrenstein Wilderness Area S a b i n e F ISCHER & M i c h a e l D UDA Abstract: Research in the Dürrenstein Wilderness Area (DWA) in the southwest of Lower Austria is mainly concerned with the inventory of flora, fauna and habitats, interdisciplinary monitoring and studies on ecological disturbances and process dynamics. During a four-year qualitative study of non-marine molluscs, 96 sites within the DWA and nearby nature reserves were sampled in cooperation with the “Alpine Land Snails Working Group” located at the Natural History Museum of Vienna. Altogether, 84 taxa were recorded (72 land snails, 12 water snails and mussels) including four endemics and seven species listed in the Austrian Red List of Molluscs. A reference collection (empty shells) of molluscs, which is stored at the DWA administration, was created. This project was the first systematic survey of mollusc fauna in the DWA. Further sampling might provide additional information in the future, particularly for Hydrobiidae in springs and caves, where detailed analyses (e.g. anatomical and genetic) are needed. Key words: Wilderness Dürrenstein, Primeval forest, Benign neglect, Non-intervention management, Mollusca, Snails, Alpine endemics. Introduction manifold species living in the wilderness area – many of them “refugees”, whose natural habitats have almost In concordance with the IUCN guidelines, research is disappeared in today’s over-cultivated landscape. mandatory for category I wilderness areas. However, it may not disturb the natural habitats and communities of the nature reserve. Research in the Dürrenstein The Dürrenstein Wilderness Area Wilderness Area (DWA) focuses on providing invento- (DWA) ries of flora and fauna, on interdisciplinary monitoring The Dürrenstein Wilderness Area (DWA) was as well as on ecological disturbances and process dynamics.
    [Show full text]
  • Gastropoda, Pleuroceridae), with Implications for Pleurocerid Conservation
    Zoosyst. Evol. 93 (2) 2017, 437–449 | DOI 10.3897/zse.93.14856 museum für naturkunde Genetic structuring in the Pyramid Elimia, Elimia potosiensis (Gastropoda, Pleuroceridae), with implications for pleurocerid conservation Russell L. Minton1, Bethany L. McGregor2, David M. Hayes3, Christopher Paight4, Kentaro Inoue5 1 Department of Biological and Environmental Sciences, University of Houston Clear Lake, 2700 Bay Area Boulevard MC 39, Houston, Texas 77058 USA 2 Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, 200 9th Street SE, Vero Beach, Florida 32962 USA 3 Department of Biological Sciences, Eastern Kentucky University, 521 Lancaster Avenue, Richmond, Kentucky 40475 USA 4 Department of Biological Sciences, University of Rhode Island, 100 Flagg Road, Kingston, Rhode Island 02881 USA 5 Texas A&M Natural Resources Institute, 578 John Kimbrough Boulevard, 2260 TAMU, College Station, Texas 77843 USA http://zoobank.org/E6997CB6-F054-4563-8C57-6C0926855053 Corresponding author: Russell L. Minton ([email protected]) Abstract Received 7 July 2017 The Interior Highlands, in southern North America, possesses a distinct fauna with nu- Accepted 19 September 2017 merous endemic species. Many freshwater taxa from this area exhibit genetic structuring Published 15 November 2017 consistent with biogeography, but this notion has not been explored in freshwater snails. Using mitochondrial 16S DNA sequences and ISSRs, we aimed to examine genetic struc- Academic editor: turing in the Pyramid Elimia, Elimia potosiensis, at various geographic scales. On a broad Matthias Glaubrecht scale, maximum likelihood and network analyses of 16S data revealed a high diversity of mitotypes lacking biogeographic patterns across the range of E.
    [Show full text]
  • The Abundant Occurrence of the Three-Toothed Bulin Snail Chondrula Tridens (O
    Przegląd Przyrodniczy XXVII, 2 (2016): 87-94 Joanna Przybylska, Andrzej Jermaczek LICZNE WYSTĘPOWANIE WAŁKÓWKI TRÓJZĘBNEJ CHONDRULA TRIDENS (O. F. MÜLLER, 1774) WZDŁUŻ LINII KOLEJOWEJ OLEŚNICA – GNIEZNO W WIELKOPOLSCE The abundant occurrence of the Three-toothed Bulin Snail Chondrula tridens (O. F. Müller, 1774) along the Oleśnica – Gniezno railway in Wielkopolska ABSTRAKT: W artykule scharakteryzowano stanowiska kserotermicznego ślimaka – wałkówki trój- zębnej Chondrula tridens (O. F. Müller, 1774) – zlokalizowane w siedliskach antropogenicznych na nasypach i w wykopach linii kolejowej Oleśnica – Gniezno (Wielkopolska). W 2015 roku gatunek stwierdzono na 13 stanowiskach na odcinku ok. 100 km pomiędzy Zdunami a Gnieznem. Niewielki udział dogodnych siedlisk naturalnych w otoczeniu linii wskazuje, że występowanie gatunku na przy- torzach jest prawdopodobnie efektem zawleczenia wraz z materiałami budowlanymi. Otwarte, suche i nasłonecznione siedliska wzdłuż linii kolejowej stanowią dogodne siedliska zastępcze tego zagrożone- go gatunku mięczaka. SŁOWA KLUCZOWE: wałkówka trójzębna, linie kolejowe, siedliska antropogeniczne ABSTRACT: The paper presents the sites of the Three-toothed Bulin Snail Chondrula tridens (O. F. Müller, 1774) localised in anthropogenic habitats on embankments and in excavations along the Oleś- nica – Gniezno railway (Wielkopolska). In 2015 the species was found in 13 localities on a 100 km long section of the railway between Zduny and Gniezno. As natural habitats of the species in the sur- roundings are scarce, it is probable that the snails were introduced to the sites with building materials. Open, dry, insulated grasslands along tracks are suitable alternative habitats for this endangered snail species. KEY WORDS: Three-toothed Bulin Snail, railways, anthropogenic habitats Wstęp dopodobną rolę takich siedlisk i związanej z ich kształtowaniem działalności człowieka w Celem artykułu jest wskazanie na liczne rozprzestrzenianiu się gatunku.
    [Show full text]
  • Malacologica
    FOLIA Folia Malacol. 24(3): 111–177 MALACOLOGICA ISSN 1506-7629 The Association of Polish Malacologists Faculty of Biology, Adam Mickiewicz University Bogucki Wydawnictwo Naukowe Poznań, September 2016 http://dx.doi.org/10.12657/folmal.024.008 PATTERNS OF SPATIO-TEMPORAL VARIATION IN LAND SNAILS: A MULTI-SCALE APPROACH SERGEY S. KRAMARENKO Mykolaiv National Agrarian University, Paryzka Komuna St. 9, Mykolaiv, 54020, Ukraine (e-mail: [email protected]) ABSTRACT: Mechanisms which govern patterns of intra-specific vatiation in land snails were traced within areas of different size, using Brephulopsis cylindrica (Menke), Chondrula tridens (O. F. Müller), Xeropicta derbentina (Krynicki), X. krynickii (Krynicki), Cepaea vindobonensis (Férussac) and Helix albescens Rossmässler as examples. Morphometric shell variation, colour and banding pattern polymorphism as well as genetic polymorphism (allozymes and RAPD markers) were studied. The results and literature data were analysed in an attempt to link patterns to processes, with the following conclusions. Formation of patterns of intra- specific variation (initial processes of microevolution) takes different course at three different spatial scales. At micro-geographical scale the dominant role is played by eco-demographic characteristics of the species in the context of fluctuating environmental factors. At meso-geographical scale a special part is played by stochastic population-genetic processes. At macro-geographical scale more or less distinct clinal patterns are associated with basic macroclimatic
    [Show full text]
  • 1994 IUCN Red List of Threatened Animals
    The lUCN Species Survival Commission 1994 lUCN Red List of Threatened Animals Compiled by the World Conservation Monitoring Centre PADU - MGs COPY DO NOT REMOVE lUCN The World Conservation Union lo-^2^ 1994 lUCN Red List of Threatened Animals lUCN WORLD CONSERVATION Tile World Conservation Union species susvival commission monitoring centre WWF i Suftanate of Oman 1NYZ5 TTieWlLDUFE CONSERVATION SOCIET'' PEOPLE'S TRISr BirdLife 9h: KX ENIUNGMEDSPEaES INTERNATIONAL fdreningen Chicago Zoulog k.J SnuicTy lUCN - The World Conservation Union lUCN - The World Conservation Union brings together States, government agencies and a diverse range of non-governmental organisations in a unique world partnership: some 770 members in all, spread across 123 countries. - As a union, I UCN exists to serve its members to represent their views on the world stage and to provide them with the concepts, strategies and technical support they need to achieve their goals. Through its six Commissions, lUCN draws together over 5000 expert volunteers in project teams and action groups. A central secretariat coordinates the lUCN Programme and leads initiatives on the conservation and sustainable use of the world's biological diversity and the management of habitats and natural resources, as well as providing a range of services. The Union has helped many countries to prepare National Conservation Strategies, and demonstrates the application of its knowledge through the field projects it supervises. Operations are increasingly decentralised and are carried forward by an expanding network of regional and country offices, located principally in developing countries. I UCN - The World Conservation Union seeks above all to work with its members to achieve development that is sustainable and that provides a lasting Improvement in the quality of life for people all over the world.
    [Show full text]
  • Abstract Volume
    ABSTRACT VOLUME August 11-16, 2019 1 2 Table of Contents Pages Acknowledgements……………………………………………………………………………………………...1 Abstracts Symposia and Contributed talks……………………….……………………………………………3-225 Poster Presentations…………………………………………………………………………………226-291 3 Venom Evolution of West African Cone Snails (Gastropoda: Conidae) Samuel Abalde*1, Manuel J. Tenorio2, Carlos M. L. Afonso3, and Rafael Zardoya1 1Museo Nacional de Ciencias Naturales (MNCN-CSIC), Departamento de Biodiversidad y Biologia Evolutiva 2Universidad de Cadiz, Departamento CMIM y Química Inorgánica – Instituto de Biomoléculas (INBIO) 3Universidade do Algarve, Centre of Marine Sciences (CCMAR) Cone snails form one of the most diverse families of marine animals, including more than 900 species classified into almost ninety different (sub)genera. Conids are well known for being active predators on worms, fishes, and even other snails. Cones are venomous gastropods, meaning that they use a sophisticated cocktail of hundreds of toxins, named conotoxins, to subdue their prey. Although this venom has been studied for decades, most of the effort has been focused on Indo-Pacific species. Thus far, Atlantic species have received little attention despite recent radiations have led to a hotspot of diversity in West Africa, with high levels of endemic species. In fact, the Atlantic Chelyconus ermineus is thought to represent an adaptation to piscivory independent from the Indo-Pacific species and is, therefore, key to understanding the basis of this diet specialization. We studied the transcriptomes of the venom gland of three individuals of C. ermineus. The venom repertoire of this species included more than 300 conotoxin precursors, which could be ascribed to 33 known and 22 new (unassigned) protein superfamilies, respectively. Most abundant superfamilies were T, W, O1, M, O2, and Z, accounting for 57% of all detected diversity.
    [Show full text]
  • Guidelines for the Capture and Management of Digital Zoological Names Information Francisco W
    Guidelines for the Capture and Management of Digital Zoological Names Information Francisco W. Welter-Schultes Version 1.1 March 2013 Suggested citation: Welter-Schultes, F.W. (2012). Guidelines for the capture and management of digital zoological names information. Version 1.1 released on March 2013. Copenhagen: Global Biodiversity Information Facility, 126 pp, ISBN: 87-92020-44-5, accessible online at http://www.gbif.org/orc/?doc_id=2784. ISBN: 87-92020-44-5 (10 digits), 978-87-92020-44-4 (13 digits). Persistent URI: http://www.gbif.org/orc/?doc_id=2784. Language: English. Copyright © F. W. Welter-Schultes & Global Biodiversity Information Facility, 2012. Disclaimer: The information, ideas, and opinions presented in this publication are those of the author and do not represent those of GBIF. License: This document is licensed under Creative Commons Attribution 3.0. Document Control: Version Description Date of release Author(s) 0.1 First complete draft. January 2012 F. W. Welter- Schultes 0.2 Document re-structured to improve February 2012 F. W. Welter- usability. Available for public Schultes & A. review. González-Talaván 1.0 First public version of the June 2012 F. W. Welter- document. Schultes 1.1 Minor editions March 2013 F. W. Welter- Schultes Cover Credit: GBIF Secretariat, 2012. Image by Levi Szekeres (Romania), obtained by stock.xchng (http://www.sxc.hu/photo/1389360). March 2013 ii Guidelines for the management of digital zoological names information Version 1.1 Table of Contents How to use this book ......................................................................... 1 SECTION I 1. Introduction ................................................................................ 2 1.1. Identifiers and the role of Linnean names ......................................... 2 1.1.1 Identifiers ..................................................................................
    [Show full text]
  • UC Davis UC Davis Previously Published Works
    UC Davis UC Davis Previously Published Works Title Molluscan marginalia: Serration at the lip edge in gastropods Permalink https://escholarship.org/uc/item/2mx5c6w9 Journal Journal of Molluscan Studies, 80(3) ISSN 0260-1230 Author Vermeij, GJ Publication Date 2014 DOI 10.1093/mollus/eyu020 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Journal of The Malacological Society of London Molluscan Studies Journal of Molluscan Studies (2014) 80: 326–336. doi:10.1093/mollus/eyu020 Advance Access publication date: 16 April 2014 Molluscan marginalia: serration at the lip edge in gastropods Geerat J. Vermeij Geology Department, University of California, One Shields Avenue, Davis, CA 95616, USA Correspondence: G.J. Vermeij; e-mail: [email protected] Downloaded from (Received 5 September 2013; accepted 10 February 2014) ABSTRACT The shells of many marine gastropods have ventrally directed serrations (serial projections) at the edge http://mollus.oxfordjournals.org/ of the adult outer lip. These poorly studied projections arise as extensions either of external spiral cords or of interspaces between cords. This paper describes taxonomic, phylogenetic, architectural and func- tional aspects of serrations. Cord-associated serrations occur in cerithiids, strombids, the personid Distorsio anus, ocenebrine muricids and some cancellariids. Interspace-associated serrations are phylo- genetically much more widespread, and occur in at least 16 family-level groups. The nature of serration may be taxonomically informative in some fissurellids, littorinids, strombids and costellariids, among other groups. Serrated outer lips occur only in gastropods in which the apex points more backward than upward, but the presence of serrations is not a necessary byproduct of the formation of spiral sculp- tural elements.
    [Show full text]
  • Underground. Variable Degrees and Variety of Reasons for Cave Penetration in Terrestrial Gastropods Naslednja Postaja: Podzemlje
    COBISS: 1.01 NEXT Stop: Underground. Variable degrees AND varietY of reasons for cave penetration in terrestrial gastropods Naslednja postaja: podzemlje. Različne stopnje in različni razlogi prodiranja kopenskih polžev V jame Alexander M. Weigand1,2 Abstract UDC 594.3:551.44 Izvleček UDK 594.3:551.44 Alexander M. Weigand: Next Stop: Underground. Variable Alexander M. Weigand: Naslednja postaja: podzemlje. Razli- degrees and variety of reasons for cave penetration in terres- čne stopnje in različni razlogi prodiranja kopenskih polžev v trial gastropods jame Cave-dwelling animals can be classified based on their occur- Podzemeljske živali lahko opredelimo glede na njihovo pojav- rence in and relationship to the subterranean environment. ljanje v podzemeljskem okolju in odnos do tega okolja. Podatki Subsurface distribution data and studies addressing the initial o razširjenosti živali v podzemlju in študije, ki obravnavajo causes for animals to enter underground habitats are sparse. By vzroke za kolonizacijo podzemlja so redki. Stopnja prodiranja retrieving occurrence data from two voluntary biospeleological kopenskih polžev v jame in morebitni evolucijski vzroki so bili collections in Central Germany, the degree of cave penetration proučevani na podlagi dveh biospeleoloških zbirk v osre dnji in terrestrial gastropods was investigated, thus to infer poten- Nemčiji. Skupno je bilo določenih 66 vrst polžev, ki zaidejo tial evolutionary drivers. In total, 66 identified gastropod spe- v podzemlje, od tega 23 vrst iz temnih predelov podzemlja. cies entered the subterranean environment with 23 of the spe- Čeprav polži kažejo različne stopnje prodiranja v jame, podze- cies also recorded from the dark zone. Gastropods possessed meljska oblika polžev ni bila ugotovljena.
    [Show full text]