07 Cuezzo 1383.Pmd

Total Page:16

File Type:pdf, Size:1020Kb

07 Cuezzo 1383.Pmd See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/232689112 Systematic revision and cladistic analysis of Epiphragmophora Doering from Argentina and Southern Bolivia... Article in Malacologia · January 2009 DOI: 10.4002/1543-8120-49.1.121 CITATIONS READS 10 126 1 author: Maria Gabriela Cuezzo National Scientific and Technical Research Council 34 PUBLICATIONS 196 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: PATRONES DE BIODIVERSIDAD Y BIOGEOGRAFIA EN GASTEROPODOS DE ARGENTINA View project All content following this page was uploaded by Maria Gabriela Cuezzo on 03 March 2014. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. MALACOLOGIA, 2006, 49(1): 121−188 SYSTEMATIC REVISION AND CLADISTIC ANALYSIS OF EPIPHRAGMOPHORA DOERING FROM ARGENTINA AND SOUTHERN BOLIVIA (GASTROPODA: STYLOMMATOPHORA: XANTHONYCHIDAE) MARIA GABRIELA CUEZZO CONICET - Facultad de Ciencias Naturales, Universidad Nacional de Tucumán, Miguel Lillo 205, 4000 Tucumán, Argentina; [email protected] ABSTRACT As a first step towards a comprehensive revision of the South American genus Epiphragmophora Doering, 1874, taxa described from Argentina and Bolivia, inhabitants of the rainforest Yungas (Amazonian biogeographic subregion) Monte, Pre-Puna biogeo- graphic provinces, and Chacoan biogeographic subregion are studied. Special attention has been paid to the morphology of the terminal genitalia with respect to its relevance for systematics. The revision is based on the examination of nearly all type material, plus extensive field work and examination of additional material deposited in several muse- ums. Shell, pallial system and genitalia of each species have been described and illus- trated, some of them for the first time. Detailed description on the structure and connections of the dart sac apparatus and associated mucous glands in the terminal genitalia in each species is provided. A total of 27 species, including three new taxa, are described from the region. From the total number of species, the anatomy of seven species is described for the first time. Six unambiguous synapomorphies support the monophyly of the genus: body whorl surface malleated with diagonal ribs (character 1 [2]), umbilicus overlapping but not fused to body whorl (character 2 [1]), peristome thick, widely reflexed (character 4[1]), mucous glands unequal in size and shape (character 15 [1]), insertion of mucous glands ducts in middle portion of dart sac (character 17 [1]), and penial retractor muscle inserting in medial epiphallus (character 23 [1]). Most of the synapomorphies of the gener- ated phylogenetic hypothesis are characters from the genitalia, and shell characters proved to be less informative. The short duct of the bursa copulatrix, a character that traditionally had been used to define the genus is characteristic only of a small group of species. The distribution of the Argentinean species studied is illustrated on maps according to the biogeographic areas. An area cladogram based on the cladistic analysis is presented. According to this hypothesis, the species inhabitants of the Yungas biogeographic prov- ince are basal groups of the remaining species inhabitants of the Chacoan, Monte, and Pre-Puna regions. The Monte and Pre-Puna species conform a monophyletic clade. The biogeographic relationships are in agreement to former studies on Latin-American ento- mofauna (Morrone, 2006). Key words: Helicoidea, Xanthonychidae, Epiphragmophora, South America, cladistics, taxonomy, dart sac complex, biogeography. INTRODUCTION Ihering, 1900). This genus is known to be a typical component of the Andean fauna, al- The genus Epiphragmophora Doering, 1874, though in Argentina and Bolivia it inhabits el- is a component of the land snail family Xan- evated cloud rainforest areas (Yungas thonychidae and inhabits exclusively in South biogeographic subregion) and also flatlands America. Epiphragmophora is distributed in areas of Chacoan biogeographic subregion Perú, Bolivia, Paraguay and Argentina. There (Morrone, 2002, 2006). are also isolated occurrences in southern Co- The species included in Epiphragmophora lombia (type locality of E. pilsbry Haas, 1934) Doering have been catalogued by Richardson and southern Brazil (E. bernardius Pilsbry & (1982) and grouped into five subgenera 121 122 CUEZZO (Epiphragmophora Doering, 1874; Angrandiella Previous Classifications and Delimitations of Ancey, 1886; Doeringiana Ihering, 1929; the Genus Karlchmidtia Haas, 1955; and Pilsbrya Ancey, 1887) (Thiele, 1929−1935; Zilch, 1959−1960). Doering (1874) created Epiphragmophora as The monophyly of these subgenera is not yet a group within the genus Helix, family established or even discussed. Most of the spe- Heliacea. He originally described two species cies were located by Zilch (1959−1960) in the within Epiphragmophora: E. hieronymi Doering subgenus Epiphragmophora s. s., whereas the and E. cuyana Strobel. Other species now rest of the subgenera are formed by one or two classified within Epiphragmophora were origi- species. Most of the species of the genus are nally included by Doering within the groups known from their shell morphology, with their Aglaja Albers and Eurycampta Martens. anatomies unknown. The anatomical informa- Pilsbry (1894) included Epiphragmophora in tion is only available for certain species classi- the Helicidae, tribe Belogona Euadenia, char- fied within the subgenera E. (Epiphragmophora) acterized by having mucous glands of typically and E. (Doeringia) (Hesse, 1930; Hylton Scott, glandular structure, in contrast to the tube-like 1951, 1962, 1965; Parodiz, 1955; Fernández glands of the Belogona Siphonadenia. The & Rumi, 1984b; Cuezzo, 1996, 1997, 1998). characters described for Epiphragmophora by The high conchological variability found Pilsbry were the typical for the whole family within some of the species of Epiphragmo- because he adopted the name Epiphragmo- phora and the convergence of certain shell phora for all the American dart-bearing heli- characters, obscure their value for the diag- ces, except Lysinoe (= Helmintoglyptidae). The nosis of the genus. Previous diagnoses of the distribution of the genus, according to him, Epiphragmophora (Fernández & Rumi, 1984b; ranged then from British Columbia, Canada, Schileyko, 1979; Nordsieck, 1987) are not to Argentina, mainly confined to the Pacific supported by a strict character evaluation and drainage, but spreading to the Gulf slope in a system of autapomorphic characters. Only Central America. Pilsbry also divided the ge- one apomorphy, the presence of a penial mus- nus in South American, Central and North cular band, was identified supporting the American forms. The South American forms monophyly of Epiphragmophora in a cladistic included three Sections, Epiphragmophora, analysis of Xanthonychidae (Cuezzo, 1998). Pilsbrya, and Angrandiella. Later, in 1939, In the published literature, the structure of the Pilsbry recognized the error of considering the dart apparatus, as well as the connections Argentine and North American helices as con- between mucous glands and dart sac in the generic and then assembled all the American different species of the genus, are not clearly dart-bearing helices in the family Helmintho- described and illustrated. Due to the lack of glyptidae. He recognized 14 genera in eight basic anatomical knowledge, the evolution of subfamilies. Epiphragmophora was restricted the dart sac complex, a relevant structure for to the South American Epiphragmophorinae the systematics of most Helicoidean families, and considered being an “aberrant genus by can hardly be reconstructed unequivocally in its very short spermathecal duct” (Pilsbry, Epiphragmophora. 1939). The objective of this study is to provide in- Thiele (1929−1935) classified Epiphragmo- formation on the anatomy of species of Epi- phora in the family Fruticicolidae, subfamily phragmophora inhabiting Argentina and part Epiphragmophorinae. He maintained within of Bolivia, many for the first time, and to re- this genus all the American groups, dividing it view their taxonomic status. Finally, to provide into two subgenera: Micrarionta and Epiphrag- a cladistic hypothesis of relationship among mophora s.s. The diagnostic characters of the species reviewed those are inhabitants of Epiphragmophora s.s. were: “shell fairly low- two South American biogeographic units, the spire; body whorl rounded or angulated; cal- Yungas province (Amazonian subregion) and cified operculum (epiphragm); dart sack long, the Chaco province (Chacoan subregion). weakly curved, two edged in the center, mu- Extensive field work to collect live specimens cous glands unequal in size, sack-shaped, in Peru, belonging to other biogeographic prov- short stalked; aperture non denticulate (type inces, will have to be done before the approxi- species: E. (E.) hieronymi Doering)”. Accord- mately 20 remaining nominal species of the ing to Thiele, E. (Pilsbrya) Ancey, 1887 (type genus, known only by their shell descriptions, species: E. farrisi (Pfeiffer), and E. (Doeringia) can be appropriately reviewed. Ihering (type species: E. trenquelleonis SYSTEMATICS AND CLADISTICS OF EPIPHRAGMOPHORA 123 (Grateloup), were hardly separable, but he did Ciencias Naturales, Buenos Aires, Argentina; not provide any
Recommended publications
  • Conservation Assessment for Helminthoglypta Hertleini, Oregon Shoulderband
    Conservation Assessment for Helminthoglypta hertleini, Oregon Shoulderband Photo by Bradford Nelson, used with permission Originally issued as Management Recommendations November 1998 By Ted R. Weasma Reconfigured July 2004 By Nancy Duncan Updated February 2015 By Sarah Foltz Jordan & Scott Hoffman Black (Xerces Society) USDA Forest Service Region 6 and USDI Bureau of Land Management, Oregon and Washington Interagency Special Status and Sensitive Species Program Helminthoglypta hertleini - Page 1 Table of Contents Preface 3 Executive Summary 4 I. Introduction 5 A. Goal 5 B. Scope 5 C. Management Status 6 II. Classification and Description 6 A. Systematic/Taxonomic History and Synonymy 6 B. Species Description 6 III. Biology and Ecology 8 A. Life History 8 B. Activity Pattern and Movement 8 C. Food Habits 9 D. Range, Distribution, and Abundance 9 E. Population Trends 10 F. Habitat 10 G. Ecological Considerations 11 IV. Conservation 12 A. Threats to Species 12 B. Conservation Status 14 1. Overview 14 2. Status History 14 3. Major Habitat and Viability Considerations 14 4. Distribution Relative to Land Allocations: 15 C. Known Management Approaches and Considerations 15 1. Management Goals for the Taxon 15 2. Identification of Species Habitat Areas 15 3. Management Within Species Habitat Areas 16 V. Research, Inventory, and Monitoring Opportunities 17 A. Data Gaps and Information Needs 18 B. Research Questions 18 C. Monitoring Opportunities 18 VI. References 19 VII. Photographs 21 VIII. Distribution Maps 22 Helminthoglypta hertleini - Page 2 Preface Summary of 2015 updates: In 2015, the framework of the original document was reformatted to more closely conform to the standards for the Forest Service and BLM for Conservation Assessment development in Oregon and Washington.
    [Show full text]
  • Dunbar Route 9 Route 22 Route 4 Thurgood
    Alternate routes for DPS students affected by bell changes The Greater Dayton RTA has put together information for Paul Laurence Dunbar High School and Thurgood Marshall High School students on which fixed routes RTA bus services can take them to school. For Dunbar students: Routes 9 and 22 both have stops near the high school. Please see the special tables and map below that explains what buses can transfer you to either Route 9 or 22. For Thurgood Marshall students: Route 4 has a stop in front of the high school. Please see the special tables and map below that explains what buses can transfer you to Route 4. RTA would like to remind students and their families that students using either the Red or Gray student passes cannot transfer buses at Wright Stop Plaza. Dunbar Thurgood Marshall Route 9 Route 22 Route 4 Route 2 Time Route 2 Time Route 2 Time Klepinger/Valerie Arms 6:18a Klepinger/Valerie Arms 6:47a Klepinger/Valerie Arms 6:47a Harvard & Philadelphia 6:25a Harvard & Philadelphia 6:54a Broadway/2nd 7:05a Wright Stop Plaza 6:44a Wright Stop Plaza 7:13a Wright Stop Plaza 7:13a Transfer to Route 9 at Main/5th @7:02a Transfer to Route 22 at Main/5th @7:32a Transfer to Route 4 at 4th/Ludlow @7:30a Route 4 Time Route 4 Time Westown Hub 5:59a Westown Hub 6:45a Route 4 Hoover/Miller 6:06a Hoover/Miller 6:52a 4th/Ludlow 7:30a Hoover/Guenther 6:12a Hoover/Guenther 6:58a 3rd/Broadway 7:37a Hoover/Gettysburg 6:16a Hoover/Gettysburg 7:02a Kammer/Gramont 7:43a Kammer/Gramont 6:23a Kammer/Gramont 7:09a Hoover/Elmhurst (stop in front of school)
    [Show full text]
  • Moluscos Del Perú
    Rev. Biol. Trop. 51 (Suppl. 3): 225-284, 2003 www.ucr.ac.cr www.ots.ac.cr www.ots.duke.edu Moluscos del Perú Rina Ramírez1, Carlos Paredes1, 2 y José Arenas3 1 Museo de Historia Natural, Universidad Nacional Mayor de San Marcos. Avenida Arenales 1256, Jesús María. Apartado 14-0434, Lima-14, Perú. 2 Laboratorio de Invertebrados Acuáticos, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Apartado 11-0058, Lima-11, Perú. 3 Laboratorio de Parasitología, Facultad de Ciencias Biológicas, Universidad Ricardo Palma. Av. Benavides 5400, Surco. P.O. Box 18-131. Lima, Perú. Abstract: Peru is an ecologically diverse country, with 84 life zones in the Holdridge system and 18 ecological regions (including two marine). 1910 molluscan species have been recorded. The highest number corresponds to the sea: 570 gastropods, 370 bivalves, 36 cephalopods, 34 polyplacoforans, 3 monoplacophorans, 3 scaphopods and 2 aplacophorans (total 1018 species). The most diverse families are Veneridae (57spp.), Muricidae (47spp.), Collumbellidae (40 spp.) and Tellinidae (37 spp.). Biogeographically, 56 % of marine species are Panamic, 11 % Peruvian and the rest occurs in both provinces; 73 marine species are endemic to Peru. Land molluscs include 763 species, 2.54 % of the global estimate and 38 % of the South American esti- mate. The most biodiverse families are Bulimulidae with 424 spp., Clausiliidae with 75 spp. and Systrophiidae with 55 spp. In contrast, only 129 freshwater species have been reported, 35 endemics (mainly hydrobiids with 14 spp. The paper includes an overview of biogeography, ecology, use, history of research efforts and conser- vation; as well as indication of areas and species that are in greater need of study.
    [Show full text]
  • (Férussac, 1821) (Mollusca, Xanthonychidae) De Acordo Com a Idade
    Revista de Etologia 2003, Vol.5, N°1, 41-46Ritmo de atividade de Bradybaena similaris Ritmo de Atividade de Bradybaena similaris (Férussac, 1821) (Mollusca, Xanthonychidae) de Acordo com a Idade FLÁVIA OLIVEIRA JUNQUEIRA, STHEFANE D’ÁVILA, ELISABETH CRISTINA DE ALMEIDA BESSA E FÁBIO PREZOTO Universidade Federal de Juiz de Fora O presente trabalho descreve e quantifica as categorias comportamentais de três grupos etários de Bradybaena similaris, de 22 animais cada: Grupo 1, 80 dias de idade, Grupo 2, 40 dias de idade e Grupo 3, recém eclodidos. Foram descritas oito categorias comportamentais. A atividade foi maior no período noturno (8,0%, 1,9%, 4,3%) do que no diurno (6,1%, 1,7%, 2,7%), para os três grupos. O pico de atividade ocorreu no período noturno (Grupo 1: entre 23:00 e 01:00 e entre 03:00 e 6:00; Grupo 3: entre 21:00 e 22:00 e entre 06:00 e 07:00). O padrão de atividade diferiu significativamente de acordo com a faixa etária dos moluscos (p < 0,0001): indivíduos do Grupo 1 foram os mais ativos, seguidos pelos animais do Grupo 3, uma diferença possivelmente relacionada à fase reprodutiva da espécie. Descritores: Ritmo de atividade. Desenvolvimento. Moluscos. Bradybaena similaris. The relationship between activity rhythm and age in Bradybaena similaris (Férussac, 1821) (Mollusca, Xanthonychidae). This study describes and quantifies the behavioral categories of three age groups of Bradybaena similaris, with 22 animals each (Group 1, 80 days, Group 2, 40 days and Group 3, newly hatched). Eight categories were described. Activity was higher during the night (8,0%, 1,9%, 4,3%) than during the day (6,1%, 1,7%, 2,7%), for the three study groups.
    [Show full text]
  • Revisión De Las Especies Ibéricas De La Familia Xanthonychidae
    Itutl1. Inst. ('at. IIkt. Nat., 6385-101. 199 GEA, FLORA ET FAUNA Revision de las especies ibericas de la familia Xanthonychidae ( Gastropoda: Pulmonata: Helicoidea) Ana 1. Puente & Kepa Altonaga* Rebut 08 03.95 Acceptat 19 09.95 Resumen Abstract Se ha realiiado una revision de las especies Revision of the Iberian species L'lona guimperiuna ( I'erussae, 1 821) y belonging to the family Xanthonychidae Norelona pyrenaicu (Draparnaud, I805), que son los unicos representantes vivos (Gastropoda : Pulmonata : Helicoidea) de la familia Xanthonychidae en la region palcartica. Se presentan una relation A revision of the species Elona quimperiana cxhaustiva de trabajos acerca de ambas (Ferussac, 1821) and Norelona pyrenaica especies, redescripciones de los dos generos (Draparnaud, 1805) has been done These are monotipicos, datos dcscriptivos y figures the only living representatives of the family de la morfologia genital y mapas de dis- Xanthonychidae in the Palaearctic region An tribution en la Peninsula Ibcrica. E. quimperiana exhaustive bibliographical revision of both taxa esta distribuida por el norte de la Peninsu- is presented, together with descriptive data and la, ocupando tambien una pequena zona de figures of the genitalia of the species, Rretana, donde parece que pudo haber sido redescriptions of both monotypic genera, and introducida. N. pyrenaica es endemica de distribution maps in the Iberian Peninsula. E. los Pirineos orientales. quimperiana ranges throughout northern Iberia, and is also found in a small area in Brittany, PA! AURAS ('I.AVI.: Gastropoda, Pulmonata, where it has probably been introduced. N. I Iclicoidea, Xanthonychidae, Elonu, Norelona, pyrenaica is endemic of the eastern Pyrenees. Peninsula Iberica, taxonomia, distribution.
    [Show full text]
  • A “Love” Dart Allohormone Identified in the Mucous Glands of Hermaphroditic Land Snails
    crossmark THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 291, NO. 15, pp. 7938–7950, April 8, 2016 © 2016 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A. A “Love” Dart Allohormone Identified in the Mucous Glands of Hermaphroditic Land Snails*□S Received for publication, November 22, 2015, and in revised form, January 14, 2016 Published, JBC Papers in Press, January 27, 2016, DOI 10.1074/jbc.M115.704395 Michael J. Stewart‡, Tianfang Wang‡, Joris M. Koene§, Kenneth B. Storey¶, and Scott F. Cummins‡1 From the ‡Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia , the §Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit, 1081HV Amsterdam, The Netherlands, and the ¶Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada Animals have evolved many ways to enhance their own repro- tion, at the level of the sperm, and this process seems to have ductive success. One bizarre sexual ritual is the “love” dart become an especially important evolutionary driving force shooting of helicid snails, which has courted many theories among a group of species with a different reproductive strategy: regarding its precise function. Acting as a hypodermic needle, simultaneous hermaphrodites that do not self-fertilize (4–6). the dart transfers an allohormone that increases paternity suc- Helicid land snail copulation lasts 2–6 h and includes the Downloaded from cess. Its precise physiological mechanism of action within the unique use of calcareous (calcium carbonate) “love” darts that recipient snail is to close off the entrance to the sperm digestion are pierced through the body wall of the mating partner during organ via a contraction of the copulatory canal, thereby delaying courtship (7–10).
    [Show full text]
  • Gastropoda, Pulmonata, Helicidae)
    Ruthenica, 2012, vol. 22, No. 2: 93-100. © Ruthenica, 2012 Published October 20, 2012 http: www.ruthenica.com On the origin of Cochlopupa (= Cylindrus auct.) obtusa (Gastropoda, Pulmonata, Helicidae) Anatoly A. SCHILEYKO A.N. Severtzov Institute of Ecology and Evolution of Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, RUSSIA; e-mail: [email protected] ABSTRACT. Land snail Cochlopupa obtusa (Drapar- py) is widely-used for the species of Helicidae dur- naud, 1805) is an endemic of Eastern Alps. The mol- ing many tens of years. Unfortunately, this name is lusk has very unusual for helicids pupilloid shell, but invalid because it is junior homonym of Cylindrus its reproductive tract is quite typical for the subfamily Batsch, 1789 (Gastropoda, Conidae) (type species Ariantinae (Helicidae). Neither this species nor any Conus textile Linnaeus, 1758, by subsequent desig- similar forms are totally absent in fossil deposits (the nation Dubois and Bour, 2010). earliest records of C. obtusa conventionally dated by the “pre-Pleistocene”). According to suggested hy- At the same time the generic name Cylindrus pothesis, this species is very young and was formed Fitzinger is a junior objective synonym of Cochlo- within the existing area at the end of Würm glaciation pupa Jan, 1830 with type species Pupa obtusa due to mutation of some representative of Ariantinae. Draparnaud, 1805 (by monotypy). Thus, the correct binomen for the representative of Helicidae in ac- cordance with the rules of the ICZN must be Coch- Introduction lopupa obtusa (Draparnaud, 1805). Some years ago I have written that I directed a In Eastern Alps, on the territory of Austria, lives petition to the International Commission on Zoo- a very peculiar species of the Helicidae family – logical Nomenclature where I ask to conserve the Cochlopupa obtusa (Draparnaud, 1805) (Fig.
    [Show full text]
  • Province of Santa Fe Argentine Republic
    PROVINCE OF SANTA FE ARGENTINE REPUBLIC Provincie of Santa Fe - Argentine Republic. Strategies and Capacities for a Competitive Global Insertion Ministry of Government and Reform of the State of the Province of Santa Fe , 2016 . 156 p.: il ; 23x23 cm. Spanish 1.000 copies , English 500 copies Strategies and Capacities ISBN: In process. for a Competitive Global Insertion Santa Fe residents have chosen to consolidate a development In a world where trade has intensified, we foster and support style based on their quality of life and social well-being. Equality, private initiatives that add value to production, to expand exports solidarity and social justice are the values that guide our public and integrate into global chains. Transparency, institutional policies, while, at the same time, offer a horizon that binds quality and legal certainty guarantee the operation of the democratic quality, inclusion, economic growth and sustainability. business world and of investments. We are committed to dialog and consensus, to promoting Our model of international actions is open to learning, to the the integrated and sustainable development of our territory. sharing of experiences, to the promotion of trade and to the We foster public policies that guarantee the rights and offer investments that will enable better service provision, increased opportunities to each and every resident in our province, in each global competitiveness and the generation of production and and every town and city. trade capacities. Santa Fe is a land of opportunities, with an immeasurable natural richness and high human quality. It meshes production, scientific and technological potential with a very present administration that encourages competitiveness both nationally and internationally, by strengthening local and regional possibilities.
    [Show full text]
  • Spermatogenesis and Sperm Ultrastructure in the Land Slug Limax Flavus (Gastropoda, Pulmonata) from Egypt
    Advances in Biological Research 7 (6): 253-265, 2013 ISSN 1992-0067 © IDOSI Publications, 2013 DOI: 10.5829/idosi.abr.2013.7.6.76164 Spermatogenesis and Sperm Ultrastructure in the Land Slug Limax flavus (Gastropoda, Pulmonata) from Egypt Irene Sameh Gamil Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt Abstract: Spermatogenesis and sperm ultrastructure are examined and described for the first time in the garden slug Limax flavus (Gastropoda, Pulmonata, Stylommatophora) in Egypt. Spermatogonia show round nuclei with patchy heterochromatin. The primary spermatocytes are characterized by the presence of synaptonemal complexes. The secondary spermatocytes are reduced in size and contain less cytoplasm and clustered stacks of Golgian cisternae with small proacrosomal vesicles lying close to them. During spermiogenesis, electron-dense plaques develop at both the future anterior and posterior poles of the nuclear surface. These plaques determine the apparent antero-posterior axis of the spermatid, the distal plaque indicates the future anterior part of the cell and the basal one the posterior part where an abundant number of mitochondria are aggregated. The mature spermatozoon shows the characteristic sperm features: an acrosomal vesicle supported by an acrosomal pedestal; a helically keeled nucleus, a neck region and a complex elongate middle piece featuring paracrystalline and matrix layers sheathing the axoneme, coarse fibers and glycogen helices. Key words: Spermiogenesis Spermatozoa Hermaphrodite snail Mollusca Pulmonate INTRODUCTION study, a detailed description of spermatogenesis process till the formation of mature autospermatozoa The bulk of the land Gastropoda consists of is presented. Studies on the spermatozoa and Pulmonata including the most important order spermatogenesis have been used extensively to Stylommatophora which is one of the most diverse and explore taxonomic and phylogenetic relationships of economically significant groups of living molluscs [1].
    [Show full text]
  • Freshwater Gastropods Diversity Hotspots: Three New Species from the Uruguay River (South America)
    Freshwater gastropods diversity hotspots: three new species from the Uruguay River (South America) Diego E. Gutie´rrez Gregoric1,2 and Micaela de Lucı´a2 1 Centro Cientı´fico Tecnolo´gico La Plata, Consejo Nacional de Investigaciones Cientı´ficas y Te´cnicas, La Plata, Buenos Aires, Argentina 2 Divisio´n Zoologı´a Invertebrados, Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina ABSTRACT Background: The Atlantic Forest is globally one of the priority ecoregions for biodiversity conservation. In Argentina, it is represented by the Paranense Forest, which covers a vast area of Misiones Province between the Parana´ and Uruguay rivers. The Uruguay River is a global hotspot of freshwater gastropod diversity, here mainly represented by Tateidae (genus Potamolithus) and to a lesser extent Chilinidae. The family Chilinidae (Gastropoda, Hygrophila) includes 21 species currently recorded in Argentina, and three species in the Uruguay River. The species of Chilinidae occur in quite different types of habitats, but generally in clean oxygenated water recording variable temperature ranges. Highly oxygenated freshwater environments (waterfalls and rapids) are the most vulnerable continental environments. We provide here novel information on three new species of Chilinidae from environments containing waterfalls and rapids in the Uruguay River malacological province of Argentina. Materials and Methods: The specimens were collected in 2010. We analyzed shell, radula, and nervous and reproductive systems, and determined the molecular genetics. The genetic distance was calculated for two mitochondrial markers (cytochrome c oxidase subunit I–COI- and cytochrome b -Cyt b-) for these three Submitted 30 November 2015 new species and the species recorded from the Misionerean, Uruguay River and Accepted 25 May 2016 Lower Parana´-Rı´o de la Plata malacological provinces.
    [Show full text]
  • Chapter 6 Road Network of the Study Area
    Feasibility Study for the Improvement of the National Route 2 and Route 7 Final Report CHAPTER 6 ROAD NETWORK OF THE STUDY AREA Feasibility Study for the Improvement of the National Route 2 and Route 7 Final Report 6 ROAD NETWORK OF THE STUDY AREA 6.1 Transportation System (1) Main Ports Inland water transport uses the Parana River and its tributary, the Paraguay River, connecting to the La Plata River on the downstream side. These rivers are the boundaries with Brazil and Argentina and most of the waterways are under joint management. This inland water transport is mainly used for international trade cargo. Principal export/import ports are described below: – Concepción Port: Located 1,940 km from Buenos Aires and in the independent management section of the Paraguay River running through Paraguay. This port is mainly used to load beans on vessels. – Asuncion Port: Located 1,630 km from Buenos Aires, this port is used for cotton export and principal everyday commodities, such as general cargoes and automobiles, are imported in containers via the Paraguay River. – Villeta Port: Located 37km to the south of Asuncion Port and used for export of beans and cotton. – Villa Hayes Port: Located near Asuncion and used for the import of steel making raw materials. – Villa Elisa Port: Located near Asuncion and used for the import of oils. – San Antonio Port: Located near Asuncion and used for the export of beans. – Vallemi Port: Port to import cement raw materials. – Encarnación: Located on the Parana River, 1,583km from Buenos Aires, and used for the export of beans.
    [Show full text]
  • Guidelines for the Capture and Management of Digital Zoological Names Information Francisco W
    Guidelines for the Capture and Management of Digital Zoological Names Information Francisco W. Welter-Schultes Version 1.1 March 2013 Suggested citation: Welter-Schultes, F.W. (2012). Guidelines for the capture and management of digital zoological names information. Version 1.1 released on March 2013. Copenhagen: Global Biodiversity Information Facility, 126 pp, ISBN: 87-92020-44-5, accessible online at http://www.gbif.org/orc/?doc_id=2784. ISBN: 87-92020-44-5 (10 digits), 978-87-92020-44-4 (13 digits). Persistent URI: http://www.gbif.org/orc/?doc_id=2784. Language: English. Copyright © F. W. Welter-Schultes & Global Biodiversity Information Facility, 2012. Disclaimer: The information, ideas, and opinions presented in this publication are those of the author and do not represent those of GBIF. License: This document is licensed under Creative Commons Attribution 3.0. Document Control: Version Description Date of release Author(s) 0.1 First complete draft. January 2012 F. W. Welter- Schultes 0.2 Document re-structured to improve February 2012 F. W. Welter- usability. Available for public Schultes & A. review. González-Talaván 1.0 First public version of the June 2012 F. W. Welter- document. Schultes 1.1 Minor editions March 2013 F. W. Welter- Schultes Cover Credit: GBIF Secretariat, 2012. Image by Levi Szekeres (Romania), obtained by stock.xchng (http://www.sxc.hu/photo/1389360). March 2013 ii Guidelines for the management of digital zoological names information Version 1.1 Table of Contents How to use this book ......................................................................... 1 SECTION I 1. Introduction ................................................................................ 2 1.1. Identifiers and the role of Linnean names ......................................... 2 1.1.1 Identifiers ..................................................................................
    [Show full text]