Movements, Behavior, and Habitat Utilization of Yellowfin Tuna

Total Page:16

File Type:pdf, Size:1020Kb

Movements, Behavior, and Habitat Utilization of Yellowfin Tuna FISHERIES OCEANOGRAPHY Fish. Oceanogr. 23:1, 65–82, 2014 Movements, behavior, and habitat utilization of yellowfin tuna (Thunnus albacares) in waters surrounding the Revillagigedo Islands Archipelago Biosphere Reserve, Mexico KURT M. SCHAEFER,1* DANIEL W. FULLER1 influence on the movements, behavior, and habitat AND GABRIEL ALDANA2 utilization of yellowfin in this area. 1 Inter-American Tropical Tuna Commission, 8604 La Jolla Key words: behavior, habitat, movements, utilization Shores Drive, La Jolla, CA, 92037-1508, U.S.A. distributions, yellowfin tuna 2Instituto Nacional de Pesca, Centro Regional de Investigacio´n Pesquera, Calzada Sa´balo Cerritos s/n, contiguo Estero El Yugo, Mazatla´n, Sinaloa, c.p. 82010, Me´xico INTRODUCTION ABSTRACT Yellowfin tuna, Thunnus albacares, is a large, highly mobile pelagic species, distributed worldwide in sub- The movements, behavior, and habitat utilization of tropical and tropical seas, except the Mediterranean yellowfin tuna, Thunnus albacares, following capture Sea, and is of substantial socio-economic importance and release with archival tags in the Revillagigedo (Collette and Nauen, 1983; Miyake et al., 2010). Yel- Islands Archipelago Biosphere Reserve (RIABR), lowfin is a principal target species of a large interna- Mexico, are described from analyses of 16 578 days of tional purse-seine fishery in the eastern Pacific Ocean time-series data, downloaded from 52 archival tags (EPO), from which the average annual retained catch – recovered from yellowfin (78 173 cm in length and during 1981–2010 was about 240 000 metric tons – = 1.7 8.0 yr of age) at liberty from 93 to 1773 days (x (range: 84 000–412 000 metric tons) (Anonymous, – 411 days), collected during 2006 2012. An unscented 2011). Yellowfin were caught in the EPO by purse- Kalman filter model with sea-surface temperature mea- seine vessels during 2005–2009 from about 30°Nto surements integrated (UKFsst) was used to process the 20°S and from the coast of the Americas west to about archival tag data sets to obtain improved estimates of 150°W (Anonymous, 2011). geographic positions, most probable tracks (MPTs), Tagging experiments on yellowfin utilizing plastic and movement parameters. The MPTs indicate dart tags (PDTs) since the early 1950s throughout the restricted movements, low levels of dispersion, and EPO, appear to indicate that movements of tagged fish fidelity of yellowfin tuna to the RIABR. The median at liberty for more than 30 days tend to be restricted parameter estimates from the UKFsst model for errors to <1000 NM of their release positions (Schaefer, r r ° in longitude ( x) and latitude ( y) were 0.46 and 2008). In recent tagging experiments utilizing archival ° 1.84 , respectively, for directed movements (u and v) tags (ATs), rich data sets for evaluating spatiotemporal –0.05 NM dayÀ1 and –0.05 NM dayÀ1, respectively, 2 À1 movement patterns, and habitat utilization, for numer- and for dispersive movement (D) 117.99 NM day . ous large marine pelagic predators have been gener- Analyses of daily timed depth and temperature records ated (Block et al., 2011). ATs can vastly improve our resulted in the classification of the data into four dis- understanding of the movements, stock structure, tinct behaviors. There are significant differences behavior, and habitat utilizations essential for improv- among ages in the durations of Type I and Type II div- ing stock assessments. Current-generation ATs are ing behaviors and in the daytime and nighttime verti- capable of autonomous sampling of high-resolution cal habitat utilization distributions. The oceanography data for multiple years, providing opportunities to surrounding the RIABR appears to have a profound evaluate the influence of seasonal and inter-annual environmental variability and ontogenetic changes in movement patterns, behavior, and habitat utilization. *Correspondence. e-mail: [email protected] Furthermore, utilizing state-space models such as the Received 20 December 2012 unscented Kalman filter model with sea-surface tem- Revised version accepted 29 July 2013 perature (SST) measurements integrated (Nielsen © 2013 John Wiley & Sons Ltd doi:10.1111/fog.12047 65 66 K. M. Schaefer et al. et al., 2006; Lam et al., 2008) for analyses of AT geo- may be utilized to improve stock assessments through location data sets, can provide improved estimates of standardization of purse-seine and longline catch and geographic positions, most probable tracks (MPTs), effort data (Maunder and Punt, 2004; Maunder et al., and movement parameters. The movement parameters 2006). can subsequently be incorporated into population Yellowfin tuna tend to be more abundant in the movement models. A recent tagging experiment in vicinity of islands and seamounts, where there are which large numbers of yellowfin were released with commonly high concentrations of forage organisms, implanted ATs for several consecutive years off Baja than in the surrounding oceanic waters (Murphy and California, Mexico, demonstrated restricted move- Shomura, 1972). Biological productivity ranges from ments, quantified movement parameters, and eluci- moderate to low throughout the distributional range of dated behavior patterns and habitat utilization yellowfin in the EPO, except in regions of strong (Schaefer et al., 2011). upwelling, which includes some coastal zones, equato- Considering the restricted movements, and limited rial regions, the Gulf of Tehuantepec, and the vicinity mixing of yellowfin throughout the EPO, the develop- of islands and seamounts (Sund et al., 1981). Uda and ment of a spatially structured stock assessment model Ishino (1958) reported that eddying and upwelling with movements appears to be warranted, and is being occur on the down-current side of islands. Bakun developed by the staff of the Inter-American Tropical (1996) provided further description of such physical Tuna Commission (Bayliff, 2001). However, to oceanographic features as wakes on the down-current develop a scientifically valid spatially structured assess- side of islands and Taylor columns around seamounts, ment model of movement for yellowfin in the EPO, it which generate increased biological production in is necessary to better understand yellowfin stock struc- such areas. High concentrations of yellowfin forage, ture and obtain estimates of movement parameters including juvenile reef fishes, were observed within and life history characteristics from several spatial eddies around the Revillagigedo Islands, by the authors strata. This can be achieved, but requires large-scale of this paper, during tagging cruises in that area multi-year tagging studies utilizing ATs, conducted between 2006 and 2011. throughout the region of the EPO inhabited by yellow- Historically the catches of tunas around the Revilla- fin and exploited by commercial fishing vessels. gigedo Islands by commercial pole-and-line and purse- Field experiments to investigate vertical move- seine vessels were substantial (Carocci and Majkowski, ments and habitat of yellowfin in the EPO began with 1996). The Revillagigedo Islands have also historically studies using ultrasonic telemetry with acoustic tags been a popular destination for anglers targeting giant (Carey and Olson, 1982; Block et al., 1997). Those yellowfin tuna (Roecker, 2010). The government of studies indicated vertical movements of yellowfin to Mexico issued a presidential decree in 1994 creating be restricted predominantly to depths of the mixed the Revillagigedo Islands Archipelago Biosphere layer, but occasionally below the thermocline for short Reserve (RIABR), establishing a 6-nm ‘nucleus zone’ periods. More recently, ATs implanted in yellowfin surrounding each of the four islands, but allowed sport- released in a few different areas of the EPO have fishing within the reserve, subject to limits and con- yielded significant amounts of new and useful informa- straints, until March 2002 (Anonymous, 1994, 2004). tion on their vertical movements and habitat utiliza- Currently, sportfishing vessels with permits from the tion (Schaefer et al., 2009, 2011). These more recent Government of Mexico to operate in this area are studies indicate that vertical movements of yellowfin restricted to fishing outside the 6-nm zone, and Mexi- are not restricted to depths of the mixed layer, but can flag commercial fishing vessels are not permitted to consist of different diving patterns dependent on forag- fish within 12-nm of each of the four islands of the ing strategies, including repetitive bounce-diving RIABR. The RIABR was established not just for tuna behavior during the day to depths of 200–400 m while conservation but for the overall protection of a unique targeting prey organisms of the deep-scattering layer. and biologically diverse marine environment. In the equatorial EPO and off Baja California, Mexico, The objectives of this investigation are to quantify the AT data from yellowfin indicated that they could and elucidate the horizontal and vertical movements, spend up to 44 and 50%, respectively, of their time behavior, and habitat utilization of yellowfin released during the day below the thermocline (Schaefer et al., in the RIABR, based on analyses of 16 578 days of 2009; Schaefer et al., 2011). Determination of the time-series data, downloaded from 52 archival tags physiological and behavioral constraints, along with recovered from yellowfin (78–173 cm in length and the environmental variables that define habitat for yel- 1.7–8.0 yr of age) at liberty from 93 to 1773 days (x = lowfin, including depth and temperature distributions,
Recommended publications
  • Tinamiformes – Falconiformes
    LIST OF THE 2,008 BIRD SPECIES (WITH SCIENTIFIC AND ENGLISH NAMES) KNOWN FROM THE A.O.U. CHECK-LIST AREA. Notes: "(A)" = accidental/casualin A.O.U. area; "(H)" -- recordedin A.O.U. area only from Hawaii; "(I)" = introducedinto A.O.U. area; "(N)" = has not bred in A.O.U. area but occursregularly as nonbreedingvisitor; "?" precedingname = extinct. TINAMIFORMES TINAMIDAE Tinamus major Great Tinamou. Nothocercusbonapartei Highland Tinamou. Crypturellus soui Little Tinamou. Crypturelluscinnamomeus Thicket Tinamou. Crypturellusboucardi Slaty-breastedTinamou. Crypturellus kerriae Choco Tinamou. GAVIIFORMES GAVIIDAE Gavia stellata Red-throated Loon. Gavia arctica Arctic Loon. Gavia pacifica Pacific Loon. Gavia immer Common Loon. Gavia adamsii Yellow-billed Loon. PODICIPEDIFORMES PODICIPEDIDAE Tachybaptusdominicus Least Grebe. Podilymbuspodiceps Pied-billed Grebe. ?Podilymbusgigas Atitlan Grebe. Podicepsauritus Horned Grebe. Podicepsgrisegena Red-neckedGrebe. Podicepsnigricollis Eared Grebe. Aechmophorusoccidentalis Western Grebe. Aechmophorusclarkii Clark's Grebe. PROCELLARIIFORMES DIOMEDEIDAE Thalassarchechlororhynchos Yellow-nosed Albatross. (A) Thalassarchecauta Shy Albatross.(A) Thalassarchemelanophris Black-browed Albatross. (A) Phoebetriapalpebrata Light-mantled Albatross. (A) Diomedea exulans WanderingAlbatross. (A) Phoebastriaimmutabilis Laysan Albatross. Phoebastrianigripes Black-lootedAlbatross. Phoebastriaalbatrus Short-tailedAlbatross. (N) PROCELLARIIDAE Fulmarus glacialis Northern Fulmar. Pterodroma neglecta KermadecPetrel. (A) Pterodroma
    [Show full text]
  • New Records for GASTROPODA Class of Species Found in the Rocky Intertidal Zone of the Marine Priority Region 32, Guerrero, Mexico
    Open Journal of Marine Science, 2014, 4, 221-237 Published Online July 2014 in SciRes. http://www.scirp.org/journal/ojms http://dx.doi.org/10.4236/ojms.2014.43021 New Records for GASTROPODA Class of Species Found in the Rocky Intertidal Zone of the Marine Priority Region 32, Guerrero, Mexico Carmina Torreblanca-Ramírez1, Rafael Flores-Garza2, Jesús Emilio Michel-Morfin3, José Luis Rosas-Acevedo1, Pedro Flores-Rodríguez2, Sergio García-Ibáñez2 1Unidad de Ciencias de Desarrollo Regional, Universidad Autónoma de Guerrero, Acapulco, Mexico 2Laboratorio de Ecología Costera y Sustentabilidad, Unidad Académica de Ecología Marina, Universidad Autónoma de Guerrero, Acapulco, Mexico 3Departamento de Estudios para el Desarrollo Sustentable de Zonas Costeras, Universidad de Guadalajara, Melaque, Mexico Email: [email protected], [email protected], [email protected] Received 15 May 2014; revised 22 June 2014; accepted 3 July 2014 Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract The GASTROPODA class, one of the best known marine environments, is formed by a large number of species and the shape of their shell structure varies greatly. These mollusks are distributed from the intertidal zone all the way to the abyssal zone, and there are also swimming and floating species. This research was conducted at seven sites, located in the Marina Priority Region 32 (MPR 32), located in the State of Guerrero, Mexico. The aim of this report is to document the scope of the geographic distribution of the 34 species of GASTROPODA class.
    [Show full text]
  • Radiocarbon Ages of Lacustrine Deposits in Volcanic Sequences of the Lomas Coloradas Area, Socorro Island, Mexico
    Radiocarbon Ages of Lacustrine Deposits in Volcanic Sequences of the Lomas Coloradas Area, Socorro Island, Mexico Item Type Article; text Authors Farmer, Jack D.; Farmer, Maria C.; Berger, Rainer Citation Farmer, J. D., Farmer, M. C., & Berger, R. (1993). Radiocarbon ages of lacustrine deposits in volcanic sequences of the Lomas Coloradas area, Socorro Island, Mexico. Radiocarbon, 35(2), 253-262. DOI 10.1017/S0033822200064924 Publisher Department of Geosciences, The University of Arizona Journal Radiocarbon Rights Copyright © by the Arizona Board of Regents on behalf of the University of Arizona. All rights reserved. Download date 28/09/2021 10:52:25 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/653375 [RADIOCARBON, VOL. 35, No. 2, 1993, P. 253-262] RADIOCARBON AGES OF LACUSTRINE DEPOSITS IN VOLCANIC SEQUENCES OF THE LOMAS COLORADAS AREA, SOCORRO ISLAND, MEXICO JACK D. FARMERI, MARIA C. FARMER2 and RAINER BERGER3 ABSTRACT. Extensive eruptions of alkalic basalt from low-elevation fissures and vents on the southern flank of the dormant volcano, Cerro Evermann, accompanied the most recent phase of volcanic activity on Socorro Island, and created 14C the Lomas Coloradas, a broad, gently sloping terrain comprising the southern part of the island. We obtained ages of 4690 ± 270 BP (5000-5700 cal BP) and 5040 ± 460 BP (5300-6300 cal BP) from lacustrine deposits that occur within volcanic sequences of the lower Lomas Coloradas. Apparently, the sediments accumulated within a topographic depression between two scoria cones shortly after they formed. The lacustrine environment was destroyed when the cones were breached by headward erosion of adjacent stream drainages.
    [Show full text]
  • Book Reviews Section BOOK REVIEWS
    Book Reviews Section BOOK REVIEWS SECTION Akihiro Iwashita (2015). Japan’s border issues: Pitfalls and prospects . London: Routledge. Hbk. 141pp+Index. ISBN: 978-1-138-91677-7. US$160. Consult the official map of Japan, titled ‘Japanese Territory’, available off the website of its Ministry of Foreign Affairs at http://www.mofa.go.jp/territory/ . The map highlights three island areas, all of which are deemed “inherent territory of Japan”: Dokdo, an island known as Takeshima to the Japanese, currently controlled by South Korea; the South Kuriles, known as the Northern Territories to the Japanese, administered by Russia/Soviet Union since 1945; and the Diaoyu islands (known as Diaoyutai to Taiwan, and Senkaku to the Japanese), currently administered by Japan as part of Okinawa prefecture, but claimed by China (and Taiwan). In Japan’s border issues: Pitfalls and prospects , English language readers will finally be able to dig their teeth into a full-length academic text and delve into Iwashita’s pioneering research into border issues. This slim volume comprises seven chapters that distil Professor Iwashita’s thoughts, analyses and experiences of Japan and its border issues, focusing specifically on its three pending, and festering, territorial squabbles with its neighbours. Small or marginal islands can loom large in the national psyche. The author makes very interesting and valuable points that can help lead to a situation where cooperation and resolution over such border issues become more realistic and feasible. The key point is to climb down from populist and nationalist-friendly positions that claim islands as indisputably integral parts of national territory, and which by definition render any form of resolution impossible.
    [Show full text]
  • ARRECIFES DE LOS TUXTLAS Veracruz 5 De Junio De 2018
    ESTUDIO PREVIO JUSTIFICATIVO PARA EL ESTABLECIMIENTO DEL ÁREA NATURAL PROTEGIDA ÁREA DE PROTECCIÓN DE FLORA Y FAUNA ARRECIFES DE LOS TUXTLAS Veracruz 5 de junio de 2018 Área de Protección de Flora y Fauna Arrecifes de Los Tuxtlas Cítese: D I R E C T O R I O Comisión Nacional de Áreas Naturales Protegidas, 2018. Estudio Previo Ing. Rafael Pacchiano Alamán Justificativo para la declaratoria del Secretario de Medio Ambiente y Recursos Naturales Área de Protección de Flora y Fauna Arrecifes de Los Tuxtlas. Comisión Lic. Alejandro Del Mazo Maza Nacional de Áreas Naturales Comisionado Nacional de Áreas Naturales Protegidas Protegidas, Secretaría de Medio Ambiente y Recursos Naturales. Biol. César Sánchez Ibarra México. 180 páginas incluyendo Director General de Conservación para el Desarrollo anexos. Biol. José Carlos Pizaña Soto Foto de portada: Archivo CONANP Director de la Región Planicie Costera y Golfo de México Mvz. Enrique Haro Bélchez Director de la Reserva de la Biosfera “Los Tuxtlas” INTEGRÓ __________________________ Biol. Lilián I. Torija Lazcano Directora de Representatividad y Creación de Nuevas Áreas Naturales Protegidas SUPERVISÓ _________________________ Biol. César Sánchez Ibarra Director General de Conservación para el Desarrollo Con fundamento en los artículos 19 fracción III, 43 último párrafo y 75 del Reglamento Interior de la SEMARNAT, publicado en Diario Oficial de la Federación el 26 de noviembre de 2012. ___________________________________________________________________________ Estudio Previo Justificativo para la
    [Show full text]
  • Archipiélago De Revillagigedo
    LATIN AMERICA / CARIBBEAN ARCHIPIÉLAGO DE REVILLAGIGEDO MEXICO Manta birostris in San Benedicto - © IUCN German Soler Mexico - Archipiélago de Revillagigedo WORLD HERITAGE NOMINATION – IUCN TECHNICAL EVALUATION ARCHIPIÉLAGO DE REVILLAGIGEDO (MEXICO) – ID 1510 IUCN RECOMMENDATION TO WORLD HERITAGE COMMITTEE: To inscribe the property under natural criteria. Key paragraphs of Operational Guidelines: Paragraph 77: Nominated property meets World Heritage criteria (vii), (ix) and (x). Paragraph 78: Nominated property meets integrity and protection and management requirements. 1. DOCUMENTATION (2014). Evaluación de la capacidad de carga para buceo en la Reserva de la Biosfera Archipiélago de a) Date nomination received by IUCN: 16 March Revillagigedo. Informe Final para la Direción de la 2015 Reserva de la Biosiera, CONANP. La Paz, B.C.S. 83 pp. Martínez-Gomez, J. E., & Jacobsen, J.K. (2004). b) Additional information officially requested from The conservation status of Townsend's shearwater and provided by the State Party: A progress report Puffinus auricularis auricularis. Biological Conservation was sent to the State Party on 16 December 2015 116(1): 35-47. Spalding, M.D., Fox, H.E., Allen, G.R., following the IUCN World Heritage Panel meeting. The Davidson, N., Ferdaña, Z.A., Finlayson, M., Halpern, letter reported on progress with the evaluation process B.S., Jorge, M.A., Lombana, A., Lourie, S.A., Martin, and sought further information in a number of areas K.D., McManus, E., Molnar, J., Recchia, C.A. & including the State Party’s willingness to extend the Robertson, J. (2007). Marine ecoregions of the world: marine no-take zone up to 12 nautical miles (nm) a bioregionalization of coastal and shelf areas.
    [Show full text]
  • Telepresence-Enabled Exploration of The
    ! ! ! ! 2014 WORKSHOP TELEPRESENCE-ENABLED EXPLORATION OF THE !EASTERN PACIFIC OCEAN WHITE PAPER SUBMISSIONS ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! TABLE OF CONTENTS ! ! NORTHERN PACIFIC! Deep Hawaiian Slopes 7 Amy Baco-Taylor (Florida State University) USS Stickleback (SS-415) 9 Alexis Catsambis (Naval History and Heritage Command's Underwater Archaeology Branch) Sunken Battlefield of Midway 10 Alexis Catsambis (Naval History and Heritage Command's Underwater Archaeology Branch) Systematic Mapping of the California Continental Borderland from the Northern Channel Islands to Ensenada, Mexico 11 Jason Chaytor (USGS) Southern California Borderland 16 Marie-Helene Cormier (University of Rhode Island) Expanded Exploration of Approaches to Pearl Harbor and Seabed Impacts Off Oahu, Hawaii 20 James Delgado (NOAA ONMS Maritime Heritage Program) Gulf of the Farallones NMS Shipwrecks and Submerged Prehistoric Landscape 22 James Delgado (NOAA ONMS Maritime Heritage Program) USS Independence 24 James Delgado (NOAA ONMS Maritime Heritage Program) Battle of Midway Survey and Characterization of USS Yorktown 26 James Delgado (NOAA ONMS Maritime Heritage Program) Deep Oases: Seamounts and Food-Falls (Monterey Bay National Marine Sanctuary) 28 Andrew DeVogelaere (Monterey Bay National Marine Sanctuary) Lost Shipping Containers in the Deep: Trash, Time Capsules, Artificial Reefs, or Stepping Stones for Invasive Species? 31 Andrew DeVogelaere (Monterey Bay National Marine Sanctuary) Channel Islands Early Sites and Unmapped Wrecks 33 Lynn Dodd (University of Southern
    [Show full text]
  • New Frontiers in Ocean Exploration the E/V Nautilus, NOAA Ship Okeanos Explorer, and R/V Falkor 2017 Field Season
    Oceanography Vol. 31, No. 1, Supplement, March 2018 New Frontiers in Ocean Exploration The E/V Nautilus, NOAA Ship Okeanos Explorer, and R/V Falkor 2017 Field Season GUEST EDITORS | Nicole A. Raineault, Joanne Flanders, and Amya Bowman FRONT COVER. A large Deepstaria enigmatica scypho- zoan jellyfish is imaged up close at 974 m depth off of San Benedicto Island, Revillagigedo Archipelago, Mexico, on E/V Nautilus cruise NA092. This specimen, measuring approximately 55 cm across, was approached in almost complete darkness and remained undisturbed for several minutes, at which point it closed its umbrella and turned to present itself in high detail. An intricate network of PREFERRED CITATION anastomosing canals, assumed to be part of its digestive Raineault, N.A, J. Flanders, and A. Bowman, eds. 2018. tract, is clearly visible. Image credit: D. Fornari (WHOI-MISO New frontiers in ocean exploration: The E/V Nautilus, NOAA Facility) and OET Ship Okeanos Explorer, and R/V Falkor 2017 field season. Oceanography 31(1), supplement, 126 pp., https://doi.org/ 10.5670/oceanog.2018.supplement.01. Interior of a gas-rich pillow basalt off the west coast of Socorro island, Revillagigedo Archipelago, Mexico, from E/V Nautilus cruise NA092. Image credit: D. Fornari (WHOI-MISO Facility) and OET b Exploring and Mapping the Revillagigedo Archipelago World Heritage Site in Mexico By Steven Carey, Karen Wishner, Claus Siebe, Katherine Kelley, Brennan Phillips, Christopher Roman, Megan Lubetkin, and Esmerelda Morales Domínguez The Revillagigedo Archipelago consists of four volcanic Submarine Volcanism islands located 450 km south of Baja California (Figure 1). The most recent submarine volcanic eruption in the archi- The islands are situated at a major convergence of two marine pelago was in 1993 about 4 km off the west shore of Socorro biogeographical regions, the Northeastern and the Eastern (Siebe et al., 1995).
    [Show full text]
  • Young Tracks of Hotspots and Current Plate Velocities
    Geophys. J. Int. (2002) 150, 321–361 Young tracks of hotspots and current plate velocities Alice E. Gripp1,∗ and Richard G. Gordon2 1Department of Geological Sciences, University of Oregon, Eugene, OR 97401, USA 2Department of Earth Science MS-126, Rice University, Houston, TX 77005, USA. E-mail: [email protected] Accepted 2001 October 5. Received 2001 October 5; in original form 2000 December 20 SUMMARY Plate motions relative to the hotspots over the past 4 to 7 Myr are investigated with a goal of determining the shortest time interval over which reliable volcanic propagation rates and segment trends can be estimated. The rate and trend uncertainties are objectively determined from the dispersion of volcano age and of volcano location and are used to test the mutual consistency of the trends and rates. Ten hotspot data sets are constructed from overlapping time intervals with various durations and starting times. Our preferred hotspot data set, HS3, consists of two volcanic propagation rates and eleven segment trends from four plates. It averages plate motion over the past ≈5.8 Myr, which is almost twice the length of time (3.2 Myr) over which the NUVEL-1A global set of relative plate angular velocities is estimated. HS3-NUVEL1A, our preferred set of angular velocities of 15 plates relative to the hotspots, was constructed from the HS3 data set while constraining the relative plate angular velocities to consistency with NUVEL-1A. No hotspots are in significant relative motion, but the 95 per cent confidence limit on motion is typically ±20 to ±40 km Myr−1 and ranges up to ±145 km Myr−1.
    [Show full text]
  • Universidad Autónoma De Baja California Sur Área Interdisciplinaria De Ciencias Del Mar Departamento De Biología Marina
    UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA SUR ÁREA INTERDISCIPLINARIA DE CIENCIAS DEL MAR DEPARTAMENTO DE BIOLOGÍA MARINA CARACTERIZACIÓN ECOLÓGICA DE LA COMUNIDAD DE MACROINVERTEBRADOS MARINOS SUBMAREALES ROCOSOS DEL ARCHIPIÉLAGO DE REVILLAGIGEDO, MÉXICO TESIS QUE PARA OBTENER EL TÍTULO DE: BIÓLOGO MARINO PRESENTA: YULIANA ROCÍO BEDOLLA GUZMÁN LA PAZ, BAJA CALIFORNIA SUR, MÉXICO, AGOSTO DE 2007. Esta tesis de licenciatura se realizó dentro del programa de “Investigación para la Conservación de la Fauna Arrecifal” de la Universidad Autónoma de Baja California Sur, bajo la dirección del Dr. Carlos Armando Sánchez Ortiz. Forma parte del proyecto de investigación SEMARNAT-CONACyT 2004-01-445 “Biogeografía y Sistemática Molecular de los Abanicos de Mar y Corales Blandos (Cnidaria: Octocorallia) del Pacífico Mexicano y Golfo de California” y del proyecto UC-MEXUS “An Ecological and Economic Baseline for the Revillagigedo Archipelago Biosphere, Mexico”. PROGRAMA DE INVESTIGACIÓN PARA LA CONSERVACIÓN DE LA FAUNA ARRECIFAL A.P. 19-B, LA PAZ , BCS 23080, MÉXICO , TEL (612) 123-8800 EXT 4130 / 4817 RESUMEN Los estudios sobre macroinvertebrados marinos de la Reserva de la Biosfera “Archipiélago de Revillagigedo” han sido principalmente de índole taxonómica para especies someras (<10m). Este trabajo es el primero en caracterizar cualitativamente y cuantitativamente a la comunidad de macroinvertebrados submareales rocosos en términos de riqueza, densidad, afinidad biogeográfica y estructura trófica. Durante febrero del 2006, se realizaron censos visuales (buceo autónomo) basados en transectos de banda de 30x1 m, a profundidades de 10, 20, 30 y 40 m, en diferentes hábitats (pared, plataforma, bloques y bloques pequeños - 3 réplicas al menos), en las islas del Archipiélago de Revillagigedo (Socorro, San Benedicto, Roca Partida y Clarión).
    [Show full text]
  • Proposal on Inclusion of Holacanthus Clarionensis in Appendix II (Unofficial Translation)
    Proposal on Inclusion of Holacanthus clarionensis in Appendix II (unofficial translation) http://www.reef2rainforest.com SEAFDEC Expert Meeting on the Commercially- exploited Aquatic Species 16-17 May 2016, Windsor Suites Hotel, Bangkok, Thailand Taxonomy Class: Actinopterygii Order: Perciformes Family Pomacanthidae Genre: Holacanthus Species: Holacanthus clarionensis (Gilbert, 1890) Common names: Clarion 2 productividad primaria, profundidad de zona eufótica y salinidad, además de la batimetría y tipo de suelo (MODIS-Aqua, 2002-2012; WOA09-NOAA, 2015; GEBCO, 2015; Moreno, et al., 1998; Ocean Productivity, 2015; van Heuven, et al., 2011). El modelo se corrió empleando “randomseed” con un 25% de registros de prueba y los resultados indicaron que el análisis de área bajo la curva de características operativas (AUC) fue mayor que la que se daría por el azar, por lo que el desempeño del modelo es adecuado (Reyes- Bonilla y Martínez, 2016). En la Figura 1 (der.) se muestra el mapa logístico resultante de este modelado. Distribution • Found in the Eastern Central Pacific, Revillagigedo Archipelago (Mexico) • Occasional presence in Bahia de Banderas and Clipperton island (France) Revillagigedo Archipelago Habitat • Coral and rocky reefs, blocks, walls and cliffs • Within 30m depth • ‘station cleaning’ with blankets Figura 1. Izquierda: Datos de ocurrencia actual de la especie H. clarionensis(Manta (círculos rellenos)birostris y reg)istros de individuos transeúntes de la especie (círculos vacíos). Derecha: Mapa de probabilidad de ocurrencia actual de la especie H. Biologicalclarionensis (corte characteristics al 0.5 de probabilidad). Fuente: Reyes-Bonilla y Martínez (2016) • HábitatIndividual growth rate (k) is 0.46 and maximum length of 211 mm Se localiza en un ámbito marino demersal, asociado a arrecifes coralinos y rocosos, así como bloques, • paredesSexual y acantilados.maturity isLos between individuos 1.5comúnmente & 2.5 yrs se (sizesencuentran 10 dentroto 13 decm), los primeroslongevity 30 ism 10de yrs • profundidadReproduces (Pyle ettwice al., 2010 a ayear).
    [Show full text]
  • Region 2.Pdf
    1 2 REGION 2 COASTAL CHARTS Stock Number Title Scale =1: 18000 Point Conception to Isla Cedros (OMEGA) 950,000 21005 Cabo San Quintin to Punta Eugenia (Mexico-West Coast) (OMEGA) 511,500 21008 Golfo de California-Northern Part (Mexico-West Coast) 639,400 21011 Punta Eugenia to Cabo San Lazaro (OMEGA) 525,575 21014 Cabo San Lazaro to Cabo San Lucas and Southern Part of Gulf of California (Mexico-West Coast) (OMEGA) 667,680 21017 Cabo San Lucas to Manzanillo (OMEGA) 687,870 21020 Manzanilla to Acapulco (Mexico-West Coast) (OMEGA) 698,700 21023 Acapulco to Puerto Madero (Mexico-West Coast) (OMEGA) 707,300 21026 Puerto Madero to Cabo Velas (Pacific Coast) (OMEGA) 713,000 21033 Isla del Cano to Isla de la Plata 1,000,000 21036 Golfo Dulce to Bahia de Paita 2,000,000 21500 Punta Remedios to Cabo Matapalo (OMEGA) 1,000,000 Plan: Isla del Coco (Plan indexed on page 11) 100,000 22000 Archipielago de Colon (Galapagos Islands) 600,000 22004 Cabo de San Francisco to Paita (Ecuador & Peru) 972,600 Plan: Los Organos 25,000 22008 Coast of Peru (Piata to Pisco) 962,050 22012 Pisco to Arica 937,000 22032 Strait of Magellan to Islas Ildefonso 564,500 22036 Estrecho de Magallanes to Cabo de Hornos 566,820 22205 Arica to Mejillones 500,471 22225 Mejillones to Puerto de Caldera 500,000 22250 Puerto Caldera to Coquimbo 500,000 22275 Bahia de Coquimbo to Bahia de Valparaiso 500,000 22290 Bahia de Valparaiso to Golfo de Arauco 500,037 22305 Puerto Talcahuano to Bahia Corral 500,000 22335 Bahia Corral to Isla Guafo 500,279 22370 Boca del Guafo to Golfo de Penas
    [Show full text]