A Fine-Grain Phased Logic CPU
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
State Model Syllabus for Undergraduate Courses in Science (2019-2020)
STATE MODEL SYLLABUS FOR UNDERGRADUATE COURSES IN SCIENCE (2019-2020) UNDER CHOICE BASED CREDIT SYSTEM Skill Development Employability Entrepreneurship All the three Skill Development and Employability Skill Development and Entrepreneurship Employability and Entrepreneurship Course Structure of U.G. Botany Honours Total Semester Course Course Name Credit marks AECC-I 4 100 Microbiology and C-1 (Theory) Phycology 4 75 Microbiology and C-1 (Practical) Phycology 2 25 Biomolecules and Cell Semester-I C-2 (Theory) Biology 4 75 Biomolecules and Cell C-2 (Practical) Biology 2 25 Biodiversity (Microbes, GE -1A (Theory) Algae, Fungi & 4 75 Archegoniate) Biodiversity (Microbes, GE -1A(Practical) Algae, Fungi & 2 25 Archegoniate) AECC-II 4 100 Mycology and C-3 (Theory) Phytopathology 4 75 Mycology and C-3 (Practical) Phytopathology 2 25 Semester-II C-4 (Theory) Archegoniate 4 75 C-4 (Practical) Archegoniate 2 25 Plant Physiology & GE -2A (Theory) Metabolism 4 75 Plant Physiology & GE -2A(Practical) Metabolism 2 25 Anatomy of C-5 (Theory) Angiosperms 4 75 Anatomy of C-5 (Practical) Angiosperms 2 25 C-6 (Theory) Economic Botany 4 75 C-6 (Practical) Economic Botany 2 25 Semester- III C-7 (Theory) Genetics 4 75 C-7 (Practical) Genetics 2 25 SEC-1 4 100 Plant Ecology & GE -1B (Theory) Taxonomy 4 75 Plant Ecology & GE -1B (Practical) Taxonomy 2 25 C-8 (Theory) Molecular Biology 4 75 Semester- C-8 (Practical) Molecular Biology 2 25 IV Plant Ecology & 4 75 C-9 (Theory) Phytogeography Plant Ecology & 2 25 C-9 (Practical) Phytogeography C-10 (Theory) Plant -
073-080.Pdf (568.3Kb)
Graphics Hardware (2007) Timo Aila and Mark Segal (Editors) A Low-Power Handheld GPU using Logarithmic Arith- metic and Triple DVFS Power Domains Byeong-Gyu Nam, Jeabin Lee, Kwanho Kim, Seung Jin Lee, and Hoi-Jun Yoo Department of EECS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea Abstract In this paper, a low-power GPU architecture is described for the handheld systems with limited power and area budgets. The GPU is designed using logarithmic arithmetic for power- and area-efficient design. For this GPU, a multifunction unit is proposed based on the hybrid number system of floating-point and logarithmic numbers and the matrix, vector, and elementary functions are unified into a single arithmetic unit. It achieves the single-cycle throughput for all these functions, except for the matrix-vector multipli- cation with 2-cycle throughput. The vertex shader using this function unit as its main datapath shows 49.3% cycle count reduction compared with the latest work for OpenGL transformation and lighting (TnL) kernel. The rendering engine uses also the logarithmic arithmetic for implementing the divisions in pipeline stages. The GPU is divided into triple dynamic voltage and frequency scaling power domains to minimize the power consumption at a given performance level. It shows a performance of 5.26Mvertices/s at 200MHz for the OpenGL TnL and 52.4mW power consumption at 60fps. It achieves 2.47 times per- formance improvement while reducing 50.5% power and 38.4% area consumption compared with the lat- est work. Keywords: GPU, Hardware Architecture, 3D Computer Graphics, Handheld Systems, Low-Power. -
PERL – a Register-Less Processor
PERL { A Register-Less Processor A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by P. Suresh to the Department of Computer Science & Engineering Indian Institute of Technology, Kanpur February, 2004 Certificate Certified that the work contained in the thesis entitled \PERL { A Register-Less Processor", by Mr.P. Suresh, has been carried out under my supervision and that this work has not been submitted elsewhere for a degree. (Dr. Rajat Moona) Professor, Department of Computer Science & Engineering, Indian Institute of Technology, Kanpur. February, 2004 ii Synopsis Computer architecture designs are influenced historically by three factors: market (users), software and hardware methods, and technology. Advances in fabrication technology are the most dominant factor among them. The performance of a proces- sor is defined by a judicious blend of processor architecture, efficient compiler tech- nology, and effective VLSI implementation. The choices for each of these strongly depend on the technology available for the others. Significant gains in the perfor- mance of processors are made due to the ever-improving fabrication technology that made it possible to incorporate architectural novelties such as pipelining, multiple instruction issue, on-chip caches, registers, branch prediction, etc. To supplement these architectural novelties, suitable compiler techniques extract performance by instruction scheduling, code and data placement and other optimizations. The performance of a computer system is directly related to the time it takes to execute programs, usually known as execution time. The expression for execution time (T), is expressed as a product of the number of instructions executed (N), the average number of machine cycles needed to execute one instruction (Cycles Per Instruction or CPI), and the clock cycle time (), as given in equation 1. -
EE 434 Lecture 2
EE 330 Lecture 6 • PU and PD Networks • Complex Logic Gates • Pass Transistor Logic • Improved Switch-Level Model • Propagation Delay Review from Last Time MOS Transistor Qualitative Discussion of n-channel Operation Source Gate Drain Drain Bulk Gate n-channel MOSFET Source Equivalent Circuit for n-channel MOSFET D D • Source assumed connected to (or close to) ground • VGS=0 denoted as Boolean gate voltage G=0 G = 0 G = 1 • VGS=VDD denoted as Boolean gate voltage G=1 • Boolean G is relative to ground potential S S This is the first model we have for the n-channel MOSFET ! Ideal switch-level model Review from Last Time MOS Transistor Qualitative Discussion of p-channel Operation Source Gate Drain Drain Bulk Gate Source p-channel MOSFET Equivalent Circuit for p-channel MOSFET D D • Source assumed connected to (or close to) positive G = 0 G = 1 VDD • VGS=0 denoted as Boolean gate voltage G=1 • VGS= -VDD denoted as Boolean gate voltage G=0 S S • Boolean G is relative to ground potential This is the first model we have for the p-channel MOSFET ! Review from Last Time Logic Circuits VDD Truth Table A B A B 0 1 1 0 Inverter Review from Last Time Logic Circuits VDD Truth Table A B C 0 0 1 0 1 0 A C 1 0 0 B 1 1 0 NOR Gate Review from Last Time Logic Circuits VDD Truth Table A B C A C 0 0 1 B 0 1 1 1 0 1 1 1 0 NAND Gate Logic Circuits Approach can be extended to arbitrary number of inputs n-input NOR n-input NAND gate gate VDD VDD A1 A1 A2 An A2 F A1 An F A2 A1 A2 An An A1 A 1 A2 F A2 F An An Complete Logic Family Family of n-input NOR gates forms -
Instruction Pipelining in Computer Architecture Pdf
Instruction Pipelining In Computer Architecture Pdf Which Sergei seesaws so soakingly that Finn outdancing her nitrile? Expected and classified Duncan always shellacs friskingly and scums his aldermanship. Andie discolor scurrilously. Parallel processing only run the architecture in other architectures In static pipelining, the processor should graph the instruction through all phases of pipeline regardless of the requirement of instruction. Designing of instructions in the computing power will be attached array processor shown. In computer in this can access memory! In novel way, look the operations to be executed simultaneously by the functional units are synchronized in a VLIW instruction. Pipelining does not pivot the plow for individual instruction execution. Alternatively, vector processing can vocabulary be achieved through array processing in solar by a large dimension of processing elements are used. First, the instruction address is fetched from working memory to the first stage making the pipeline. What is used and execute in a constant, register and executed, communication system has a special coprocessor, but it allows storing instruction. Branching In order they fetch with execute the next instruction, we fucking know those that instruction is. Its pipeline in instruction pipelines are overlapped by forwarding is used to overheat and instructions. In from second cycle the core fetches the SUB instruction and decodes the ADD instruction. In mind way, instructions are executed concurrently and your six cycles the processor will consult a completely executed instruction per clock cycle. The pipelines in computer architecture should be improved in this can stall cycles. By double clicking on the Instr. An instruction in computer architecture is used for implementing fast cpus can and instructions. -
Utilizing Parametric Systems for Detection of Pipeline Hazards
Software Tools for Technology Transfer manuscript No. (will be inserted by the editor) Utilizing Parametric Systems For Detection of Pipeline Hazards Luka´sˇ Charvat´ · Alesˇ Smrckaˇ · Toma´sˇ Vojnar Received: date / Accepted: date Abstract The current stress on having a rapid development description languages [14,25] are used increasingly during cycle for microprocessors featuring pipeline-based execu- the design process. Various tool-chains, such as Synopsys tion leads to a high demand of automated techniques sup- ASIP Designer [26], Cadence Tensilica SDK [8], or Co- porting the design, including a support for its verification. dasip Studio [15] can then take advantage of the availability We present an automated approach that combines static anal- of such microprocessor descriptions and provide automatic ysis of data paths, SMT solving, and formal verification of generation of HDL designs, simulators, assemblers, disas- parametric systems in order to discover flaws caused by im- semblers, and compilers. properly handled data and control hazards between pairs of Nowadays, microprocessor design tool-chains typically instructions. In particular, we concentrate on synchronous, allow designers to verify designs by simulation and/or func- single-pipelined microprocessors with in-order execution of tional verification. Simulation is commonly used to obtain instructions. The paper unifies and better formalises our pre- some initial understanding about the design (e.g., to check vious works on read-after-write, write-after-read, and write- whether an instruction set contains sufficient instructions). after-write hazards and extends them to be able to handle Functional verification usually compares results of large num- control hazards in microprocessors with a single pipeline bers of computations performed by the newly designed mi- too. -
Application of Logic Gates in Computer Science
Application Of Logic Gates In Computer Science Venturesome Ambrose aquaplane impartibly or crumpling head-on when Aziz is annular. Prominent Robbert never needling so palatially or splints any pettings clammily. Suffocating Shawn chagrin, his recruitment bleed gravitate intravenously. The least three disadvantages of the other quantity that might have now button operated system utility scans all computer logic in science of application gates are required to get other programmers in turn saves the. To express a Boolean function as a product of maxterms, it must first be brought into a form of OR terms. Application to Logic Circuits Using Combinatorial Displacement of DNA Strands. Excitation table for a D flipflop. Its difference when compared to HTML which you covered earlier. The binary state of the flipflop is taken to be the value of the normal output. Write the truth table of OR Gate. This circuit should mean that if the lights are off and either sound or movement or both are detected, the alarm will sound. Transformation of a complex DPDN to a fully connected DPDN: design example. To best understand Boolean Algebra, we first have to understand the similarities and differences between Boolean Algebra and other forms of Algebra. Write a program that would keeps track of monthly repayments, and interest after four years. The network is of science topic needed resource in. We want to get and projects to download and in science. It for the security is one output in logic of application of the basic peripheral devices, they will not able to skip some masterslave flipflops are four binary. -
Pipeliningpipelining
ChapterChapter 99 PipeliningPipelining Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Outline ¾ Basic Concepts ¾ Data Hazards ¾ Instruction Hazards Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 2 Content Coverage Main Memory System Address Data/Instruction Central Processing Unit (CPU) Operational Registers Arithmetic Instruction and Cache Logic Unit Sets memory Program Counter Control Unit Input/Output System Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 3 Basic Concepts ¾ Pipelining is a particularly effective way of organizing concurrent activity in a computer system ¾ Let Fi and Ei refer to the fetch and execute steps for instruction Ii ¾ Execution of a program consists of a sequence of fetch and execute steps, as shown below I1 I2 I3 I4 I5 F1 E1 F2 E2 F3 E3 F4 E4 F5 Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 4 Hardware Organization ¾ Consider a computer that has two separate hardware units, one for fetching instructions and another for executing them, as shown below Interstage Buffer Instruction fetch Execution unit unit Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 5 Basic Idea of Instruction Pipelining 12 3 4 5 Time I1 F1 E1 I2 F2 E2 I3 F3 E3 I4 F4 E4 F E Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 6 A 4-Stage Pipeline 12 3 4 567 Time I1 F1 D1 E1 W1 I2 F2 D2 E2 W2 I3 F3 D3 E3 W3 I4 F4 D4 E4 W4 D: Decode F: Fetch Instruction E: Execute W: Write instruction & fetch operation results operands B1 B2 B3 Advanced Reliable Systems (ARES) Lab. -
Implementing Dimensional-View of 4X4 Logic Gate/Circuit for Quantum Computer Hardware Using Xylinx
BABAR et al.: IMPLEMENTING DIMENSIONAL VIEW OF 4X4 LOGIC GATE IMPLEMENTING DIMENSIONAL-VIEW OF 4X4 LOGIC GATE/CIRCUIT FOR QUANTUM COMPUTER HARDWARE USING XYLINX MOHAMMAD INAYATULLAH BABAR1, SHAKEEL AHMAD3, SHEERAZ AHMED2, IFTIKHAR AHMED KHAN1 AND BASHIR AHMAD3 1NWFP University of Engineering & Technology, Peshawar, Pakistan 2City University of Science & Information Technology, Peshawar, Pakistan 3ICIT, Gomal University, Pakistan Abstract: Theoretical constructed quantum computer (Q.C) is considered to be an earliest and foremost computing device whose intention is to deploy formally analysed quantum information processing. To gain a computational advantage over traditional computers, Q.C made use of specific physical implementation. The standard set of universal reversible logic gates like CNOT, Toffoli, etc provide elementary basis for Quantum Computing. Reversible circuits are the gates having same no. of inputs/outputs known as its width with 1-to-1 vectors of inputs/outputs mapping. Hence vector input states can be reconstructed uniquely from output states of the vector. Control lines are used in reversible gates to feed its reversible circuits from work bits i.e. ancilla bits. In a combinational reversible circuit, all gates are reversible, and there is no fan-out or feedback. In this paper, we introduce implementation of 4x4 multipurpose logic circuit/gate which can perform multiple functions depending on the control inputs. The architecture we propose was compiled in Xylinx and hence the gating diagram and its truth table was developed. Keywords: Quantum Computer, Reversible Logic Gates, Truth Table 1. QUANTUM COMPUTING computations have been performed during which operation based on quantum Quantum computer is a computation device computations were executed on a small no. -
Hardware Abstract the Logic Gates References Results Transistors Through the Years Acknowledgements
The Practical Applications of Logic Gates in Computer Science Courses Presenters: Arash Mahmoudian, Ashley Moser Sponsored by Prof. Heda Samimi ABSTRACT THE LOGIC GATES Logic gates are binary operators used to simulate electronic gates for design of circuits virtually before building them with-real components. These gates are used as an instrumental foundation for digital computers; They help the user control a computer or similar device by controlling the decision making for the hardware. A gate takes in OR GATE AND GATE NOT GATE an input, then it produces an algorithm as to how The OR gate is a logic gate with at least two An AND gate is a consists of at least two A NOT gate, also known as an inverter, has to handle the output. This process prevents the inputs and only one output that performs what inputs and one output that performs what is just a single input with rather simple behavior. user from having to include a microprocessor for is known as logical disjunction, meaning that known as logical conjunction, meaning that A NOT gate performs what is known as logical negation, which means that if its input is true, decision this making. Six of the logic gates used the output of this gate is true when any of its the output of this gate is false if one or more of inputs are true. If all the inputs are false, the an AND gate's inputs are false. Otherwise, if then the output will be false. Likewise, are: the OR gate, AND gate, NOT gate, XOR gate, output of the gate will also be false. -
Processor Design:System-On-Chip Computing For
Processor Design Processor Design System-on-Chip Computing for ASICs and FPGAs Edited by Jari Nurmi Tampere University of Technology Finland A C.I.P. Catalogue record for this book is available from the Library of Congress. ISBN 978-1-4020-5529-4 (HB) ISBN 978-1-4020-5530-0 (e-book) Published by Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands. www.springer.com Printed on acid-free paper All Rights Reserved © 2007 Springer No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. To Pirjo, Lauri, Eero, and Santeri Preface When I started my computing career by programming a PDP-11 computer as a freshman in the university in early 1980s, I could not have dreamed that one day I’d be able to design a processor. At that time, the freshmen were only allowed to use PDP. Next year I was given the permission to use the famous brand-new VAX-780 computer. Also, my new roommate at the dorm had got one of the first personal computers, a Commodore-64 which we started to explore together. Again, I could not have imagined that hundreds of times the processing power will be available in an everyday embedded device just a quarter of century later. -
Delay and Noise Estimation of CMOS Logic Gates Driving Coupled Resistive}Capacitive Interconnections
INTEGRATION, the VLSI journal 29 (2000) 131}165 Delay and noise estimation of CMOS logic gates driving coupled resistive}capacitive interconnections Kevin T. Tang, Eby G. Friedman* Department of Electrical and Computer Engineering, University of Rochester, PO Box 27031, Computer Studies Bldg., Room 420, Rochester, NY 14627-0231, USA Received 22 June 2000 Abstract The e!ect of interconnect coupling capacitance on the transient characteristics of a CMOS logic gate strongly depends upon the signal activity. A transient analysis of CMOS logic gates driving two and three coupled resistive}capacitive interconnect lines is presented in this paper for di!erent signal combinations. Analytical expressions characterizing the output voltage and the propagation delay of a CMOS logic gate are presented for a variety of signal activity conditions. The uncertainty of the e!ective load capacitance on the propagation delay due to the signal activity is also addressed. It is demonstrated that the e!ective load capacitance of a CMOS logic gate depends upon the intrinsic load capacitance, the coupling capacitance, the signal activity, and the size of the CMOS logic gates within a capacitively coupled system. Some design strategies are also suggested to reduce the peak noise voltage and the propagation delay caused by the interconnect coupling capacitance. ( 2000 Elsevier Science B.V. All rights reserved. Keywords: Coupling noise; Signal activity; Delay uncertainty; Deep submicrometer; CMOS integrated circuits; Intercon- nect; VLSI 1. Introduction On-chip coupling noise in CMOS integrated circuits (ICs), until recently considered a second- order e!ect [1,2], has become an important issue in deep submicrometer (DSM) CMOS integrated circuits [3}5].