Using a Grazing Stick for Pasture Management
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Delivering on Net Zero: Scottish Agriculture
i Delivering on Net Zero: Scottish Agriculture A report for WWF Scotland from the Organic Policy, Business and Research Consultancy Authors: Nic Lampkin, Laurence Smith, Katrin Padel NOVEMBER 2019 ii Contents Executive summary............................................................................................................................................ iii 1 Introduction ............................................................................................................................................... 1 2 Portfolio of mitigation measures ............................................................................................................... 3 2.1 Introduction ....................................................................................................................................... 3 2.2 Measuring greenhouse gas emissions and global warming potential .............................................. 3 2.3 Emission reduction measures to be analysed ................................................................................... 5 A. Improved nitrogen fertiliser use ............................................................................................................... 5 2.3.1 M1 (E1, FBC): Improving synthetic N utilisation ........................................................................ 5 2.3.2 M2 (E6): Controlled release fertilisers (CRF) ............................................................................. 6 2.3.3 M3 (E10): Precision applications to crops ................................................................................ -
Livestock Performance for Sheep and Cattle Grazing Lowland Permanent Pasture: Benchmarking Potential of Forage-Based Systems
agronomy Article Livestock Performance for Sheep and Cattle Grazing Lowland Permanent Pasture: Benchmarking Potential of Forage-Based Systems Robert J. Orr 1, Bruce A. Griffith 1, M. Jordana Rivero 1,* and Michael R. F. Lee 1,2 1 Rothamsted Research, Sustainable Agriculture Sciences, North Wyke, Okehampton, Devon EX20 2SB, UK; [email protected] (R.J.O.); bruce.griffi[email protected] (B.A.G.); [email protected] (M.R.F.L.) 2 University of Bristol, Bristol Veterinary School, Langford, Somerset BS40 5DU, UK * Correspondence: [email protected]; Tel.: +44-1837-512302 Received: 29 January 2019; Accepted: 18 February 2019; Published: 21 February 2019 Abstract: Here we describe the livestock performance and baseline productivity over a two-year period, following the establishment of the infrastructure on the North Wyke Farm Platform across its three farmlets (small farms). Lowland permanent pastures were continuously stocked with yearling beef cattle and ewes and their twin lambs for two years in three farmlets. The cattle came into the farmlets as suckler-reared weaned calves at 195 32.6 days old weighing 309 45.0 kg, were ± ± housed indoors for 170 days then turned out to graze weighing 391 54.2 kg for 177 days. Therefore, ± it is suggested for predominantly grass-based systems with minimal supplementary feeding that target live weight gains should be 0.5 kg/day in the first winter, 0.9 kg/day for summer grazing and 0.8 kg/day for cattle housed and finished on silage in a second winter. The sheep performance suggested that lambs weaned at 100 days and weighing 35 kg should finish at 200 days weighing 44 to 45 kg live weight with a killing out percentage of 44%. -
Calculation and Use of Selectivity Coefficients of Feeding: Zooplankton Grazing *
Ecological Modelling, 7 (1979) 135--149 135 © Elsevier Scientific Publishing Company, Amsterdam -- Printed in The Netherlands CALCULATION AND USE OF SELECTIVITY COEFFICIENTS OF FEEDING: ZOOPLANKTON GRAZING * HENRY A. VANDERPLOEG and DONALD SCAVIA National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Great Lakes Environmental Research Laboratory, Ann Arbor, Mich. 48104 (U.S.A.) (Received 8 June 1978; revised 27 September 1978) ABSTRACT Vanderploeg, H.A. and Scavia, D., 1979. Calculation and use of selectivity coefficients of feeding: zooplankton grazing. Ecol. Modelling, 7: 135--149. A straightforward method of calculating selectivity coefficients (Wii) of predation from raw data, mortality rates of prey, filtering rates, feeding rates and electivity indices is derived. Results from a comparison of selectivity coefficients for the copepod Diaptomus oregonensis grazing under a number of experimental conditions suggest that Wij's for size- selective feeding are invariant, a conclusion also supported by the leaky-sieve model. Recommendations are made on how to use Wij's in linear and nonlinear feeding constructs for zooplankton and other animals. INTRODUCTION Many recent aquatic ecosystem models have been designed to simulate seasonal succession of phytoplankton and zooplankton. In order to accom- plish this, the models have included several phytoplankton and zooplankton groups (Bloomfield et al., 1973; Park et al., 1974; Canale et al., 1976; Scavia et al., 1976a and b; Bierman, 1976). A main factor controlling successional change in both phytoplankton and zooplankton is zooplankton selective feeding (cf. Porter, 1977). Many field and laboratory studies have been carried out to quantify the selection process; however, the forms in which the data are reported are not immediately applicable to models. -
Future Friendly Farming: Seven Agricultural Practices to Sustain People and the Environment Executive Summary
Future Friendly Farming Seven Agricultural Practices to Sustain People and the Environment Ryan Stockwell and Eliav Bitan August 2011 Future Friendly Farming Seven Agricultural Practices to Sustain People and the Environment Ryan Stockwell and Eliav Bitan August 2011 ACKNOWLEDGEMENTS The authors wish to thank the contributions of many people in the development of this report. Julie Sibbing and Aviva Glaser provided guidance and editing. Bill McGuire provided content and consulted on the development of the report. Mekell Mikell provided insightful edits. A number of reviewers provided helpful feedback on various drafts of this report. We appreciate the time everyone took to talk with us about their practices or projects. Finally we would like to thank the Packard Foundation for their support of this project. Table of Contents Executive Summary ...................................................................................1 Introduction ................................................................................................3 CHART: Multiple benefits of agriculture and land management practices ......................................................................4 1. Cover Crops ...........................................................................................5 CASE STUDY: Minnesota Corn and Soybean Farmer Grows Profits, as well as Water Quality and Climate Benefits .........................................................................6 CASE STUDY: Cover Cropping North Dakota Grain and Cattle Farmers Grow Profits, as -
Grazing and Browsing Behavior, Grazing Management, Forage Evaluation and Goat Performance: Strategies to Enhance Meat Goat Production in North Carolina
1 Grazing and Browsing Behavior, Grazing Management, Forage Evaluation and Goat Performance: Strategies to Enhance Meat Goat Production in North Carolina Jean-Marie Luginbuhl, Professor, J. Paul Mueller, Professor and Interim Dean of International Programs, James. T. Green, Jr., Professor Emeritus, Douglas S. Chamblee, Professor Emeritus, and Heather M. Glennon, Meat Goat Program Research Technician and PhD candidate College of Agriculture and Life Sciences, North Carolina State University Campus Box 7620, Raleigh NC 27695 ABSTRACT the use of high quality forage and browse and the Goats (Capra hircus hircus) offer an opportunity strategic use of expensive concentrate feeds. This can to more effectively convert pasture nutrients to be achieved by developing a year-round forage animal products as milk, meat and fiber which are program allowing for as much grazing as possible currently marketable and in demand by a growing throughout the year. segment of the US population. With the introduction of the Boer breed and the upgrading of meat-type Some people still believe that goats eat and do goats with Boer genetics, research focusing on well on low quality feed. Attempting to manage and forage evaluation, feeding strategies and the feed goats with such a belief will not lead to development of economical grazing systems was successful meat goat production. On pasture or urgently needed to meet the needs of this emerging rangeland, maximum goat gains or reproduction can industry. The first part of this paper focuses on the be attained by combining access to large quantities of quality forage that allow for selective feeding. description of grazing/browsing behavior of goats and grazing management, and grazing strategies such Goat Brazing/Browsing Behavior as control and strip grazing, differences between Goats are very active foragers, able to cover a control and continuous grazing, forward creep wide area in search of scarce plant materials. -
A Review of Planktivorous Fishes: Their Evolution, Feeding Behaviours, Selectivities, and Impacts
Hydrobiologia 146: 97-167 (1987) 97 0 Dr W. Junk Publishers, Dordrecht - Printed in the Netherlands A review of planktivorous fishes: Their evolution, feeding behaviours, selectivities, and impacts I Xavier Lazzaro ORSTOM (Institut Français de Recherche Scientifique pour le Développement eri Coopération), 213, rue Lu Fayette, 75480 Paris Cedex IO, France Present address: Laboratorio de Limrzologia, Centro de Recursos Hidricob e Ecologia Aplicada, Departamento de Hidraulica e Sarzeamento, Universidade de São Paulo, AV,DI: Carlos Botelho, 1465, São Carlos, Sï? 13560, Brazil t’ Mail address: CI? 337, São Carlos, SI? 13560, Brazil Keywords: planktivorous fish, feeding behaviours, feeding selectivities, electivity indices, fish-plankton interactions, predator-prey models Mots clés: poissons planctophages, comportements alimentaires, sélectivités alimentaires, indices d’électivité, interactions poissons-pltpcton, modèles prédateurs-proies I Résumé La vision classique des limnologistes fut de considérer les interactions cntre les composants des écosystè- mes lacustres comme un flux d’influence unidirectionnel des sels nutritifs vers le phytoplancton, le zoo- plancton, et finalement les poissons, par l’intermédiaire de processus de contrôle successivement physiqucs, chimiques, puis biologiques (StraSkraba, 1967). L‘effet exercé par les poissons plaiictophages sur les commu- nautés zoo- et phytoplanctoniques ne fut reconnu qu’à partir des travaux de HrbáEek et al. (1961), HrbAEek (1962), Brooks & Dodson (1965), et StraSkraba (1965). Ces auteurs montrèrent (1) que dans les étangs et lacs en présence de poissons planctophages prédateurs visuels. les conimuiiautés‘zooplanctoniques étaient com- posées d’espèces de plus petites tailles que celles présentes dans les milieux dépourvus de planctophages et, (2) que les communautés zooplanctoniques résultantes, composées d’espèces de petites tailles, influençaient les communautés phytoplanctoniques. -
Dairy Farmer Profitability Using Intensive Rotational Stocking
Dairy Farmer Profitability Using United States Department of Intensive Rotational Agriculture Natural Stocking Resources Conservation Service Better grazing management Grazing Lands for pastures Technology Institute In 1992, Pennsylvania State University researchers conducted a study of the profitability of dairy farms practicing intensive rotational grazing. The 52 cooperating farmers were selected completely at random, with a stratified random sample statistical design, from among nearly 15 percent, or 350 farmers, practic- ing intensive grazing in a five-county region of northeastern Pennsylvania—Bradford, Tioga, Susquehanna, Wyoming, and Wayne Counties. The results from this study reflect typical use of intensive rotational stocking. The randomness of the sample selection ensures that the results reported here are representative, and can most likely be achieved by the typical farmer. September 1996 For additional copies of this publication, contact— Grazing Lands Technology Institute USDA, Natural Resources Conservation Service P.O. 6567 Fort Worth, Texas 76115 Dairy Farmer Profitability Using Intensive Rotational Stocking Figure 1. In a study of dairy farmer practices in a five-county area of northeastern Pennsylvania, farmers using pasture cut feed costs and increased profit per cow. One of the first representative studies of dairy Why typical dairy farmers adopt farmers practicing intensive rotational stocking was intensive rotational stocking conducted by Pennsylvania State University. The grazing method is defined as rotation of grazing cows In this 1992 study, the main reasons cited by dairy among several small pasture subunits called pad- farmers (fig. 2) for adopting intensive rotational docks versus stocking for continuously grazing one stocking were reduced costs and labor, they had large pasture. -
Chapter 7 Meadows and Enclosed Pasture
Meadows and enclosed pasture 7 Definition and location of meadows and enclosed pasture ................................ 7:3 7.1 Definition of meadows and enclosed pasture ....................................... 7:3 7.2 Location and extent of meadows and enclosed pasture .............................. 7:4 Habitats and species of meadows and enclosed pasture in the uplands ..................... 7:5 7.3 Why meadows and enclosed pasture are important ................................. 7:5 7.4 Habitats and species of meadows and enclosed pasture, their nature conservation status and distribution ................................................................... 7:5 7.4.1 Vascular plants ......................................................... 7:5 7.4.2 Bryophytes ............................................................. 7:6 7.4.3 Plant communities ...................................................... 7:6 7.4.4 Birds .................................................................. 7:8 7.4.5 Invertebrates ........................................................... 7:9 7.4.6 Mammals ............................................................. 7:10 7.4.7 Amphibians and reptiles ................................................ 7:10 7.5 Habitat and management requirements of meadow and enclosed pasture species ...... 7:10 Management of upland meadows and enclosed pasture .................................. 7:11 7.6 Managing upland meadows and enclosed pasture ................................. 7:11 7.6.1 Establishing management objectives -
Regenerative Consumer TOOLKIT Find Food, Fiber and Other Goods Produced in a Way That Slows Down Climate Change
Regenerative Consumer TOOLKIT Find food, fiber and other goods produced in a way that slows down climate change Hear the buzz about regenerative farming, but not sure what that means for YOU? Want to find carbon-farmed goods? Want to #changeclimatechange in a way that feels empowering and tastes amazing? Then read on. Photo: Shawn Linehan In a world so filled with problems that it’s easy to feel overwhelmed, here’s a bit of good news: Farmers and scientists around the world are confirming time and time again that a major climate solution lies in something as simple as soil: healthy soil can absorb excess carbon from the atmosphere and store it safely for long periods of time. The practices for increasing this capacity in the soil are low-tech, low-cost, and accessible, and bring with them numerous other environmental benefits. We call them regenerative farming practices. This is farming that can help to slow down or potentially even reverse global warming. So there it is. Farming doesn’t have to be destructive, it can be restorative. The way you meet your daily material needs doesn’t have to be destructive, it can be restorative. You don’t need to be a farmer to participate in this regenerative revolution. If you eat food, wear clothes, or use any products that can be traced back to farm- land somewhere, you are already a part of the equation that can make this work. You already have a say. And it’s quite simple: By supporting regenerative farms and companies that source from them, YOU can help to slow down or potentially even reverse global warming. -
Socio-Demographic and Economic Characteristics, Crop-Livestock Production Systems and Issues for Rearing Improvement: a Review
Available online at http://www.ifgdg.org Int. J. Biol. Chem. Sci. 12(1): 519-541, February 2018 ISSN 1997-342X (Online), ISSN 1991-8631 (Print) Review Paper http://ajol.info/index.php/ijbcs http://indexmedicus.afro.who.int Socio-demographic and economic characteristics, crop-livestock production systems and issues for rearing improvement: A review Daniel Bignon Maxime HOUNDJO1, Sébastien ADJOLOHOUN1*, Basile GBENOU1, Aliou SAIDOU2, Léonard AHOTON2, Marcel HOUINATO1, Soumanou SEIBOU TOLEBA1 and Brice Augustin SINSIN3 1Département de Production Animale, Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, 03 BP 2819 Jéricho, Cotonou, Benin. 2Département de Production Végétale, Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, 03 BP 2819 Jéricho, Cotonou, Benin. 3Département de l’Aménagement et Gestion des Ressources Naturelles, Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, 03 BP 2819 Jéricho, Cotonou, Benin. *Corresponding author; E-mail : [email protected]; Tél: (+229) 97 89 88 51 ABSTRACT This paper reviews some characteristics of crop-livestock production systems in Benin with a special focus on the issues for enhance pasture production and nutritive value which in turn will increase animal productivity. Benin is located in the Gulf of Guinea of the Atlantic Ocean in West Africa and covers 114,763 km2. The population estimated in 2017 is 10,900,000 inhabitants with an annual population growth rate of 3.5%. The country is primarily an agro-based economy, characterized by subsistence agricultural production that employs more than 70%. The climate ranges from the bimodal rainfall equatorial type in the south to the tropical unimodal monsoon type in the north. -
Facilitating Foundation Species: the Potential for Plant–Bivalve Interactions to Improve Habitat Restoration Success
Received: 28 March 2019 | Accepted: 3 February 2020 DOI: 10.1111/1365-2664.13605 REVIEW Facilitating foundation species: The potential for plant–bivalve interactions to improve habitat restoration success Karine Gagnon1 | Eli Rinde2 | Elizabeth G. T. Bengil3,4 | Laura Carugati5 | Marjolijn J. A. Christianen6,7 | Roberto Danovaro5,8 | Cristina Gambi5 | Laura L. Govers7,9 | Silvija Kipson10 | Lukas Meysick1 | Liina Pajusalu11 | İnci Tüney Kızılkaya3,12 | Johan van de Koppel9,13 | Tjisse van der Heide7,9,14 | Marieke M. van Katwijk7 | Christoffer Boström1 1Environmental and Marine Biology, Åbo Akademi University, Turku, Finland; 2Norwegian Institute for Water Research, Oslo, Norway; 3Mediterranean Conservation Society, Izmir, Turkey; 4Girne American University, Marine School, Girne, TRNC via Turkey; 5Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy; 6Aquatic Ecology and Water Quality Management Group, Wageningen University, Wageningen, The Netherlands; 7Department of Environmental Science, Institute for Wetland and Water Research, Radboud University Nijmegen, Nijmegen, The Netherlands; 8Stazione Zoologica Anton Dohrn, Naples, Italy; 9Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands; 10Faculty of Science, Department of Biology, University of Zagreb, Zagreb, Croatia; 11Estonian Marine Institute, University of Tartu, Tallinn, Estonia; 12Faculty of Science, Ege University, Izmir, Turkey; 13Royal Netherlands Institute for Sea Research and Utrecht -
Apparent Competition, Lion Predation, and Managed Livestock Grazing: Can Conservation Value Be Enhanced?
ORIGINAL RESEARCH published: 12 April 2019 doi: 10.3389/fevo.2019.00123 Apparent Competition, Lion Predation, and Managed Livestock Grazing: Can Conservation Value Be Enhanced? Caroline C. Ng’weno 1,2*, Steven W. Buskirk 1, Nicholas J. Georgiadis 3, Benard C. Gituku 2, Alfred K. Kibungei 2, Lauren M. Porensky 4, Daniel I. Rubenstein 5 and Jacob R. Goheen 1* 1 Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States, 2 Conservation Department, Ol Pejeta Conservancy, Nanyuki, Kenya, 3 Puget Sound Institute, University of Washington, Tacoma, WA, United States, 4 Agricultural Research Service Rangeland Resource Unit, US Department of Agriculture, Fort Collins, CO, United States, 5 Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States Edited by: Predator restorations often result in apparent competition, where co-occurring prey Matt W. Hayward, populations experience asymmetric predation pressure driven by predator preferences. Faculty of Science, University of Newcastle, Australia In many rangeland ecosystems, livestock share the landscape with wildlife, including Reviewed by: ungulates and the large carnivores that consume them. We examined whether apparent Inger Suzanne Prange, competition reorganized prey communities following restoration of lions (Panthera leo) Appalachian Wildlife Research to a savanna ecosystem, and whether and how livestock management could alter this Institute, United States António Onofre Soares, indirect interaction between lions and their prey. Three lines of evidence supported the Universidade dos Açores, Portugal hypothesis that Jackson’s hartebeest (Alcelaphus bucelaphus lelwel; an ungulate of *Correspondence: conservation concern) are suppressed via lion-mediated apparent competition. First, Caroline C. Ng’weno [email protected] hartebeest exhibited an Allee effect where they were exposed to lions, but displayed Jacob R.