Advancing Life Cycle Comparisons of Future Alternative Light-Duty Vehicles
Total Page:16
File Type:pdf, Size:1020Kb
Advancing Life Cycle Comparisons of Future Alternative Light-Duty Vehicles by Jason Ming Luk A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Civil Engineering University of Toronto © Copyright by Jason Luk 2015 Advancing Life Cycle Comparisons of Future Alternative Light- Duty Vehicles Jason Ming Luk Doctor of Philosophy Department of Civil Engineering University of Toronto 2015 Abstract The overall objective of this thesis is to systematically compare the life cycle energy use, air emissions and costs of future alternative light-duty vehicles in a more robust manner than is done in the literature. Models are developed using GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation), Autonomie vehicle simulation software, Vehicle Attribute Model, Air Pollution Emission Experiments and Policy (APEEP) analysis model, and Crystal Ball (Monte Carlo analysis). Four questions are investigated: Should the transportation sector use ethanol or bio-electricity? Life cycle assessment results indicate that neither has a clear advantage in terms of greenhouse gas (GHG) emissions or energy use. This finding is in contrast to those in the literature that favor the use of bio- electricity because this thesis develops pathways with comparable vehicle characteristics. Do plug-in electric vehicles provide incremental life cycle air pollutant impact benefits over internal combustion engine vehicles using the same primary energy source? The results based on natural gas-derived fuels show that battery electric vehicles (BEV) may not provide benefits, in terms of climate change and health impacts, over hybrid electric vehicles ii (HEV). This can be attributed to the many sources of uncertainty and stringent tailpipe emissions regulations. How can vehicles be designed to meet future CAFE (Corporate Average Fuel Economy) standards? Case study results for a reference vehicle show that the 66% increase in fuel economy targets between model years 2012 to 2025 can be met with a 10% vehicle price increase (lightweight HEV powertrain), 31% increase in 0-96 km/h acceleration time (smaller engine), 17% interior volume decrease (smaller body), or 94% driving range decrease (BEV powertrain), while other attributes are maintained. How might CAFE standards affect the ability for non-petroleum vehicles to mitigate GHG emissions by displacing petroleum vehicles? Life cycle costing results indicate that there is a financial incentive for automakers to produce CNG vehicles that could emit higher well-to-wheel GHG emissions on a per kilometer basis than gasoline vehicles. This is permitted by CAFE standards because non-petroleum fuel incentives allow vehicles using CNG to be less efficient, and thus potentially more affordable, than those using gasoline. iii Acknowledgements Dr. Heather MacLean for being an infuriatingly great supervisor. Her patience and trust gave me the freedom to make my own mistakes, while her unrelenting expectations never allowed me to become complacent. I am privileged to have the opportunity to continue to work with her. Dr. Bradley Saville for going far beyond his official position as a committee member. Our high energy/volume debates provoked me to realize the strengths and address the weaknesses of my work. Dr. Chris Kennedy, Dr. Gregory Keoleian, Dr. Matthew Roorda, Dr. Murray Thomson, Dr. James Wallace for their roles on my examination committees. Their diverse insights helped refine the direction and academic significance of my research. Dr. Candace Wheeler, Ian Sutherland and Norm Brinkman for their contributions on behalf of General Motors. Their industry prospective identified valuable resources and improved the real world relevance of this thesis. Dr. Clement Bowman, Marjorie Bowman, Paul Price and Suzana Price for generously contributing to the scholarships that have funded my studies. Kaye and Eleanor Yu for being sources of joy. iv Table of Contents Table of Contents ............................................................................................................................ v List of Tables ............................................................................................................................... viii List of Figures ................................................................................................................................ xi List of Notations ........................................................................................................................... xv Chapter 1 Introduction .................................................................................................................... 1 1.1 Thesis Objectives ................................................................................................................ 5 1.2 Publications contained in this thesis ................................................................................... 6 Chapter 2 Background .................................................................................................................... 8 2.1 Light-duty Vehicle Energy Use Policies ............................................................................. 8 2.2 Status of Light-Duty Vehicle Powertrains and Fuels ....................................................... 17 2.3 Life Cycle Comparisons of Alternative Light-Duty Vehicles .......................................... 28 Chapter 3 Methods ........................................................................................................................ 36 3.1 Life Cycle Assessment ...................................................................................................... 36 3.2 GREET Model .................................................................................................................. 38 3.3 Air Pollution Emission Experiments and Policy Analysis Model .................................... 39 3.4 Autonomie ......................................................................................................................... 41 3.5 Vehicle Attribute Model ................................................................................................... 44 3.6 Monte Carlo Analysis ....................................................................................................... 46 Chapter 4 Life Cycle Assessment of Bioenergy Use in Light-Duty Vehicles .............................. 48 4.1 Methods ............................................................................................................................. 50 4.2 Results and Discussion ..................................................................................................... 54 Chapter 5 Life Cycle Air Emissions Impacts and Ownership Costs of Light-Duty Vehicles Using Natural Gas As A Primary Energy Source .................................................................... 66 5.1 Methods ............................................................................................................................. 67 5.2 Results and Discussion ..................................................................................................... 74 v Chapter 6 Vehicle Design Options To Meet 2025 Corporate Average Fuel Economy Standards .................................................................................................................................. 86 6.1 Methods ............................................................................................................................. 88 6.2 Results and Discussion ..................................................................................................... 95 Chapter 7 Potential Impact of Corporate Average Fuel Economy Standards On The Ability For Non-Petroleum Vehicle To Mitigate Greenhouse Gas Emissions .................................. 104 7.1 Methods ........................................................................................................................... 106 7.2 Results and Discussion ................................................................................................... 112 Chapter 8 Conclusion .................................................................................................................. 119 8.1 Chapter Conclusions ....................................................................................................... 119 8.2 Thesis Conclusions ......................................................................................................... 122 8.3 Limitations ...................................................................................................................... 123 8.4 Future Research .............................................................................................................. 126 References ................................................................................................................................... 129 Appendix A: Chapter 4 Supporting Information ........................................................................ 146 Methods Section Details ........................................................................................................ 146 Results .................................................................................................................................... 163 Scenario Analysis ................................................................................................................... 166 Appendix B: Chapter 5 Supporting