Master Thesis

Total Page:16

File Type:pdf, Size:1020Kb

Master Thesis Master Thesis Designing Value Propositions for Disruptive Innovations; Exploring Value Proposition Design in the Case of Electric Vehicles Author: J.G.A. (Jilles) Visser Student number: 10475699 Supervisor: dr. R. Bohnsack Date of submission: July 2, 2015 Study programme: MSc Executive Programme in Management Studies Track: Strategy Faculty: Faculty of Business and Economics Statement of Originality This document is written by Jilles Visser who declares to take full responsibility for the contents of this document. I declare that the text and the work presented in this document is original and that no sources other than those mentioned in the text and its references have been used in creating it. The Faculty of Economics and Business is responsible solely for the supervision of completion of the work, not for the contents. Abstract From disruptive innovation theory as well as from business model theory it has been argued that a good business model can compensate for the technological shortcomings that hinder further market penetration of a disruptive innovation. However little empirical research about this phenomenon exists. Because the value proposition is considered to be the central part of the business model, this thesis explores how value propositions are designed to increase the attractiveness of a disruptive innovation for the mainstream market. The electric vehicle, which is an example of a disruptive innovation, serves as the context for this study. By studying the value proposition, this thesis tries to respond to the quest to add more empirical insights from diverse disciplines about what factors contribute to success of the electric vehicle. Using a multiple case study approach, the value proposition of thirteen electric vehicles that are sold in the Netherlands and/or United States is analyzed. Firm brochures and websites are primary sources of evidence. Additional information, mostly in the form of press releases, is used to get more insight in the individual cases. Firms appear to include several tactics in the value proposition that aim to compensate for the most inferior and important performance attributes. These tactics endeavour to reduce and shift risks of ownership, extend the value beyond the core product and integrate the electric vehicle in the ecosystem. Tactics that reduce risks and extend the value of the electric vehicle are often derived from the conventional value proposition and seem to have a limited contribution to success. Nevertheless, the large majority of firms provides these tactics. Only a minority of cases actively works towards integrating the electric vehicle in the ecosystem and provides risk shifting tactics. Findings cautiously indicate that a value proposition that helps to integrate the electric vehicle in the ecosystem has a positive effect on success in the market. Keywords: disruptive innovation, value proposition, business models, electric vehicles. Acknowledgement I sincerely would like to thank my supervisor René Bohnsack for his support, knowledge and trust during the entire process of writing the thesis. I really enjoyed working together and thanks to his positivism and enthusiasm, I became in a relatively short time considerably familiar with the electric vehicle industry. Visiting the electro mobility conference in Paris was absolutely one of the highlights of this period. Discussing theory together and keeping each other up to date about developments in the electric vehicle industry were an important source of inspiration and helped me to push my limits. Table of Content 1. Introduction ......................................................................................................................................... 1 2. Electric Vehicle Background ............................................................................................................... 4 2.1 Low-emission vehicles .................................................................................................................. 4 2.2 Electric vehicles: from the 19th century towards the 21st century .................................................. 5 2.3 Meta-analysis on EV consumer studies ......................................................................................... 6 2.3.1 Importance and relative advantage of EV attributes .............................................................. 8 3. Literature Review .............................................................................................................................. 14 3.1 Disruptive innovation .................................................................................................................. 14 3.1.1 Criticism and extensions of disruptive innovation theory .................................................... 17 3.2 Business models .......................................................................................................................... 22 3.2.1 Overview of business model theory ..................................................................................... 22 3.2.2 Conclusion of business model review .................................................................................. 28 3.3 Value proposition ........................................................................................................................ 29 3.3.1 Defining the value proposition ............................................................................................. 29 3.3.2 Conclusion of review of value proposition theory ............................................................... 32 3.3.3 Values ................................................................................................................................... 33 3.3.4 Design of the value proposition ............................................................................................ 34 4. Theoretical Framework ..................................................................................................................... 39 4.1 Research question ........................................................................................................................ 39 4.2 Working propositions .................................................................................................................. 41 5. Method .............................................................................................................................................. 45 5.1 Multiple case selection ................................................................................................................ 45 5.2 Data collection ............................................................................................................................. 47 5.3 Process of coding and analyzing the data .................................................................................... 48 5.3.1 Data reduction ...................................................................................................................... 48 5.3.2 Data display .......................................................................................................................... 50 5.3.3 Conclusion drawing and verification .................................................................................... 50 6. Findings ............................................................................................................................................. 52 6.1 Classification of EV attributes .................................................................................................... 52 6.2 Reconfiguration per attribute ....................................................................................................... 54 6.2.1 Tactics for driving range ...................................................................................................... 54 6.2.2 Tactics for price .................................................................................................................... 57 6.2.3 Tactics for charging time and charging infrastructure .......................................................... 59 6.2.4 Tactics for other attributes .................................................................................................... 63 6.2.5 Reconfiguration of attributes; summary of findings............................................................. 66 6.3 Generic strategies to value proposition design ............................................................................ 75 6.3.1 Risk reduction and risk shifting ............................................................................................ 76 6.3.2 Value extension; products and services ................................................................................ 77 6.3.3 Integrating in the ecosystem ................................................................................................. 79 6.4 Differences in value proposition reconfiguration strategies between EV manufacturers ........... 80 6.5 Answer on the working propositions ........................................................................................... 88 7. Discussion ......................................................................................................................................... 90 7.1 Discussion of findings ................................................................................................................. 90 7.2 Contributions, limitations and future research ...........................................................................
Recommended publications
  • Plug-In-Electric-Vehicles-Fact-Sheet
    Plug-in Electric Vehicles June 2014 Plug-in electric vehicles (PEVs) use electricity from the energy grid to charge large battery packs, then use the batteries to power an electric motor. Because they are primarily powered by electricity instead of liquid fuels, these vehicles produce no tailpipe emissions. Plug-in vehicles can also generate power from a regenerative braking system, which converts kinetic energy from the vehicle’s brakes into electricity and stores it in the battery pack. Because plug-in vehicles rely on rechargeable batteries for power, each vehicle has an electric range – the maximum number of miles it can travel on battery power before it needs to recharge. Applications for these vehicles go beyond just passenger cars (though U.S. consumer passenger PEVs are the focus of this fact sheet), as there are currently plug-in electric commuter buses, utility trucks, high-performance vehicles, and motorcycles. There are two main types of plug‐in electric vehicles: All-electric vehicles (EVs) only use electric power from the grid; they do not have an internal combustion engine and do not use any type of liquid fuel. Because they have an electric motor instead of a combustion engine, they require less maintenance than most conventional cars. They do not need radiator fluid, timing belts, fuel filters, oil or oil changes. EVs use large battery packs to give the vehicle a long electric range – a typical EV will have a range of 70 to 100 miles, though some can travel up to 265 miles on a single charge. Plug-in hybrid electric vehicles (PHEVs) are powered by a combination of grid electricity and liquid fuel.
    [Show full text]
  • Catalogue Smart Electric Drive
    smart Infocenter F (Appel gratuit depuis un poste fixe. Les frais d’appel depuis un téléphone portable peuvent varier en fonction des opérateurs.) 00800 2 77 77 77 7 * Nous nous ferons un plaisir de reprendre votre voiture afin de l’éliminer d’une façon respectueuse pour l’environnement, conformément à la directive européenne relative aux véhicules en fin de vie. Mais d’ici là, vous avez le temps ! Afin de vous faciliter autant que possible la restitution de votre véhicule, un réseau de centres de reprise et d’entreprises de démontage dédiées se tient à votre disposition pour reprendre gratuitement votre voiture. Vous permettez ainsi l’achèvement du circuit de recyclage et apportez une précieuse contribution à la préservation des ressources. Pour plus d’informations sur le recyclage des véhicules en fin de vie, la revalorisation et les conditions de reprise, veuillez consulter notre site Internet www.smart.com. NB sur les informations contenues dans cette brochure : des modifications ont pu intervenir sur ce produit depuis la date de la clôture de la rédaction, le 15/04/2012. Le constructeur se réserve le droit de modifications techniques, de design, de coloris pouvant intervenir à tout moment. Dans la mesure où le vendeur ou le constructeur utilise des chiffres ou des numéros pour désigner la commande ou l’objet commandé, aucun droit ne peut en dériver. Les visuels peuvent présenter des accessoires ou des options ne faisant pas partie de l’offre de série. Les éventuelles différences de teinte sont dues aux techniques d’impression. Certaines mar- >>Electrique. Tout simplement.
    [Show full text]
  • Electric Vehicle Tourism in New York State
    Electric Vehicle Tourism in New York State Final Report New York State Energy Research and Development Authority June 2015 Report Number 15-15 NYSERDA’s Promise to New Yorkers: NYSERDA provides resources, expertise, and objective information so New Yorkers can make confident, informed energy decisions. Mission Statement: Advance innovative energy solutions in ways that improve New York’s economy and environment. Vision Statement: Serve as a catalyst – advancing energy innovation, technology, and investment; transforming New York’s economy; and empowering people to choose clean and efficient energy as part of their everyday lives. Cover Image: NYSERDA Electric Vehicle Tourism in New York State Final Report Prepared for: New York State Energy Research and Development Authority Albany, NY Adam Ruder Program Manager Prepared by: WXY architecture + urban design Adam Lubinsky Ph.D, AICP Managing Principal Paul Salama, AICP Senior Urban Planner and Barretto Bay Strategies Paul Lipson President Luis Torres Lead Consultant and Energetics Bryan Roy Senior Energy Analyst NYSERDA Report 15-15 NYSERDA Contract 39140 June 2015 Notice This report was prepared by WXY architecture + urban design in the course of performing work contracted for and sponsored by the New York State Energy Research and Development Authority (hereafter “NYSERDA”). The opinions expressed in this report do not necessarily reflect those of NYSERDA or the State of New York, and reference to any specific product, service, process, or method does not constitute an implied or expressed recommendation or endorsement of it. Further, NYSERDA, the State of New York, and the contractor make no warranties or representations, expressed or implied, as to the fitness for particular purpose or merchantability of any product, apparatus, or service, or the usefulness, completeness, or accuracy of any processes, methods, or other information contained, described, disclosed, or referred to in this report.
    [Show full text]
  • Mohawk Valley Electric Vehicle Charging Station Plan
    Mohawk Valley Electric Vehicle Charging Station Plan PREPARED BY: IN COLLABORATION WITH: Herkimer-Oneida Counties Transportation Study Planning Department Planning Department Planning Department WITH SUPPORT FROM: March 2016 III Mohawk Valley Electric Vehicle Charging Station Plan NOTICE This report was prepared by Energetics Incorporated in the course of performing work contracted for and sponsored by the New York State Energy Research and Development Authority (hereafter “NYSERDA”). The opinions expressed in this report do not necessarily reflect those of NYSERDA or the State of New York, and reference to any specific product, service, process, or method does not constitute an implied or expressed recommendation or endorsement of it. Further, NYSERDA, the State of New York, and the contractor make no warranties or representations, expressed or implied, as to the fitness for particular purpose or merchantability of any product, apparatus, or service, or the usefulness, completeness, or accuracy of any processes, methods, or other information contained, described, disclosed, or referred to in this report. NYSERDA, the State of New York, and the contractor make no representation that the use of any product, apparatus, process, method, or other information will not infringe privately owned rights and will assume no liability for any loss, injury, or damage resulting from, or occurring in connection with, the use of information contained, described, disclosed, or referred to in this report. NYSERDA makes every effort to provide accurate information about copyright owners and related matters in the reports we publish. Contractors are responsible for determining and satisfying copyright or other use restrictions regarding the content of reports that they write, in compliance with NYSERDA’s policies and federal law.
    [Show full text]
  • Hybrid and Electric Vehicles the ELECTRIC DRIVE PLUGS IN
    Hybrid and Electric Vehicles THE ELECTRIC DRIVE PLUGS IN June 2011 www.ieahev.org International Energy Agency Implementing Agreement for co-operation on Hybrid and Electric Vehicle Technologies and Programmes Hybrid and Electric Vehicles The Electric Drive Plugs In June 2011 The IA-HEV, also known as the Implementing Agreement for co-operation on Hybrid and Electric Vehicle Technologies and Programmes, functions within a framework created by the International Energy Agency (IEA). Views, findings and publications of IA-HEV do not necessarily represent the views or policies of the IEA Secretariat or of all its individual member countries. Cover Photo: 2011 Nissan Leaf SL 4dr Hatchback The electric drive plugs in. Cover designer: Kizita Awuakye, New West Technologies, LLC ii www.ieahev.org International Energy Agency Implementing Agreement for co-operation on Hybrid and Electric Vehicle Technologies and Programmes Annual report of the Executive Committee and Task 1 over the year 2010 Hybrid and Electric Vehicles The Electric Drive Plugs In Concept and editing: Kristin Abkemeier (Operating Agent Task 1, New West Technologies, LLC) Co-editing: Alison Mize (New West Technologies, LLC), Richard Todaro (New West Technologies), and Martijn van Walwijk (IA-HEV secretary-general) Design and layout: Kizita Awuakye (New West Technologies, LLC) Contributing authors: Kristin Abkemeier New West Technologies, LLC USA Dick Appels Agentschap NL The Netherlands James Barnes DOE USA David Beeton Urban Foresight United Kingdom Carol Burelle NRCan Canada Mario Conte ENEA Italy Isobel Davidson NRC Canada Jørgen Horstmann Consultant Denmark Christina Ianniciello BC Ministry of Energy and Mines Canada Ulf Jonson Swedish Energy Agency Sweden Sigrid Kleindienst Solarcenter Muntwyler AG Switzerland B.J.
    [Show full text]
  • Electric Vehicle Sedan Photos (/Bmw-I3-Photo-And-Video- Gallery.Html) 81 Miles (Pure Electric) $43,300 News (/Bmw-I3/News)
    Log in or Create an account Facebook Twitter Home Cars Guides Charging Stations Google + Newsletter Cars Check out the growing list of cars powered by electricity! A few years ago, you could count the number of available plug-in cars on one hand, with a couple fingers left over. Today, there are nearly 20 models offered from more than a dozen different brands—in a range of sizes, styles, price points and powertrains to suit a wide range of consumers. (Okay, other models have been discontinued (/concept-cars) , failing to emerge from concepts.) But EVs are here to stay. The cars on this list all offer the sweet speedy-but-silent driving experience only available from battery-to-motor power. Which one of the following plug-in models has your name on it? FILTER: Battery EV Plug-in Hybrid SORT BMW i3 (/bmw-i3.html) full review (/bmw-i3.html) Electric Vehicle Sedan photos (/bmw-i3-photo-and-video- gallery.html) 81 miles (pure electric) $43,300 news (/bmw-i3/news) The stylish if slightly odd-looking BMW i3 is the lightest EV on the market. That makes it very efficient while providing a fast and fun 170-horsepower ride. Zero to sixty performance is close to seven seconds. (/bmw-i3.html) The i3 uses a liquid-cooled 22-kilowatt-hour battery pack to deliver more than 80 miles of range. The electric Bimmer is also available with a small gas engine that essentially doubles that distance. BMW i8 (/bmw-vision) full review (/bmw-vision) Plug-in Hybrid Coupe photos (/bmw-vision- efficientdynamics-photos-videos.html) 25 miles (electric + gasoline) $137,000 news (/bmw-vision/news) The i8 is BMW's expensive sleek futuristic plug-in hybrid supercar.
    [Show full text]
  • (ARRA): Plug-In Electric Vehicle and Infrastructure Analysis
    INL/EXT-15-35708 Plug-in Electric Vehicle and Infrastructure Analysis September 2015 Prepared for the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof. INL/EXT-15-35708 Plug-in Electric Vehicle and Infrastructure Analysis Jim Francfort1 Brion Bennett1 Richard “Barney” Carlson1 Thomas Garretson2 LauraLee Gourley1 Donald Karner2 Mindy Kirkpatrick1 Patti McGuire1 Don Scoffield1 Matthew Shirk1 Shawn Salisbury1 Stephen Schey2 John Smart1 Sera White1 Jeffery Wishart3 September 2015 Idaho National Laboratory Idaho Falls, Idaho 83415 http://avt.inl.gov Prepared for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517 1 Idaho National Laboratory 2 Electric Applications Incorporated 3 Intertek Center for the Evaluation of Clean Energy Technology ABSTRACT Battelle Energy Alliance, LLC, is the managing and operating contractor for the U.S.
    [Show full text]
  • Tesla Stands Alone in Luxury EV Niche
    Chris Jenks, [email protected] INITIAL REPORT Tesla Stands Alone in Luxury EV Niche Companies: BIT:F/FIATY, ETR:BMW, ETR:NSU, ETR:PAH3/POAHY, F, GM, TSLA, TYO:7201/NSANY, TYO:7203/TM, TYO:7211/MMTOF October 31, 2013 Research Question: Will high-end electric or hybrid vehicles from BMW, Audi and Porsche pop Tesla’s bubble? Summary of Findings Silo Summaries Tesla Motors Inc.’s (TSLA) Model S still has no direct competition; it 1) TESLA DEALERSHIPS stands alone in its class of luxury electric vehicles (EVs). These seven sources reported no impediments in meeting or exceeding current sales goals and no direct The 15 sources who discussed Tesla’s sales said the company has EV competition for Tesla’s Model S. All have taken part met or exceeded its goals, and not one of our 28 sources criticized in the Model S buyback program, often describing it as Tesla’s current performance in sales and order fulfillment. a lease program sweetened with the tax incentives of ownership but not a significant sales driver. The video The infamous video of a Model S catching fire has had no lasting of a Model S catching on fire has not been a hindrance; repercussions on Tesla. Sources said, if anything, the incident has if anything, the incident has driven home Tesla’s high reinforced Tesla’s claims of its strong safety features. safety standards. Although not a sales driver, Tesla’s three-year buyback program 2) TESLA SUPPLY CHAIN does boost consumer confidence and helps to close deals. A few These four sources were positive on Tesla, and three sources compared the program to a lease but sweetened with tax reported solid volume growth year to year in their Tesla incentives that come with ownership.
    [Show full text]
  • Owner's Manual Smart Fortwo Coupé and Smart Fortwo Cabrio Electric Drive
    www.smart.com smart -ADaimler brand Order no. 6522 0254 02 É4535841112"ËÍ Part no. 453 584 11 12 4535841112 Edition ÄJ2017-1b Owner's Manual, smart fortwo coupé and smart fortwo cabrio electric drive smart fortwocoupéandcabrio electricdrive >> Owner'sManual Symbols in the Owner's Manual Publication details The following symbols are used in this Own- Internet er's Manual: G WARNING Further information about smart vehicles and about Daimler AG can be found on the Warning notes make you aware of dangers following websites: which could pose a threat to your health or http://www.smart.com life, or to the health and life of others. http://www.daimler.com H Environmental note Environmental notes provide you with Editorial office information on environmentally aware actions or disposal. You are welcome to forward any queries or suggestions you may have regarding this ! Notes on material damage alert you to Owner's Manual to the technical documen- dangers that could lead to damage to your tation team at the following address: vehicle. Daimler AG, HPC: CAC, Customer Service, i These symbols indicate useful instruc- 70546 Stuttgart, Germany tions or further information that could be ©Daimler AG: not to be reprinted, translated helpful to you. or otherwise reproduced, in whole or in part, without written permission from Daimler AG. X Instructions that must be followed. X Several consecutive symbols indicate an instruction with several consecutive steps. Vehicle manufacturer (Y page) Further information on a topic YY A warning or an instruction that is con- Daimler AG tinued on the next page. Mercedesstraße 137 Display text: Display text in the instru- 70327 Stuttgart ment cluster display, the smart Audio-Sys- tem or the smart Media-System.
    [Show full text]
  • Chevrolet Spark EV (2014)
    SPARK EV PURE. ELECTRIC. FUN. MILE raNGE.1 400 LB.-FT. OF TORQue. 82 1 Based on EPA-estimated 119 MPGe combined city/highway with 28 kWh per 100 miles. Spark EV in Electric Blue. Spark EV interior in Electric Blue. With a finely tuned ride and 400 lb.-ft. of instant torque, the THIS CAR HAS FLOW A unique prominent closed upper grille and Siri Eyes Free4 as your personal assistant. With Siri, you can all-new 2014 Spark EV 1 is the most fun you can have in the most shutter system automatically opens when cooling to achieve check sports scores or find local eateries all with the simple efficient electric vehicle in the retail market. So leave gas stations better aerodynamics, while the full-length underbody panel push of a button. Take charge by easily pairing your compatible behind and move forward with 82 miles2 of pure electric driving. guides airflow and reduces drag. This design lets Spark EV iPhone® with the Chevrolet MyLink Radio3 to access all that Featuring innovative electric performance and impressive slice through the air with the greatest of ease. Siri Eyes Free4 has to offer. zero-emissions power, Spark EV is the technologically advanced, electrifying way to get around town. BE MOBILE WHILE YOU’RE MOBILE Spark EV is technologically BE-IN-THE-KNOW NAVIGATION The most affordable in-dash advanced, from the inside out. Stay well connected with features navigation system available in its class, BringGo5 offers turn-by- like Chevrolet MyLink Radio3 for access to your favorite music, turn directions, an Eco driving profile, and 3-D maps featuring media and apps.
    [Show full text]
  • Murat Yılmaz (İTÜ)
    Grup 6: Şarj Sistemi Geliştirilmesi; Elektrikli Araçlarda EMC Optimizasyonu; Enerji Dağıtım Şebekeleri ile Entegrasyon Moderatörler: Burak Kelleci (Okan Üniversitesi) Murat Yılmaz (İTÜ) Ultra Hızlı ve Akıllı Şarj İstasyonları 6/22/2015 1 Proje 6.1 - Ultra Hızlı ve Akıllı Şarj İstasyonları Moderatörler: Burak Kelleci (Okan Üniversitesi) Murat Yılmaz (İTÜ) Ultra Hızlı ve Akıllı Şarj İstasyonları 6/22/2015 2 Plug-in Electric Vehicle Charging System and Power Levels ) g c a n c i i V l g 0 b r 4 u a Traction drive: 30 kW and up 2 Wheel Wheel p h ~ r C 3 o - d r e 1 ( t e a Battery Pack a v 2 o i v t l g i B r a e - n r i P v r n k e e On/Off – Board Battery Charger o a O n L e t Traction r e c g B r g e Drive l a e n a h R n i C t . o DC C C AC DC n Level 1 (1~ 120Vac) L Electric e d r r Home garage or office C D e a I C Motor AC f o DC f R DC i B DC-Bus - G T, w D n DC O AC-DC PFC DC-DC Unidirectional Converter Converter DC Electronic Loads g ) C n (Light, Heater, n i D o , g i l Power Flow (Birectional/Unidirectional) Aux, etc.) - r t a a i a C t c h A r s C e s ~ d a 3 m ( Wheel r g Wheel Plug-in Electric Vehicle (PEV) a m 3 a o o l e C e B k - v i f l e f L O Electric Propulsion System is like the heart of the PEV, plays vital role in vehicular electrification.
    [Show full text]
  • SNRU Journal of Science and Technology 1 1 ( 3) Se P T E Mbe R – De Ce Mb Er (2 0 1 9) 1 0 5  1 1 3
    SNRU Journal of Science and Technology 1 1 ( 3) Se p t e mbe r – De ce mb er (2 0 1 9) 1 0 5 1 1 3 SNRU Journal of Science and Technology Journal home page : s n r u j s t . s n r u . a c . t h The study and analysis of the impact on the power distribution system of the battery charger stations at Sakon Nakhon Rajabhat University Krisada Prompinit*, Wassana Kasemsin Program of Electrical and Electronics, Faculty of Industrial Technology, Sakon Nakhon Rajabhat University, Sakon Nakhon, 47000 Thailand *Corresponding Author: [email protected] Received: 20 March 2019; Revised: 15 July 2019; Accepted: 22 July 2019; Available online: 1 September 2019 Abstract This article is presenting the study and analysis of the impact on the power distribution system of the battery charger stations at Sakon Nakhon Rajabhat University according to the problem of the difference between the plugs of electric car battery chargers at the battery charger station and the electrical receptacle of various types of electric vehicles which respond to the needs electric vehicles users that are currently in use. The proposed paper is introducing the electric vehicle battery charger principle, the design standard selection of the fast charge with various standard battery charger. Results are shown in simulation with the Power Simulation (PSIM) and the implementation of battery charger with various standard fast charge type which installed at Sakon Nakhon Rajabhat University. The results show that CHAdeMO and Type 2 can accommodate most of the electric vehicles currently in use. In addition, the operation of a fast-charge electric car battery charger can also help to prevent the deterioration of the battery.
    [Show full text]