Related Skills, Values, and Qualities Common Interests of Biochemistry

Total Page:16

File Type:pdf, Size:1020Kb

Related Skills, Values, and Qualities Common Interests of Biochemistry Bachelor of Science: Biochemistry Track: Pharmacy Minor: Biochemistry Biochemistry is the study of the chemistry of living matter. The KU Biochemistry program provides extensive hands-on laboratory experience to develop the skills required for industry and graduate school. Biochemistry majors may go on to have careers in a variety of industries, research laboratories and government agencies. With a Bachelor of Science degree, graduates may find employment doing routine laboratory work, assisting on a research team, working in product development, or may work in the business-related areas of plant management, marketing or sales. Employers recommend one or more internships to be successful and competitive when entering this field. Career types associated with Biochemistry Common interests of Biochemistry majors (Is this a good fit for you? Are you…) • Conducting research and participating in science Investigative - “Thinker” fairs and competitions Realistic - “Doer” • Attending science exhibits, museums, and Social - “Helper” demonstrations Related skills, values, and qualities • Participating in biology, chemistry or science clubs • Proficiency in reading, writing, thinking, questioning, • Working part-time or volunteering in a pharmacy, analyzing and problem solving hospital, or with an environmental conservation • Ability to organize, analyze and interpret scientific organization research • Watching scientific programs • Strong math skills • Cooking • Proficiency with computers • Good manual dexterity and ability to operate For more information about the major scientific equipment Contact the Physical Sciences Department, 425 • Aptitude for accuracy and detail Boehm, 610-683-4447 or visit www.kutztown.edu/ Biochemistry • Ability to conduct and explain scientific research KU Majors related to Biochemistry Biology, Chemistry, Marine Biology, Secondary Education– Science Courses Biochemistry majors typically enjoy Investigative students may also be interested in: • Algebra, Trigonometry, Calculus Anthropology, Biology, Chemistry, Computer • Chemistry Science, Criminal Justice, Economics*, Environmental • Computer Science Science, Geography, Geology, German Studies, • Earth Science History, International Studies*, Marine Science, • Geometry Mathematics, Multicultural Studies*, PA German • Physical Science Studies*, Physics, Political Science, Psychology, Sociology, Spanish, and Women’s Studies* * minor only For More Information on Biochemistry careers or to speak to a Career Counselor, contact KU Career Development Center 113 Stratton Administration Center * 610-683-4067 * [email protected] * www.kutztown.edu/careercenter • Enroll in the Career • Meet with CDC career • Enroll in the Career Success Attend your senior kick-off and Exploration Certificate. coach. • Certificate. other info sessions to prepare • Attend info sessions to learn • Attend info sessions to learn • Complete an internship and/or for job search/grad school. about career development about resume writing, and undergraduate research. Update your resume and and personal branding. externships. • • Attend info sessions about LinkedIn profile. • Take a career assessment to • Confirm your choice of major internships, interviewing, job Create cover letter drafts. identify and confirm interests. and consider options for • search strategies, and grad • Gain experience through • Get involved in campus clubs double major or minor. school. and organizations. • Research careers of interest. internships and/or • Build a LinkedIn profile and undergraduate research. • Develop basic workplace skills • Complete a job shadowing continue to monitor your online through jobs or volunteer work. (externship) experience. • Secure references for job/grad presence. school applications. • Talk with professors, family, • Seek meaningful employ- • Complete a mock interview. • Create your “30 second” and friends about career ment or volunteer work in a • Build skills through research ideas. field related to your major. commercial. projects, part-time employment, • Meet with CDC to develop • Conduct informational • Explore options for under- and volunteer work. interviews with professionals graduate research and job search strategies. • Participate in Careers Cafe & • Research employers. working in fields of interest. study abroad. networking programs. • Network with professionals • Develop a relationship with • Write a resume and have it • Attend internship & job fairs. your professors and faculty reviewed by the CDC. through events and social Take on a leadership role in a advisor. • media. • Manage your online student organization or work. presence. • Join a professional organization • Consider graduate school in your discipline. options and prepare for • Attend the senior etiquette admissions tests. dinner. • Participate in job fairs and on-campus interviewing. Sample Career Titles Biochemistry majors can be found working in a wide variety of career fields. Here are just some career titles that may be of interest. Please note that some jobs may require further education and training. To learn more about these careers, visit http://online.onetcenter.org or www.bls.gov/oco. •Agricultural Scientist •Food and Drug Analyst •Perfumer •Agronomist •Food Scientist •Pharmaceutical Sales Rep. •Anesthesiologist •Forensic Chemist •Pharmacist •Assayer •Genetic Counselor •Pharmacologist •Biochemist •Geneticist •Physician •Bioterrorism Expert •High School Teacher •Physicist •Cepalometric Analyst •Hospital Administrator •Plastics Engineer •Ceramic Engineer •Hydrologist •Product Tester •Chemical Engineer •Industrial Health Engineer •Quality Assurance Manager •Chemical Oceanographer •Industrial Hygienist •Risk Manager •Chemist •Internist •Soil Scientist •Chemistry Technologist •Laboratory Assistant/Technician •System Analyst •Clarifying Plant Operator •Medical Illustrator •Technical Writer •College Professor •Medical Librarian •Technician •Color Development Chemist •Medical Technologist •Tissue Technologist •Consumer Protection Specialist •Metallurgist •Toxicologist •Crime Lab Analyst •Molecular Biologist •Underwater Technician •Cytotechnologist •Museum/Aquarium Administrator •Veterinarian •Dentist •Mycologist •Vector Control Assistant •Dietician •Nuclear Scientist •Wastewater Treatment Chemist •Environmental Health Specialist •Nutritionist •Water Purification Specialist •Environmental/Patent Lawyer •Occupational Safety Specialist •Wildlife Biologist •Fire Protection Engineer •Patent Examiner •Wildlife Resources Worker Common Internship Sites and Employers Biochemistry majors often find internships and employment in the following fields/industries. • Technical Publishers • Mining Companies • Biological Testing Laboratories • Pharmaceutical Companies • Chemical Companies • Research Organizations • Schools, Colleges, & Universities • State & Federal Government • Food Companies/Administration • Zoos & Ecological Organizations Handshake is the primary online resource for preparing and connecting students and alumni with employers. www.kutztown.edu/handshake Useful Websites for Biochemistry Majors Whether you are researching related career fields, applying for internships or jobs, or planning to join a professional association, these websites are for you! Industry Information Job/Internship Search Sites Professional Associations Careers in Federal Government BioSpace American Academy of Forensic Science www.makingthedifference.org www.biospace.com www.aafs.org Careers Resources for STEM BioPharmGuy American Association for the www.careercornerstone.org http://biopharmguy.com Advancement of Science www.aaas.org Chemical Week Magazine Chemistry Jobs www.chemweek.com chemistryjobs.com American Assoc. of Clinical Chemistry www.aacc.org CIRRUS—Chemistry Internet Re- Environmental Careers World Job source for Research by Bank American Chemical Society cirrus.chem.plu.edu www.environmentaljobs.com www.acs.org ChemWeb.com Medical Jobs American Institute of Chemists chemweb.com www.medicaljobs.org www.theaic.org Chemical Elements MedZilla American Society for Biochemistry and chemicalelements.com www.medzilla.com Molecular Biology www.asbmb.org Journal of Chemical Education New Scientist Jobs jchemed.chem.wisc.edu www.newscientistjobs.com Biotechnology Industry Organization www.bio.org Life Sciences World Science Careers www.lifesciencesworld.com www.sciencecareers.org Council for Chemical Research www.ccrhq.org National Academies LinkedIn Jobs www.nas.edu www.linkedin.com/jobs The National Academies www.nas.edu Pharma. Research & Manufacturing www.phrma.org Building Your Resume for a Career in Biochemistry Building a strong resume for your career field starts long before you ever start your job search. Employers want to hire graduates who not only have the necessary educational background but also have experience applying that knowledge. Learn more about your field and develop the necessary skills for employment by gaining hands-on experience through clinical practice. Utilize summer breaks to acquire valuable experience via volunteer or employment opportunities related to your major. Develop professionally through campus involvement and professional memberships. This illustrates responsibility, leadership abilities and time management skills. For More Information on Biochemistry careers or to speak to a Career Counselor, contact KU Career Development Center 113 Stratton Administration Center * 610-683-4067 * [email protected] * www.kutztown.edu/careercenter .
Recommended publications
  • Medical Biochemistry Profile
    Medical Biochemistry Profile Updated December 2019 1 Table of Contents Slide . General Information 3-5 . Total number & number/100,000 population by province, 2019 6 . Number/100,000 population, 1995-2019 7 . Number by gender & year, 1995-2019 8 . Percentage by gender & age, 2019 9 . Number by gender & age, 2019 10 . Number of retirees during the three year period of 2016-2018 11 . Links to additional resources 12 2 General information The primary role of the medical biochemist is to study and measure the biochemical abnormalities in human disease. The medical biochemist is trained in the operation and management of hospital biochemistry laboratories and acts as a consultant in all aspects of their use. As an academic specialist, the medical biochemist develops and integrates a basic medical science research program with clinical practice in a field of biochemical interest and maintains an active role as a teacher of clinically-applied biochemistry. Technology-driven specialties such as medical biochemistry require the physician to have a broad awareness of the field at the time of completion of formal training. But the physician must also be prepared for major changes during the ensuing years of practice that are inevitable and the residency period is the time to acquire skills for life-long learning. Source: Pathway evaluation program 3 General information In medical biochemistry, role learning must be supplemented by skills in self-directed learning. It requires ability in problem solving, formulation of hypotheses, the ability to do directed information searches and also the ability to critically appraise data. Medical biochemistry involves pathophysiology (requiring a thorough knowledge of normal and abnormal biochemistry and physiology, and the ability to apply this knowledge to the understanding of human disease); consultation; interpreting results (understanding the principles and limitations of biochemical analyses and applying these concepts to the interpretation of test results); analytical methods; and instrumentation.
    [Show full text]
  • What Use Is Chemistry?
    2 Inspirational chemistry What use is chemistry? Index 1.1 1 sheet This activity is based on a Sunday Times article by Sir Harry Kroto, a Nobel prize winning chemist who discovered a new allotrope of carbon – buckminsterfullerene or ‘bucky balls’. The article appeared on November 28, 2004 and is reproduced overleaf as a background for teachers. The aim is to introduce students to the scope of modern chemistry and the impact that it has on their lives, even in areas that they may not think of as related to chemistry. An alternative exercise for more able students would be to research what was used before chemical scientists had produced a particular new product or material (eg silk or wool stockings before nylon, leather footballs before synthetics, grated carbolic soap before shampoo) and then to write about the difference it would make to their lives if they did not have the modern product. Students will need: ■ Plenty of old magazines and catalogues (Argos catalogues are good as virtually everything in them would not exist without modern chemistry) ■ Large sheets of sugar paper ■ Glue and scissors. It works well if students produce the poster in groups, but then do the written work by themselves. The activity could be set for homework. Inspirational chemistry 3 What use is chemistry? Some years ago I was delighted chemistry-related industries make a to receive an honorary degree £5 billion profit on a £50 billion from Exeter University turnover, the apparent government recognising my contributions to inaction over the looming disaster chemistry – especially the is scarcely credible.
    [Show full text]
  • Chartered Status Charteredeverything You Need Tostatus Know Everything You Need to Know
    Chartered Status CharteredEverything you need toStatus know Everything you need to know www.rsc.org/cchem www.rsc.org/cchem ‘The best of any profession is always chartered’ The RSC would like to thank its members (pictured top to bottom) Ben Greener, Pfizer, Elaine Baxter, Procter & Gamble, and Richard Sleeman, Mass Spec Analytical Ltd, for their participation and support . Chartered Status | 1 Contents About chartered status 3 Why become chartered? 3 What skills and experience do I need? 3 The professional attributes for a Chartered Chemist 5 Supporting you throughout the programme yThe Professional Development Programme 5 yThe Direct Programme 7 How to apply 7 Achieving Chartered Scientist status 8 Revalidation 8 The next step 8 Application form 9 2 | Chartered Status ‘Having a professionally recognised qualification will build my external credibility’ Elaine Baxter BSc PhD MRSC Procter & Gamble Elaine Baxter is a Senior Scientist at Procter & Gamble (P&G). Since joining the company, she has had roles in formulation, process and technology development in skin and shaving science. She graduated in 2001, before completing a PhD on synthetic inorganic chemistry of platinum dyes with applications in solar cells. Elaine is currently working towards Chartered Chemist status through the Professional Development Programme. Why do you want to achieve Chartered Chemist status? My role involves science communication with people such as dermatologists, academics and the media; having a professionally recognised qualification will build my external credibility with these professionals. How do you feel the programme has worked for you? Working towards achieving the attributes required for the CChem award has presented me with opportunities to share my industry knowledge and help others.
    [Show full text]
  • Résumé Writing: Summary/Profile Examples
    Résumé Writing: Summary/Profile Examples Dedicated, versatile biochemist with extensive experience in protein research. Special expertise in recombinant protein purification and characterization from eukaryotic and prokaryotic systems. Solid background in enzymology and structural biology. Key skills include: • Working on own initiative and quickly adapting to new projects • Presenting information clearly and concisely in both verbal and written form • Effectively collaborating in a diverse team environment Well-rounded molecular biologist with a background in microbiology, cell biology and bioinformatics. Broad range of experience in mammalian, bacterial, and viral systems. Proficient in assay development and troubleshooting complex systems. Team player with solid written and oral communication skills anchored by a strong publication record. Inflammation scientist with over 8 years multidisciplinary research experience with emphasis on developing excellent communication skills. Key qualifications: • Equally capable of working independently & as an adaptable team member • Skilled at managing, analyzing, and presenting data to a wide variety of audiences • Proven leadership & supervisory abilities, developed through mentoring graduate students, coordinating institute-wide events, and leading journal clubs Protein crystallographer with a background in human kinases, therapeutic antibodies, retroviral proteases and membrane proteins. Extensive experience in protein biochemistry, crystallization and structure determination, expertise in structure-based
    [Show full text]
  • Pauling-Linus.Pdf
    NATIONAL ACADEMY OF SCIENCES L I N U S C A R L P A U L I N G 1901—1994 A Biographical Memoir by J A C K D. D UNITZ Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1997 NATIONAL ACADEMIES PRESS WASHINGTON D.C. LINUS CARL PAULING February 28, 1901–August 19, 1994 BY JACK D. DUNITZ INUS CARL PAULING was born in Portland, Oregon, on LFebruary 28, 1901, and died at his ranch at Big Sur, California, on August 19, 1994. In 1922 he married Ava Helen Miller (died 1981), who bore him four children: Linus Carl, Peter Jeffress, Linda Helen (Kamb), and Edward Crellin. Pauling is widely considered the greatest chemist of this century. Most scientists create a niche for themselves, an area where they feel secure, but Pauling had an enormously wide range of scientific interests: quantum mechanics, crys- tallography, mineralogy, structural chemistry, anesthesia, immunology, medicine, evolution. In all these fields and especially in the border regions between them, he saw where the problems lay, and, backed by his speedy assimilation of the essential facts and by his prodigious memory, he made distinctive and decisive contributions. He is best known, perhaps, for his insights into chemical bonding, for the discovery of the principal elements of protein secondary structure, the alpha-helix and the beta-sheet, and for the first identification of a molecular disease (sickle-cell ane- mia), but there are a multitude of other important contri- This biographical memoir was prepared for publication by both The Royal Society of London and the National Academy of Sciences of the United States of America.
    [Show full text]
  • Robert Burns Woodward
    The Life and Achievements of Robert Burns Woodward Long Literature Seminar July 13, 2009 Erika A. Crane “The structure known, but not yet accessible by synthesis, is to the chemist what the unclimbed mountain, the uncharted sea, the untilled field, the unreached planet, are to other men. The achievement of the objective in itself cannot but thrill all chemists, who even before they know the details of the journey can apprehend from their own experience the joys and elations, the disappointments and false hopes, the obstacles overcome, the frustrations subdued, which they experienced who traversed a road to the goal. The unique challenge which chemical synthesis provides for the creative imagination and the skilled hand ensures that it will endure as long as men write books, paint pictures, and fashion things which are beautiful, or practical, or both.” “Art and Science in the Synthesis of Organic Compounds: Retrospect and Prospect,” in Pointers and Pathways in Research (Bombay:CIBA of India, 1963). Robert Burns Woodward • Graduated from MIT with his Ph.D. in chemistry at the age of 20 Woodward taught by example and captivated • A tenured professor at Harvard by the age of 29 the young... “Woodward largely taught principles and values. He showed us by • Published 196 papers before his death at age example and precept that if anything is worth 62 doing, it should be done intelligently, intensely • Received 24 honorary degrees and passionately.” • Received 26 medals & awards including the -Daniel Kemp National Medal of Science in 1964, the Nobel Prize in 1965, and he was one of the first recipients of the Arthur C.
    [Show full text]
  • Multistep Synthesis of Complex Carbogenic Molecules
    THE LOGIC OF CHEMICAL SYNTHESIS: MULTISTEP SYNTHESIS OF COMPLEX CARBOGENIC MOLECULES Nobel Lecture, December 8, 1990 by E LIAS J AMES C OREY Department of Chemistry, Harvard University, Cambridge, Massachusetts, USA Carbogens, members of the family of carbon-containing compounds, can exist in an infinite variety of compositions, forms and sizes. The naturally occurring carbogens, or organic substances as they are known more tradi- tionally, constitute the matter of all life on earth, and their science at the molecular level defines a fundamental language of that life. The chemical synthesis of these naturally occurring carbogens and many millions of unnatural carbogenic substances has been one of the major enterprises of science in this century. That fact is affirmed by the award of the Nobel Prize in Chemistry for 1990 for the “development of the theory and methodology of organic synthesis”. Chemical synthesis is uniquely positioned at the heart of chemistry, the central science, and its impact on our lives and society is all pervasive. For instance, many of today’s medicines are synthetic and many of tomorrow’s will be conceived and produced by synthetic chemists. To the field of synthetic chemistry belongs an array of responsibilities which are crucial for the future of mankind, not only with regard to the health, material and economic needs of our society, but also for the attainment of an understanding of matter, chemical change and life at the highest level of which the human mind is capable. The post World War II period encompassed remarkable achievement in chemical synthesis. In the first two decades of this period chemical syntheses were developed which could not have been anticipated in the earlier part of this century.
    [Show full text]
  • The Meaning of Systems Biology
    Cell, Vol. 121, 503–504, May 20, 2005, Copyright ©2005 by Elsevier Inc. DOI 10.1016/j.cell.2005.05.005 The Meaning of Systems Biology Commentary Marc W. Kirschner* glimpse of many more genes than we ever had before Department of Systems Biology to study. We are like naturalists discovering a new con- Harvard Medical School tinent, enthralled with the diversity itself. But we have Boston, Massachusetts 02115 also at the same time glimpsed the finiteness of this list of genes, a disturbingly small list. We have seen that the diversity of genes cannot approximate the diversity With the new excitement about systems biology, there of functions within an organism. In response, we have is understandable interest in a definition. This has argued that combinatorial use of small numbers of proven somewhat difficult. Scientific fields, like spe- components can generate all the diversity that is cies, arise by descent with modification, so in their ear- needed. This has had its recent incarnation in the sim- liest forms even the founders of great dynasties are plistic view that the rules of cis-regulatory control on only marginally different than their sister fields and spe- DNA can directly lead to an understanding of organ- cies. It is only in retrospect that we can recognize the isms and their evolution. Yet this assumes that the gene significant founding events. Before embarking on a def- products can be linked together in arbitrary combina- inition of systems biology, it may be worth remember- tions, something that is not assured in chemistry. It also ing that confusion and controversy surrounded the in- downplays the significant regulatory features that in- troduction of the term “molecular biology,” with claims volve interactions between gene products, their local- that it hardly differed from biochemistry.
    [Show full text]
  • Robert Burns Woodward 1917–1979
    NATIONAL ACADEMY OF SCIENCES ROBERT BURNS WOODWARD 1917–1979 A Biographical Memoir by ELKAN BLOUT Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoirs, VOLUME 80 PUBLISHED 2001 BY THE NATIONAL ACADEMY PRESS WASHINGTON, D.C. ROBERT BURNS WOODWARD April 10, 1917–July 8, 1979 BY ELKAN BLOUT OBERT BURNS WOODWARD was the preeminent organic chemist Rof the twentieth century. This opinion is shared by his colleagues, students, and by other distinguished chemists. Bob Woodward was born in Boston, Massachusetts, and was an only child. His father died when Bob was less than two years old, and his mother had to work hard to support her son. His early education was in the Quincy, Massachusetts, public schools. During this period he was allowed to skip three years, thus enabling him to finish grammar and high schools in nine years. In 1933 at the age of 16, Bob Woodward enrolled in the Massachusetts Institute of Technology to study chemistry, although he also had interests at that time in mathematics, literature, and architecture. His unusual talents were soon apparent to the MIT faculty, and his needs for individual study and intensive effort were met and encouraged. Bob did not disappoint his MIT teachers. He received his B.S. degree in 1936 and completed his doctorate in the spring of 1937, at which time he was only 20 years of age. Immediately following his graduation Bob taught summer school at the University of Illinois, but then returned to Harvard’s Department of Chemistry to start a productive period with an assistantship under Professor E.
    [Show full text]
  • If a US Biochemist Has His Way, the World's Tiniest Primate Could
    FEATURE NEWS A mouse lemur shows its strength at a field lab in Madagascar before returning to the wild. MAKE WAY FOR THE MOUSE LEMUR If a US biochemist has his way, the world’s tiniest primate could become a top research animal for genetics. BY LESLIE ROBERTS nja is struggling tonight — her hands keep slipping off a miniature grip bar used to measure her strength. “Come on, you can do better,” coos Zeph Pendleton, who is gen- tly supporting the mouse lemur as she tries to get a firm hold. Finally, the animal gets her fingers around the bar and gives it a tug. It records a force of 1 kilogram, impressive for a crea- Oture weighing only 41 grams. “Good,” says Pendleton, a research assis- tant who is working here in the rainforest at Centre ValBio, a research RIJASOLO/RIVA PRESS RIJASOLO/RIVA station at Ranomafana National Park in Madagascar. ©2019 Spri nger Nature Li mited. All ri ghts reserved. 13 JUNE 2019 | VOL 570 | NATURE | 151 NEWS FEATURE Bathed in dim red light, Pendleton, who has come here from Stanford she might shadow a postdoctoral fellow for a couple of months. Instead, University in California, puts Onja through her paces. He gets her to place on day one, Krasnow charged Ezran, Maya and their friend Jason Willick her hands on an iPhone modified to measure her heart’s electrical activity. with finding a new genetic model organism that was a closer mirror of He checks her length and weight — she has gained 2 grams in less than human biology than a mouse.
    [Show full text]
  • “For the Discovery and Development of the Green Fluorescent Protein, GFP” P I X J
    2008 NOBEL LAUREATES The Nobel Prize in Chemistry 2008 “for the discovery and development of the green fluorescent protein, GFP” X O I P G SCAN ICAL LABORATORY ICAL ORNIA, SAN DIE ORNIA, SAN G F J. HENRIKSSON/ CALI F UNIVERSITY O TOM KLEINDINST/MARINE BIOLO TOM Osamu Shimomura Martin Chalfie Roger Y. Tsien 1/3 of the prize 1/3 of the prize 1/3 of the prize Born: 1928 Born: 1947 Born: 1952 Birthplace: Japan Birthplace: United States Birthplace: United States Nationality: Nationality: Nationality: Japanese citizen US citizen US citizen Current position: Current position: Current position: Professor Emeritus, Marine William R. Kenan Jr Professor, University of Biological Laboratory (MBL), Professor of Biological California, San Diego, Woods Hole, Massachusetts, Sciences, Columbia La Jolla, California, USA USA, and Boston University, New York, University Medical School, New York, USA Massachusetts, USA CHEMISTRY 7 Copyright Nobel Web AB 2008. Nobelprize.org, Nobel Prize and the Nobel Prize medal design mark are registered trademarks of the Nobel Foundation. 2008 NOBEL LAUREATES Speed read: Illuminating biology IBRARY L The story begins with Osamu Shimomura’s research OTO OTO H into the phenomenon of bioluminescence, in which chemical reactions within living organisms give off CIENCE P CIENCE light. While studying a glowing jellyfish in the early S / X 1960s he isolated a bioluminescent protein that gave off blue light. But the jellyfish glowed green. Further studies revealed that the protein’s blue light ANTATOMI H was absorbed by a second jellyfish protein, later P called green fluorescent protein (GFP), which in turn re-emitted green light.
    [Show full text]
  • The Guide to PHARMACOLOGY Portal Downloaded from by Guest on 28 September 2021
    Features Special Feature A one-stop pharmacology shop The Guide to PHARMACOLOGY portal Downloaded from http://portlandpress.com/biochemist/article-pdf/35/1/36/3254/bio035010036.pdf by guest on 28 September 2021 Adam Pawson Most medicines are chemical substances that work by interacting with specific target proteins Joanna Sharman in the body. The International Union of Basic and Clinical Pharmacology (IUPHAR) and the British Helen Benson Pharmacological Society (BPS) have joined forces to develop the Guide to PHARMACOLOGY (www. Elena Faccenda guidetopharmacology.org), a portal to information on the targets of licensed drugs and other (all University of Edinburgh, UK) targets of current research interest, such as those linked to human disease. Over the next 3 years, Michael Spedding with support from the Wellcome Trust, IUPHAR and BPS, the Guide to PHARMACOLOGY portal will be (Les laboratories Servier, France) expanded to cover all the targets of current licensed drugs and those with potential to be targets of and Anthony Harmar future therapeutics. Our goal is to provide scientists, doctors, allied professions and the general public (University of Edinburgh, UK) with a ‘one-stop shop’ source of information on how drugs work, and to help researchers to design experiments using the appropriate reagents. The revolution in genomics and molecular the interested public. The first version of the Guide to genetics has led to the identification of many novel PHARMACOLOGY integrates information on drug approaches to the development of new medicines. targets from two established resources: the BPS Guide However, there is an urgent need for an accessible and to Receptors and Channels (GRAC) and IUPHAR-DB.
    [Show full text]