The Meaning of Systems Biology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Medical Biochemistry Profile
Medical Biochemistry Profile Updated December 2019 1 Table of Contents Slide . General Information 3-5 . Total number & number/100,000 population by province, 2019 6 . Number/100,000 population, 1995-2019 7 . Number by gender & year, 1995-2019 8 . Percentage by gender & age, 2019 9 . Number by gender & age, 2019 10 . Number of retirees during the three year period of 2016-2018 11 . Links to additional resources 12 2 General information The primary role of the medical biochemist is to study and measure the biochemical abnormalities in human disease. The medical biochemist is trained in the operation and management of hospital biochemistry laboratories and acts as a consultant in all aspects of their use. As an academic specialist, the medical biochemist develops and integrates a basic medical science research program with clinical practice in a field of biochemical interest and maintains an active role as a teacher of clinically-applied biochemistry. Technology-driven specialties such as medical biochemistry require the physician to have a broad awareness of the field at the time of completion of formal training. But the physician must also be prepared for major changes during the ensuing years of practice that are inevitable and the residency period is the time to acquire skills for life-long learning. Source: Pathway evaluation program 3 General information In medical biochemistry, role learning must be supplemented by skills in self-directed learning. It requires ability in problem solving, formulation of hypotheses, the ability to do directed information searches and also the ability to critically appraise data. Medical biochemistry involves pathophysiology (requiring a thorough knowledge of normal and abnormal biochemistry and physiology, and the ability to apply this knowledge to the understanding of human disease); consultation; interpreting results (understanding the principles and limitations of biochemical analyses and applying these concepts to the interpretation of test results); analytical methods; and instrumentation. -
Connectivity and Complex Systems: Learning from a Multi-Disciplinary Perspective
This is a repository copy of Connectivity and complex systems: learning from a multi-disciplinary perspective. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/141950/ Version: Published Version Article: Turnbull, L., Hütt, M-T., Ioannides, A.A. et al. (8 more authors) (2018) Connectivity and complex systems: learning from a multi-disciplinary perspective. Applied Network Science, 3 (11). ISSN 2364-8228 https://doi.org/10.1007/s41109-018-0067-2 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Turnbull et al. Applied Network Science (2018) 3:11 https://doi.org/10.1007/s41109-018-0067-2 Applied Network Science REVIEW Open Access Connectivity and complex systems: learning from a multi-disciplinary perspective Laura Turnbull1* , Marc-Thorsten Hütt2, Andreas A. Ioannides3, Stuart Kininmonth4,5, Ronald Poeppl6, Klement Tockner7,8,9, Louise J. Bracken1, Saskia Keesstra10, Lichan Liu3, Rens Masselink10 and Anthony J. Parsons11 * Correspondence: Laura.Turnbull@ durham.ac.uk Abstract 1Durham University, Durham, UK Full list of author information is In recent years, parallel developments in disparate disciplines have focused on what available at the end of the article has come to be termed connectivity; a concept used in understanding and describing complex systems. -
How to Become a Marine Biologist
How to Become a Marine Biologist If you like working in a variety of places, enjoy research and interacting with animals, like math and science, have initiative and can handle working in different conditions you might want to be a Marine Biologist Other advancements or career choices (professor, researcher, PhD etc) A Masters degree will allow you to specialize in marine biological fields like marine mammals or fisheries. You can also go straight from Marine Biologist Your PhD work should include your Masters to your PhD. field research, conferences and publications. Take as many science and math classes as possible. Also look for summer Masters camps and volunteer opportunities to get experience in the field. Reach out to local researchers. College Bachelor's degree in Biology, Marine Science, Oceanography, Fisheries, or other related fields High School Look for internships and field Middle School experience for the summer Attend science camps and other outdoor Attend and present at professional opportunities. Locate researchers doing conferences and try to publish interesting things and open communication your research. with them * Different marine biologist jobs may have more or less requirements. This is a generalized example to get you started on the right path. Marine Biologist Job Description: A marine biologist studies plants and animals that live in the ocean, their behavior and adaptations, roles in the food chain, and how humans can effect these organisms. They often concentrate on a specific organism or habitat. Marine biologists can work out in a field, lab, or in an office depending on the work they are conducting. -
Résumé Writing: Summary/Profile Examples
Résumé Writing: Summary/Profile Examples Dedicated, versatile biochemist with extensive experience in protein research. Special expertise in recombinant protein purification and characterization from eukaryotic and prokaryotic systems. Solid background in enzymology and structural biology. Key skills include: • Working on own initiative and quickly adapting to new projects • Presenting information clearly and concisely in both verbal and written form • Effectively collaborating in a diverse team environment Well-rounded molecular biologist with a background in microbiology, cell biology and bioinformatics. Broad range of experience in mammalian, bacterial, and viral systems. Proficient in assay development and troubleshooting complex systems. Team player with solid written and oral communication skills anchored by a strong publication record. Inflammation scientist with over 8 years multidisciplinary research experience with emphasis on developing excellent communication skills. Key qualifications: • Equally capable of working independently & as an adaptable team member • Skilled at managing, analyzing, and presenting data to a wide variety of audiences • Proven leadership & supervisory abilities, developed through mentoring graduate students, coordinating institute-wide events, and leading journal clubs Protein crystallographer with a background in human kinases, therapeutic antibodies, retroviral proteases and membrane proteins. Extensive experience in protein biochemistry, crystallization and structure determination, expertise in structure-based -
Certified Wildlife Biologist® Application Form Instructions: 1
CERTIFIED WILDLIFE BIOLOGIST® APPLICATION FORM INSTRUCTIONS: 1. Membership in TWS is required to apply for certification. 2. Application must be typed and submitted in English. 3. Applications must be filled out using Adobe Reader software. 4. Supplemental information may be submitted along with a completed application form, if needed. 5. Applicant is responsibile for providing full documentation of educational and professional- level experience as a wildlife biologist. 6. Completed transcripts with evidence of conferral of degrees are required. No application can be processed until a complete application and all supporting materials have been received. 7. Submit completed application to [email protected] 8. Applicants should expect a decision to be made within 4-6 months. TABLE OF CONTENTS General Information.................................................................1 Education..................................................................................2 Completed Courses..................................................................3 Wildlife Management.....................................................4 Wildlife Biology..............................................................6 Ecology...........................................................................8 Zoology.........................................................................10 Botany...........................................................................13 Physical Sciences..........................................................16 Basic -
Chemical and Systems Biology, See the “Chemical Systems Courtesy Professors: Stuart Kim, Beverly S
undergraduates. The limited size of the labs in the department allows for close tutorial contact between students, postdoctoral fellows, and faculty. CHEMICAL AND SYSTEMS The department participates in the four quarter Health and Human Disease and Practice of Medicine sequence which provides medical students with a comprehensive, systems-based education in BIOLOGY physiology, pathology, microbiology, and pharmacology. Emeriti: (Professors) Robert H. Dreisbach, Avram Goldstein, Dora B. Goldstein, Tag E. Mansour, Oleg Jardetzky, James P. Whitlock CHEMICAL AND SYSTEMS Chair: James E. Ferrell, Jr. Professors: James E. Ferrell, Jr., Tobias Meyer, Daria Mochly- Rosen, Richard A. Roth BIOLOGY (CSB) COURSES Associate Professor: Karlene A. Cimprich Assistant Professors: James K. Chen, Thomas J. Wandless, Joanna For information on graduate programs in the Department of K. Wysocka Chemical and Systems Biology, see the “Chemical Systems Courtesy Professors: Stuart Kim, Beverly S. Mitchell, Paul A. Biology” section of this bulletin. Course and laboratory instruction Wender in the Department of Chemical and Systems Biology conforms to the Courtesy Associate Professor: Calvin J. Kuo “Policy on the Use of Vertebrate Animals in Teaching Activities,” Courtesy Assistant Professors: Matthew Bogyo, Marcus Covert the text of which is available at Consulting Professor: Juan Jaen http://www.stanford.edu/dept/DoR/rph/8-2.html. Web Site: http://casb.stanford.edu Courses offered by the Department of Chemical and Systems UNDERGRADUATE COURSES IN CHEMICAL Biology have the subject code CSB, and are listed in the “Chemical AND SYSTEMS BIOLOGY and Systems Biology (CSB) Courses” section of this bulletin. CSB 199. Undergraduate Research In Autumn of 2006, the Department of Molecular Pharmacology Students undertake investigations sponsored by individual faculty changed its name to become the Department of Chemical and members. -
A Plaidoyer for 'Systems Immunology'
Christophe Benoist A Plaidoyer for ‘Systems Immunology’ Ronald N. Germain Diane Mathis Authors’ address Summary: A complete understanding of the immune system will ulti- Christophe Benoist1, Ronald N. Germain2, Diane mately require an integrated perspective on how genetic and epigenetic Mathis1 entities work together to produce the range of physiologic and patho- 1Section on Immunology and Immunogenetics, logic behaviors characteristic of immune function. The immune network Joslin Diabetes Center, Department of encompasses all of the connections and regulatory associations between Medicine, Brigham and Women’s Hospital, individual cells and the sum of interactions between gene products Harvard Medical School, Boston, MA, USA within a cell. With 30 000+ protein-coding genes in a mammalian 2Lymphocyte Biology Section, Laboratory of genome, further compounded by microRNAs and yet unrecognized Immunology, National Institute of Allergy and layers of genetic controls, connecting the dots of this network is a Infectious Diseases, National Institutes of monumental task. Over the past few years, high-throughput techniques Health, Bethesda, MD, USA have allowed a genome-scale view on cell states and cell- or system-level responses to perturbations. Here, we observe that after an early burst of Correspondence to: enthusiasm, there has developed a distinct resistance to placing a high Christophe Benoist value on global genomic or proteomic analyses. Such reluctance has Department of Medicine affected both the practice and the publication of immunological science, Section on Immunology and Immunogenetics resulting in a substantial impediment to the advances in our understand- Joslin Diabetes Center ing that such large-scale studies could potentially provide. We propose Brigham and Women’s Hospital that distinct standards are needed for validation, evaluation, and visual- Harvard Medical School ization of global analyses, such that in-depth descriptions of cellular One Joslin Place responses may complement the gene/factor-centric approaches currently Boston, MA 02215 in favor. -
Spontaneous Generation & Origin of Life Concepts from Antiquity to The
SIMB News News magazine of the Society for Industrial Microbiology and Biotechnology April/May/June 2019 V.69 N.2 • www.simbhq.org Spontaneous Generation & Origin of Life Concepts from Antiquity to the Present :ŽƵƌŶĂůŽĨ/ŶĚƵƐƚƌŝĂůDŝĐƌŽďŝŽůŽŐLJΘŝŽƚĞĐŚŶŽůŽŐLJ Impact Factor 3.103 The Journal of Industrial Microbiology and Biotechnology is an international journal which publishes papers in metabolic engineering & synthetic biology; biocatalysis; fermentation & cell culture; natural products discovery & biosynthesis; bioenergy/biofuels/biochemicals; environmental microbiology; biotechnology methods; applied genomics & systems biotechnology; and food biotechnology & probiotics Editor-in-Chief Ramon Gonzalez, University of South Florida, Tampa FL, USA Editors Special Issue ^LJŶƚŚĞƚŝĐŝŽůŽŐLJ; July 2018 S. Bagley, Michigan Tech, Houghton, MI, USA R. H. Baltz, CognoGen Biotech. Consult., Sarasota, FL, USA Impact Factor 3.500 T. W. Jeffries, University of Wisconsin, Madison, WI, USA 3.000 T. D. Leathers, USDA ARS, Peoria, IL, USA 2.500 M. J. López López, University of Almeria, Almeria, Spain C. D. Maranas, Pennsylvania State Univ., Univ. Park, PA, USA 2.000 2.505 2.439 2.745 2.810 3.103 S. Park, UNIST, Ulsan, Korea 1.500 J. L. Revuelta, University of Salamanca, Salamanca, Spain 1.000 B. Shen, Scripps Research Institute, Jupiter, FL, USA 500 D. K. Solaiman, USDA ARS, Wyndmoor, PA, USA Y. Tang, University of California, Los Angeles, CA, USA E. J. Vandamme, Ghent University, Ghent, Belgium H. Zhao, University of Illinois, Urbana, IL, USA 10 Most Cited Articles Published in 2016 (Data from Web of Science: October 15, 2018) Senior Author(s) Title Citations L. Katz, R. Baltz Natural product discovery: past, present, and future 103 Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and R. -
If a US Biochemist Has His Way, the World's Tiniest Primate Could
FEATURE NEWS A mouse lemur shows its strength at a field lab in Madagascar before returning to the wild. MAKE WAY FOR THE MOUSE LEMUR If a US biochemist has his way, the world’s tiniest primate could become a top research animal for genetics. BY LESLIE ROBERTS nja is struggling tonight — her hands keep slipping off a miniature grip bar used to measure her strength. “Come on, you can do better,” coos Zeph Pendleton, who is gen- tly supporting the mouse lemur as she tries to get a firm hold. Finally, the animal gets her fingers around the bar and gives it a tug. It records a force of 1 kilogram, impressive for a crea- Oture weighing only 41 grams. “Good,” says Pendleton, a research assis- tant who is working here in the rainforest at Centre ValBio, a research RIJASOLO/RIVA PRESS RIJASOLO/RIVA station at Ranomafana National Park in Madagascar. ©2019 Spri nger Nature Li mited. All ri ghts reserved. 13 JUNE 2019 | VOL 570 | NATURE | 151 NEWS FEATURE Bathed in dim red light, Pendleton, who has come here from Stanford she might shadow a postdoctoral fellow for a couple of months. Instead, University in California, puts Onja through her paces. He gets her to place on day one, Krasnow charged Ezran, Maya and their friend Jason Willick her hands on an iPhone modified to measure her heart’s electrical activity. with finding a new genetic model organism that was a closer mirror of He checks her length and weight — she has gained 2 grams in less than human biology than a mouse. -
Data Management in Systems Biology I
Data management in systems biology I – Overview and bibliography Gerhard Mayer, University of Stuttgart, Institute of Biochemical Engineering (IBVT), Allmandring 31, D-70569 Stuttgart Abstract Large systems biology projects can encompass several workgroups often located in different countries. An overview about existing data standards in systems biology and the management, storage, exchange and integration of the generated data in large distributed research projects is given, the pros and cons of the different approaches are illustrated from a practical point of view, the existing software – open source as well as commercial - and the relevant literature is extensively overviewed, so that the reader should be enabled to decide which data management approach is the best suited for his special needs. An emphasis is laid on the use of workflow systems and of TAB-based formats. The data in this format can be viewed and edited easily using spreadsheet programs which are familiar to the working experimental biologists. The use of workflows for the standardized access to data in either own or publicly available databanks and the standardization of operation procedures is presented. The use of ontologies and semantic web technologies for data management will be discussed in a further paper. Keywords: MIBBI; data standards; data management; data integration; databases; TAB-based formats; workflows; Open Data INTRODUCTION the foundation of a new journal about biological The large amount of data produced by biological databases [24], the foundation of the ISB research projects grows at a fast rate. The 2009 (International Society for Biocuration) and special edition of the annual Nucleic Acids Research conferences like DILS (Data Integration in the Life database issue mentions 1170 databases [1]; alone Sciences) [25]. -
Rethinking the Pragmatic Systems Biology and Systems-Theoretical Biology Divide: Toward a Complexity-Inspired Epistemology of Systems Biomedicine T
Medical Hypotheses 131 (2019) 109316 Contents lists available at ScienceDirect Medical Hypotheses journal homepage: www.elsevier.com/locate/mehy Rethinking the pragmatic systems biology and systems-theoretical biology divide: Toward a complexity-inspired epistemology of systems biomedicine T Srdjan Kesić Department of Neurophysiology, Institute for Biological Research “Siniša Stanković”, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia ARTICLE INFO ABSTRACT Keywords: This paper examines some methodological and epistemological issues underlying the ongoing “artificial” divide Systems biology between pragmatic-systems biology and systems-theoretical biology. The pragmatic systems view of biology has Cybernetics encountered problems and constraints on its explanatory power because pragmatic systems biologists still tend Second-order cybernetics to view systems as mere collections of parts, not as “emergent realities” produced by adaptive interactions Complexity between the constituting components. As such, they are incapable of characterizing the higher-level biological Complex biological systems phenomena adequately. The attempts of systems-theoretical biologists to explain these “emergent realities” Epistemology of complexity using mathematics also fail to produce satisfactory results. Given the increasing strategic importance of systems biology, both from theoretical and research perspectives, we suggest that additional epistemological and methodological insights into the possibility of further integration between -
10 Things Every Molecular Biologist Should Know
10 Things Every Molecular Biologist Should Know Nick Oswald Suzanne Kennedy Megan Hogan Megan Cartwright Edited By Nick Oswald a BitesizeBio.com eBook Preface Molecular Biology is a funny old business... Preface Molecular biology is a funny old One of the core aims of Bitesize Bio website yourself, or if you’d just like to let business. The ton of theoretical (www.bitesizebio.com) is to make it us know what you think (good or bad!) of knowledge that we cram in during our easier to learn on the job as a molecular our efforts, please feel free to get in touch undergrad years is scant preparation biologist by providing a place where via the contact page at BitesizeBio.com. for life at the bench and leaves a lot to these nuggets of vital, often over-looked be said. knowledge can be found. Thanks for reading. When we first hit the lab there are so This short eBook provides 10 such many things to learn before we even nuggets, neatly contained in one place. get started that many things go From How SDS-PAGE works to the unlearned. chemical reason why enzymes have optimal temperatures we hope that there How specific techniques work, what The Bitesize Bio team. will be something in here that will actually is in those kits we use and why enlighten and entertain even the most we use certain approaches rather than experienced scientist. others. If you like the information you find in this Often these nuggets of knowledge can eBook - which is the first of many we’ll mean the difference between be creating on a variety of topics - we understanding where an experiment is would love you pass the file onto your going wrong and not understanding, friends to help spread the word about between getting a result and not getting what we are doing at Bitesize Bio.