Résumé Writing: Summary/Profile Examples
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Medical Biochemistry Profile
Medical Biochemistry Profile Updated December 2019 1 Table of Contents Slide . General Information 3-5 . Total number & number/100,000 population by province, 2019 6 . Number/100,000 population, 1995-2019 7 . Number by gender & year, 1995-2019 8 . Percentage by gender & age, 2019 9 . Number by gender & age, 2019 10 . Number of retirees during the three year period of 2016-2018 11 . Links to additional resources 12 2 General information The primary role of the medical biochemist is to study and measure the biochemical abnormalities in human disease. The medical biochemist is trained in the operation and management of hospital biochemistry laboratories and acts as a consultant in all aspects of their use. As an academic specialist, the medical biochemist develops and integrates a basic medical science research program with clinical practice in a field of biochemical interest and maintains an active role as a teacher of clinically-applied biochemistry. Technology-driven specialties such as medical biochemistry require the physician to have a broad awareness of the field at the time of completion of formal training. But the physician must also be prepared for major changes during the ensuing years of practice that are inevitable and the residency period is the time to acquire skills for life-long learning. Source: Pathway evaluation program 3 General information In medical biochemistry, role learning must be supplemented by skills in self-directed learning. It requires ability in problem solving, formulation of hypotheses, the ability to do directed information searches and also the ability to critically appraise data. Medical biochemistry involves pathophysiology (requiring a thorough knowledge of normal and abnormal biochemistry and physiology, and the ability to apply this knowledge to the understanding of human disease); consultation; interpreting results (understanding the principles and limitations of biochemical analyses and applying these concepts to the interpretation of test results); analytical methods; and instrumentation. -
How to Become a Marine Biologist
How to Become a Marine Biologist If you like working in a variety of places, enjoy research and interacting with animals, like math and science, have initiative and can handle working in different conditions you might want to be a Marine Biologist Other advancements or career choices (professor, researcher, PhD etc) A Masters degree will allow you to specialize in marine biological fields like marine mammals or fisheries. You can also go straight from Marine Biologist Your PhD work should include your Masters to your PhD. field research, conferences and publications. Take as many science and math classes as possible. Also look for summer Masters camps and volunteer opportunities to get experience in the field. Reach out to local researchers. College Bachelor's degree in Biology, Marine Science, Oceanography, Fisheries, or other related fields High School Look for internships and field Middle School experience for the summer Attend science camps and other outdoor Attend and present at professional opportunities. Locate researchers doing conferences and try to publish interesting things and open communication your research. with them * Different marine biologist jobs may have more or less requirements. This is a generalized example to get you started on the right path. Marine Biologist Job Description: A marine biologist studies plants and animals that live in the ocean, their behavior and adaptations, roles in the food chain, and how humans can effect these organisms. They often concentrate on a specific organism or habitat. Marine biologists can work out in a field, lab, or in an office depending on the work they are conducting. -
Certified Wildlife Biologist® Application Form Instructions: 1
CERTIFIED WILDLIFE BIOLOGIST® APPLICATION FORM INSTRUCTIONS: 1. Membership in TWS is required to apply for certification. 2. Application must be typed and submitted in English. 3. Applications must be filled out using Adobe Reader software. 4. Supplemental information may be submitted along with a completed application form, if needed. 5. Applicant is responsibile for providing full documentation of educational and professional- level experience as a wildlife biologist. 6. Completed transcripts with evidence of conferral of degrees are required. No application can be processed until a complete application and all supporting materials have been received. 7. Submit completed application to [email protected] 8. Applicants should expect a decision to be made within 4-6 months. TABLE OF CONTENTS General Information.................................................................1 Education..................................................................................2 Completed Courses..................................................................3 Wildlife Management.....................................................4 Wildlife Biology..............................................................6 Ecology...........................................................................8 Zoology.........................................................................10 Botany...........................................................................13 Physical Sciences..........................................................16 Basic -
The Meaning of Systems Biology
Cell, Vol. 121, 503–504, May 20, 2005, Copyright ©2005 by Elsevier Inc. DOI 10.1016/j.cell.2005.05.005 The Meaning of Systems Biology Commentary Marc W. Kirschner* glimpse of many more genes than we ever had before Department of Systems Biology to study. We are like naturalists discovering a new con- Harvard Medical School tinent, enthralled with the diversity itself. But we have Boston, Massachusetts 02115 also at the same time glimpsed the finiteness of this list of genes, a disturbingly small list. We have seen that the diversity of genes cannot approximate the diversity With the new excitement about systems biology, there of functions within an organism. In response, we have is understandable interest in a definition. This has argued that combinatorial use of small numbers of proven somewhat difficult. Scientific fields, like spe- components can generate all the diversity that is cies, arise by descent with modification, so in their ear- needed. This has had its recent incarnation in the sim- liest forms even the founders of great dynasties are plistic view that the rules of cis-regulatory control on only marginally different than their sister fields and spe- DNA can directly lead to an understanding of organ- cies. It is only in retrospect that we can recognize the isms and their evolution. Yet this assumes that the gene significant founding events. Before embarking on a def- products can be linked together in arbitrary combina- inition of systems biology, it may be worth remember- tions, something that is not assured in chemistry. It also ing that confusion and controversy surrounded the in- downplays the significant regulatory features that in- troduction of the term “molecular biology,” with claims volve interactions between gene products, their local- that it hardly differed from biochemistry. -
If a US Biochemist Has His Way, the World's Tiniest Primate Could
FEATURE NEWS A mouse lemur shows its strength at a field lab in Madagascar before returning to the wild. MAKE WAY FOR THE MOUSE LEMUR If a US biochemist has his way, the world’s tiniest primate could become a top research animal for genetics. BY LESLIE ROBERTS nja is struggling tonight — her hands keep slipping off a miniature grip bar used to measure her strength. “Come on, you can do better,” coos Zeph Pendleton, who is gen- tly supporting the mouse lemur as she tries to get a firm hold. Finally, the animal gets her fingers around the bar and gives it a tug. It records a force of 1 kilogram, impressive for a crea- Oture weighing only 41 grams. “Good,” says Pendleton, a research assis- tant who is working here in the rainforest at Centre ValBio, a research RIJASOLO/RIVA PRESS RIJASOLO/RIVA station at Ranomafana National Park in Madagascar. ©2019 Spri nger Nature Li mited. All ri ghts reserved. 13 JUNE 2019 | VOL 570 | NATURE | 151 NEWS FEATURE Bathed in dim red light, Pendleton, who has come here from Stanford she might shadow a postdoctoral fellow for a couple of months. Instead, University in California, puts Onja through her paces. He gets her to place on day one, Krasnow charged Ezran, Maya and their friend Jason Willick her hands on an iPhone modified to measure her heart’s electrical activity. with finding a new genetic model organism that was a closer mirror of He checks her length and weight — she has gained 2 grams in less than human biology than a mouse. -
10 Things Every Molecular Biologist Should Know
10 Things Every Molecular Biologist Should Know Nick Oswald Suzanne Kennedy Megan Hogan Megan Cartwright Edited By Nick Oswald a BitesizeBio.com eBook Preface Molecular Biology is a funny old business... Preface Molecular biology is a funny old One of the core aims of Bitesize Bio website yourself, or if you’d just like to let business. The ton of theoretical (www.bitesizebio.com) is to make it us know what you think (good or bad!) of knowledge that we cram in during our easier to learn on the job as a molecular our efforts, please feel free to get in touch undergrad years is scant preparation biologist by providing a place where via the contact page at BitesizeBio.com. for life at the bench and leaves a lot to these nuggets of vital, often over-looked be said. knowledge can be found. Thanks for reading. When we first hit the lab there are so This short eBook provides 10 such many things to learn before we even nuggets, neatly contained in one place. get started that many things go From How SDS-PAGE works to the unlearned. chemical reason why enzymes have optimal temperatures we hope that there How specific techniques work, what The Bitesize Bio team. will be something in here that will actually is in those kits we use and why enlighten and entertain even the most we use certain approaches rather than experienced scientist. others. If you like the information you find in this Often these nuggets of knowledge can eBook - which is the first of many we’ll mean the difference between be creating on a variety of topics - we understanding where an experiment is would love you pass the file onto your going wrong and not understanding, friends to help spread the word about between getting a result and not getting what we are doing at Bitesize Bio. -
Department of Biology College of Arts and Sciences
DEPARTMENT OF BIOLOGY COLLEGE OF ARTS AND SCIENCES Faculty Instructional Staff Mark Bolyard (2006). Professor of Biology and Department Lisa Conway (2012). Laboratory Specialist. B.S. and Chair. B.A., Hanover College; Ph.D., University of North D.V.M., Texas A&M University. Carolina. Cathy Huggins (2009). Laboratory Specialist. B.S. and Jennifer Gruenke (2009). Associate Professor of Biology B.S.M.T., Arkansas State University; M.B.A., Union and Director of the Center for Scientific Studies. B.S., University. Bryan College; Ph.D., University of Virginia. Robert A. Wamble (2011). Laboratory Specialist. B.S., James A. Huggins (1987). University Professor of Biology. University of Tennessee, Knoxville; D.V.M., Auburn B.S.A. and M.S., Arkansas State University; Ph.D., University. University of Memphis; Additional study, University of Tennessee at Memphis, Mid-America Baptist Theological Seminary, and University of Memphis. Curriculum James Kerfoot, Jr. (2009). Assistant Professor of Biology. The curriculum in biology is designed to acquaint B.S. and M.S., Southern Illinois University Edwardsville; students with living organisms as whole, functioning entities Ph.D., Florida Institute of Technology. that, in their diversity, share many common features. In addition to providing the scientific background required James Marcus Lockett (2004). Associate Professor of of all educated citizens, the courses provide a foundation Biology. B.S. and M.S., Murray State University; Ph.D., upon which the student may build a graduate program, University of Tennessee. undertake training in health-related professions, or prepare for secondary-level science teaching. Students participate Andy Madison (2002). Associate Professor of Biology. -
D. Mark Eckley Summary: Ph.D. Trained Biologist with 13 of Years Of
D. Mark Eckley Summary: Ph.D. trained biologist with 13 of years of experience planning cell biology experiments and implementing computational analysis and data/image processing. Contributed molecular biology, biochemistry and cell imaging data to published studies focusing on the interplay of DNA replication, chromosome structure and the aging process. Successfully led teams, worked on multiple projects simultaneously and collaborated with internal and external investigators. Proficient using microscopes, liquid handlers and all computer platforms. Oriented and trained professional staff on use of Deltavision 3D image reconstruction system. Education: Ph.D. Cell Biology The Johns Hopkins School of Medicine, BCMB department May 1998 M.A. Immunology University of California, Santa Barbara, Neuroscience Research Institute B.A. Chemistry University of Colorado, Boulder, Chemistry department Skills and Expertise: Computational Analysis: Command line implementation of Fiji, WND-CHARM for image feature calculation Microarray Data Normalization, Z score calculation for group to group comparisons, PCA OpenCV image calculation package (Keras, Tensorflow for deep learning) NGS data using Biopython Molecular biology: Recombinant DNA, gene cloning and expression. CRISPR gene knockout and knockin to produce intentional genetic alterations (IGA) DNA sequencing, PCR and qPCR for IGA validation. RNA seq, microarray hybridizations. ELISA, Western blot, in-gel proteolysis. Cell Biology: Ex vivo culture of immortalized and primary Stem Cells. Optimized cytokine mixture for stroma-free B-cell cultures. Flow cytometry (Beckman-Coulter CytoFlex, Becton-Dickinson Canto II). Virus generation: lentivirus and retrovirus, viral transduction to produce cell lines. Microscopy: Confocal and light microscopy, 3D reconstruction and structured illumination. Microtubule gliding and vesicle motility assays Microinjection of cultured cells and germline to produce IGA (nematodes). -
The Guide to PHARMACOLOGY Portal Downloaded from by Guest on 28 September 2021
Features Special Feature A one-stop pharmacology shop The Guide to PHARMACOLOGY portal Downloaded from http://portlandpress.com/biochemist/article-pdf/35/1/36/3254/bio035010036.pdf by guest on 28 September 2021 Adam Pawson Most medicines are chemical substances that work by interacting with specific target proteins Joanna Sharman in the body. The International Union of Basic and Clinical Pharmacology (IUPHAR) and the British Helen Benson Pharmacological Society (BPS) have joined forces to develop the Guide to PHARMACOLOGY (www. Elena Faccenda guidetopharmacology.org), a portal to information on the targets of licensed drugs and other (all University of Edinburgh, UK) targets of current research interest, such as those linked to human disease. Over the next 3 years, Michael Spedding with support from the Wellcome Trust, IUPHAR and BPS, the Guide to PHARMACOLOGY portal will be (Les laboratories Servier, France) expanded to cover all the targets of current licensed drugs and those with potential to be targets of and Anthony Harmar future therapeutics. Our goal is to provide scientists, doctors, allied professions and the general public (University of Edinburgh, UK) with a ‘one-stop shop’ source of information on how drugs work, and to help researchers to design experiments using the appropriate reagents. The revolution in genomics and molecular the interested public. The first version of the Guide to genetics has led to the identification of many novel PHARMACOLOGY integrates information on drug approaches to the development of new medicines. targets from two established resources: the BPS Guide However, there is an urgent need for an accessible and to Receptors and Channels (GRAC) and IUPHAR-DB. -
Biology 197: Principles of Organismal Biology Section B: T, R 9:30–10:45 AM Section D: T, R 1:30–2:45 PM Spring 2011 Birck Hall 003 Instructor: Dr
Biology 197: Principles of Organismal Biology Section B: T, R 9:30–10:45 AM Section D: T, R 1:30–2:45 PM Spring 2011 Birck Hall 003 Instructor: Dr. Phil Novack‐Gottshall Office: Birck 332 E‐mail: Blackboard mail preferred Office hours: T 11–1:30, W 11–1, R 11–12:30 (or pnovack‐[email protected]) or by appointment Course Description Organismal biology is one of the major branches of biology and is concerned with all aspects of the life of organisms, including their biodiversity, anatomical structure, physiology, development, biogeography, and ecology. This course is an introductory course required for all biological sciences majors, but it is also useful for gaining basic biological literacy and for those pursuing careers in human and veterinary medicine, psychiatry, agriculture, forestry, microbiology, conservation, ecology, paleontology, environmental science, law, political science, and even cooking, cheese making, and brewing of alcohol. In this class, we will learn the major groups of animals, fungi, plants, protists, algae, and bacteria; their basic characteristics; and how biologists study these organisms to understand their rich evolutionary history, ecological interactions, amazing adaptations, and relevance to humans and other species. In particular, you will practice learning how to view the world and to think like an organismal biologist. Learning objectives 1) Explain the scientific method of organismal biologists to understand the natural world. 2) Identify the major lineages of life through study of their biodiversity, anatomy, physiology, development, behavior, biogeography, fossil record, and ecology. 3) Explain the significance of major transitions in organismal evolution: photosynthesis, endosymbiosis, sexual reproduction, multicellularity, skeletonization, cephalization, terrestrialization, mobility, and carnivory, among others. -
Wildlife Biologist
MICHIGAN CIVIL SERVICE COMMISSION JOB SPECIFICATION WILDLIFE BIOLOGIST JOB DESCRIPTION Employees in this job complete and oversee a variety of professional wildlife management and conservation assignments to protect, develop and maintain wildlife populations and habitats on public and private lands throughout the state for environmental, economic and recreational purposes. There are four classifications in this job. Position Code Title - Wildlife Biologist-E Wildlife Biologist 9 This is the entry level. As a trainee, the employee carries out a range of professional wildlife biologist assignments while learning the methods of the work. Wildlife Biologist 10 This is the intermediate level. The employee carries out an expanding range of professional wildlife biologist assignments in a developing capacity. Wildlife Biologist P11 This is the experienced level. The employee performs a full range of professional wildlife biologist assignments in a full-functioning capacity. Considerable independent judgement is required to carry out assignments that have significant impact on services or programs. Guidelines may be available, but require adaptation or interpretation to determine appropriate courses of action. Position Code Title - Wildlife Biologist-A Wildlife Biologist 12 This is the advanced level. The employee may function as a lead worker or senior worker. At this level, employees are responsible for overseeing the work assignments of other professionals or have regular assignments which have been recognized by Civil Service as having significantly greater complexity than those assigned at the experienced level. NOTE: Employees generally progress through this series to the experienced level based on satisfactory performance and possession of the required experience. JOB DUTIES NOTE: The job duties listed are typical examples of the work performed by positions in this job classification. -
Pharmaceutical Science Pharmsci Phd
Pharmaceutical Science PharmSci PhD DISCOVERY | DEVELOPMENT | MANUFACTURING What is Pharmaceutical Science? • Pharmaceutical Sciences is a dynamic and interdisciplinary field that aims to integrate fundamental principles of physical and organic chemistry, engineering, biochemistry, and biology to understand how to optimize delivery of drugs to the body and translate this integrated understanding into new and improved therapies against human disease. • Disciplines of pharmaceutical sciences may include medicinal chemistry, pharmaceutics, pharmacogenetics, pharmacology, biotechnology, pharmacoeconomics, pharmacoepidemiology, pharmacokinetics/clinical pharmacokinetics, clinical pharmacy/ pharmacotherapy, patient safety, regulatory science, health informatics, outcomes, and public health aspects of drug discovery and optimization. pharmacy.umich.edu/pharmsci aacp.org/resource/graduate-degrees-defined Career Options with a Pharmaceutical Science Degree • Research and Development: Scientists, Senior Scientists, Principal Scientist. (It’s likely a specialization will be mentioned in the title — e.g., pharmacology, neuroscience, oncology) • Regulatory Affairs: Regulatory Affairs Specialist, Regulatory Affairs Officer • Clinical Trials: Clinical Scientists, Clinical Research Associate • Business Development: Business Development Manager • Sales and Marketing: Medical Sales Representative, Account Manager, Product Manager, Brand Manager mendeley.com/careers/article/what-are-the-career-options-for-a-phd-in-the-pharmaceutical-industry-/ Common Pharmaceutical