D 2.2 Past Cases of Extreme Weather Impact on Critical

Total Page:16

File Type:pdf, Size:1020Kb

D 2.2 Past Cases of Extreme Weather Impact on Critical RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme Weather Project Reference: 608166 FP7-SEC-2013-1 Impact of extreme weather on critical infrastructure Project Duration: 1 May 2014 – 30 April 2017 Security Sensitivity Committee Deliverable Evaluation Deliverable Reference D 2.2 version 2.0 final Deliverable Name Past cases of Extreme Weather Impact on Critical Infrastructure in Europe Contributing Partners ESSL as correspondence author Date of Submission 2015-02-28 Evaluation is based on version 1.0 dated 2015-03-19 of the proposal for the SSC evaluation: • The content is not related to general project management • The content is not related to general outcomes as dissemination and communication • The content is related to critical infrastructure vulnerability or sensitivity • The content is publicly available or commonly known • The content does not add new information on vulnerabilities, sensitivities or incident scenario’s on specific objects or transport systems or assets in general • There are no uncertainties that need to be discussed with a NSA Diagram path: 1-2-3-4-5.1-5.2-9. Therefor the evaluation is: Public. Decision of Evaluation Public Confidential Restricted Evaluator Name P.L. Prak, MSSM Evaluator Signature Date of Evaluation 2015-05-22 This project has receiveD funDing from the European Union’s Seventh FrameworK Programme for research, technological Development anD Demonstration unDer grant agreement no 608166 RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme Weather Project Reference: 608166 FP7-SEC-2013-1 Impact of extreme weather on critical infrastructure Project Duration: 1 May 2014 – 30 April 2017 Past Cases of Extreme Weather Impact on Critical Infrastructure in Europe Authors Pieter Groenemeijer* (ESSL) Ilari Lehtonen (FMI) Nico Becker (FU-Berlin) Hanna Mäkelä (FMI) Matilda Djidara (GDG) Oswaldo Morales Napoles (TU-Delft) Kenneth Gavin (GDG) Katrin Nissen (FU-Berlin) Timo Hellenberg (Hellenberg) Dominik Paprotny (TU-Delft) Alois M. Holzer (ESSL) Peter Prak (PSJ) Ilkka Juga (FMI) Tomáš Púčik (ESSL) Pauli Jokinen (FMI) Lars Tijssen (ESSL) Kirsti Jylhä (FMI) Andrea Vajda (FMI) *Correspondence author: Dr. Pieter Groenemeijer, European Severe Storms Laboratory e.V. c/o DLR Institute for Atmospheric Physics, Münchner Str. 20, Geb. 20, 82234 Wessling, Germany, [email protected], +49 151 59031839 Date: 23/04/2015 Dissemination level: (PU, PP, RE, CO): PU This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no 608166 D2.2 List of Past Cases DOCUMENT HISTORY Index Date Author(s) Main modifications 0.0 16 January 2015 Pieter Groenemeijer* (ESSL), First Draft, compiled from contributions. Nico Becker (FU-Berlin), Matilda Djidara (GDG), Kenneth Gavin (GDG), Timo Hellenberg (Hellenberg), Alois M. Holzer (ESSL), Ilkka Juga (FMI), Pauli Jokinen (FMI), Kirsti Jylhä (FMI), Ilari Lehtonen (FMI), Hanna Mäkelä (FMI), Oswaldo Morales Napoles (TU-Delft), Katrin Nissen (FU-Berlin), Dominik Paprotny (TU-Delft), Peter Prak (PSJ), Tomáš Púčik (ESSL), Lars Tijssen (ESSL), Andrea Vajda (FMI) 1.0 25 February 2015 “ Second Draft, improved after round of feedback. 2.0 23 April 2015 “ Final version, improved after project internal review, ready for submission to Commission. Document Name: Past Impacts of Extreme Weather Impact on Critical Infrastructure in Europe (List of Past Cases) Work Package: 2 Task: 2.1 Deliverable: 2.2 Deliverable scheduled date 28 February 2014 Responsible Partner: ESSL 2 D2.2 List of Past Cases Table of Contents 1. Executive Summary ......................................................................................................................... 7 2. Introduction ..................................................................................................................................... 8 3. List of Past Cases ........................................................................................................................... 10 3.1 Windstorms ........................................................................................................................... 11 3.1.1 Windstorms Lothar and Martin, Western Europe, December 1999 ............................. 11 3.1.2 Windstorm Kyrill, West, Central and East Europe, January 2007 ................................. 14 3.2 Heavy rainfall and flash floods .............................................................................................. 17 3.2.1 Flash flood, Berlin, 4 August 2013 ................................................................................. 17 3.2.2 Flash flood, Madeira, 20 February 2010 ....................................................................... 18 3.2.1 Flash flood, Grand-Bornand (Haute-Savoie), 14 July 1987............................................ 23 3.3 Landslides .............................................................................................................................. 27 3.3.1 Landslides, Scotland, August 2004 ................................................................................ 27 3.3.2 Landslide, Switzerland, 13 August 2014 ........................................................................ 28 3.3.3 Landslide, Croatia, 12 September 2014 ........................................................................ 29 3.4 River floods ............................................................................................................................ 30 3.4.1 River floods, England, 2007 ........................................................................................... 30 3.4.2 River floods, Central Europe, May and June 2013 ........................................................ 34 3.4.3 River flood, Dublin-Belfast railway, 21 August 2009 ..................................................... 37 3.5 Thunderstorm gusts .............................................................................................................. 38 3.5.1 Convective windstorm, Northrhine-Westphalia (Germany), 9 June 2014 .................... 38 3.6 Tornado ................................................................................................................................. 43 3.6.1 Tornado outbreak, South Poland, 15 August 2008 ....................................................... 43 3.7 Hail ......................................................................................................................................... 47 3.7.1 Hail, Stuttgart (Germany), 15 August 1972 ................................................................... 47 3.8 Lightning ................................................................................................................................ 49 3.8.1 Lightning, Jistebnik (Czech Republic), 2009 ................................................................... 49 3.9 Snow and snow storms ......................................................................................................... 51 3.9.1 Heavy snowfall, Helsinki metropolitan area, 17 March 2005 ....................................... 51 3.9.2 Snow storm, South and central Finland, 23-24 November 2008 .................................. 55 3.9.3 Heavy snow loading, Finland, 31 October – 1 November 2001 .................................... 58 3.10 Freezing rain .......................................................................................................................... 64 3.10.1 Freezing rain, Slovenia, 31 January – 3 February 2014 ................................................. 64 3 D2.2 List of Past Cases 3.11 Wildfire .................................................................................................................................. 68 3.11.1 Wildfire event in Västmanland, Sweden, 31 July 2014 - 11 September 2014 .............. 68 3.12 Coastal Flood ......................................................................................................................... 72 3.12.1 Storm surge with coastal flood, France, February 2010 ............................................... 72 4. Synthesis of stakeholder interviews and past cases ..................................................................... 78 4.1 Stakeholder interviews .......................................................................................................... 78 4.2 Impact of the various extreme weather phenomena ........................................................... 79 4.3 Impact of wind storms ........................................................................................................... 81 4.3.1 Affected sectors ............................................................................................................. 81 4.3.2 Impacts .......................................................................................................................... 81 4.3.3 Preventive and response measures .............................................................................. 82 4.4 Impact of thunderstorm gusts ............................................................................................... 83 4.4.1 Affected sectors ............................................................................................................. 83 4.4.2 Impacts .......................................................................................................................... 83 4.4.3 Preventive and response measures .............................................................................
Recommended publications
  • The Role of Serial European Windstorm Clustering for Extreme Seasonal
    The role of serial European windstorm clustering for extreme seasonal losses as determined from multi-centennial simulations of high resolution global climate model data Matthew D. K. Priestley, Helen F. Dacre, Len C. Shaffrey, Kevin I. Hodges, Joaquim G. Pinto Response to reviewer 1 Dear Reviewer, We thank you for the comments and suggestions that you have made to our manuscript, which have helped improve its quality. Please find below a response to all of your comments and questions raised. Any page and line numbers refer to the initial NHESSD document. The italicised black text are the comments to the manuscript. Our responses are in red with any changes described. An amended version of the manuscript has also been uploaded to highlight the changes. In the marked version, text which has been removed has been struck through, with new additions being in red. This paper presents an analysis of temporal clustering of extratropical cyclones in the North Atlantic and the associated windstorm losses over central Europe. The studies shows the seasonally aggregated losses are substantially underestimated if temporal clustering is not taken into consideration. Also the relative contribution of the cyclone resulting in the highest losses per season to the overall seasonal losses is investigated. This contribution is very variable and ranges between 25 to 50%. The study makes use of decadal hindcasts to analyze hundreds of years of present day simulations and statistics based on this large sample are very robust. The quality of the text, the figures and the science is high. The only point that should be scrutinized is the GPD fit to the ERA- interim data.
    [Show full text]
  • Regeltillämpning På Kommunal Nivå Undersökning Av Sveriges Kommuner 2020
    Regeltillämpning på kommunal nivå Undersökning av Sveriges kommuner 2020 Västmanlands län Handläggningstid i veckor (Serveringstillstånd) Kommun Handläggningstid 2020 Handläggningstid 2016 Serveringstillstånd Sala 2 1 Västerås 4 5 Arboga 8 Fagersta 8 12 Hallstahammar 8 12 Medelvärde Kungsör 8 6 handläggningstid 2020 Köping 8 Sverige: 5,7 veckor Gruppen: 7,0 veckor Norberg 8 8 Skinnskatteberg 8 8 Medelvärde Surahammar 8 6 handläggningstid 2016 Sverige: 6,0 veckor Gruppen: 7,2 veckor Handläggningstid i veckor (Bygglov) Kommun Handläggningstid 2020 Handläggningstid 2016 Bygglov Arboga 2 2 Kungsör 2 2 Sala 2 3 Fagersta 3 3 Hallstahammar 3 2 Medelvärde Norberg 3 3 handläggningstid 2020 Surahammar 3 6 Sverige: 4,0 veckor Gruppen: 3,0 veckor Köping 4 4 Västerås 4 3 Medelvärde Skinnskatteberg 8 2 handläggningstid 2016 Sverige: 4,0 veckor Gruppen: 3,0 veckor Servicegaranti (Bygglov) Servicegaranti Dagar Digitaliserings- Servicegaranti Dagar Kommun Bygglov 2020 2020 grad 2020 2016 2016 Arboga Nej 0 Nej Fagersta Ja 28 1 Ja 49 Hallstahammar Ja 70 1 Ja 30 Kungsör Nej 0 Nej Servicegaranti 2020 Sverige: 19 % Ja Köping Nej 0 Nej Gruppen: 30 % Ja Norberg Ja 28 1 Ja 49 Sala Nej 0 Ja Digitaliseringsgrad 2020 Sverige: 0,52 Skinnskatteberg Vet ej Nej Gruppen: 0,44 Surahammar Nej 0 Ja 10 Västerås Nej 1 Nej Servicegaranti 2016 Sverige: 30 % Ja Gruppen: 50 % Ja Tillståndsavgifter (Serveringstillstånd) Kommun Tillståndsavgift 2020 Tillståndsavgift 2016 Serveringstillstånd Surahammar 11 125 11 075 Sala 11 200 11 200 Fagersta 11 700 12 260 Hallstahammar 11 700
    [Show full text]
  • Covariance of Storm Hazards in the Atlantic Basin Michael Angus, Gregor C
    Covariance of Storm Hazards in the Atlantic Basin Michael Angus, Gregor C. Leckebusch & Ivan Kuhnel Royal Meteorological Society Atmospheric Science Conference 2019 Are Regional Climate Perils Related? Risk of Global Weather Connections, Lloyd’s and Met Office 2016 2 Hypothesis The Atlantic Hurricane Season and European winter windstorm season are not independent from one another A pathway exists between the two through a climate teleconnection 3 Hypothesised pathways Gray 1984 Scaife et al. 2017 4 Hypothesised pathways Fan and Schneider 2012 Hallam et al. 2019 Wild et al. 2015, Dunstone et al. 2016 5 Data Limitations Atlantic Basin Reliable count data for both Tropical and Extratropical Cyclones only in the satellite era (1979-present) Extend by building event climatology from Pearson Correlation coefficient: -0.2 Ensemble Prediction Not significant at the 95th percent confidence level Tropical Cyclone count: IBTrACS best Track data System Extratropical Cyclone count: Cyclone Tracking in ERA-interim 6 Methodology Repurpose a forecast ensemble to treat each ensemble member as a different climate realization National Hurricane Center, Hurricane Katrina Uncertainty August 25th 7 Ensemble Prediction System European Centre for Medium Range Weather Forecasting (ECMWF) System 5 EPS (SEAS5) 51 ensemble members over 36 years (1981-2016), total of 1836 model years Initialised 1st of each month, run for 7 months. Selected 1st of August initialisation to cover peak Atlantic Hurricane Season (Aug-Oct) and peak European Windstorm season (Dec-Feb) Horizontal grid spacing TCo319 (~35km, cubic grid) 8 Event Tracking Methodology Find Clusters of 98th percentile Hurricane Floyd Hurricane Sandy windspeed exceedance (Leckebusch et al. 2008) Track storms over time using nearest neighbour approach (WiTRACK; Kruschke 2015) Focus on area of damaging winds, rather than central core pressure 9 Event Tracking Methodology EUMETSAT storm track, from Meteo Sat-9 Air Mass Product.
    [Show full text]
  • Future Changes in European Windstorm Severities and Impacts Jennifer L Catto Alex Little* Matthew Priestley
    Future changes in European windstorm severities and impacts Jennifer L Catto Alex Little* Matthew Priestley University of Exeter *Now at JBA Risk. EGU 2021 Session AS1.6 - Fri, 30 Apr, 13:30–15:00 (CEST) Introduction Motivation Research Questions • Future climate changes will be felt through changes in the weather systems. • How will the severity of European windstorms change in the future? • In Europe one of the most important weather systems is extratropical cyclones. • How will the impacts of European • There are currently a lot of uncertainties windstorms change in the future? around how the frequency and intensity of extratropical cyclones will change over • What will be the role of adaptation to Europe, associated with competing storm severity for decreasing the impacts? dynamical effects, and global climate model uncertainties. • How will future population changes • Another aspect of uncertainty comes from influence the impacts of European the different ways in which intensity is windstorms? defined. • Using models from the latest suite of CMIP, and applying a storm severity index, we investigate future changes in characteristics of windstorms over Europe. December 2020 Alex Little II. POPULATION DENSITY PROJECTIONS Methods and Data December 2020 Alex Little H SSP5 Lagrangian Feature Tracking - Using TRACK (HodgesII. PopulationPOPULATION data DENSITY1980 – 2010 PROJECTIONS 1994,1995) applied to 6-hourly 850hPa relative SSP2 Population data are vorticity (truncated to T42 resolution) from ERA5 taken from the (1980-2010) and 8 CMIP6 models. Socioeconomic data Models and applications ACCESS-CM2 MIROC6 center (SEDAC) at https://sedac.ciesin.co BCC-CSM2-MR MPI-ESM1.2-HR H lumbia.edu/data/set/pSSP5 SSP2 1980 – 2010 EC-Earth3 MPI-ESM1.2-LR opdynamics-1-8th- pop-base-year- KIOST-ESM MRI-ESM2-0 F1 F1 2040 – 2070 2040 – 2070projection-ssp-2000- Present day: Historical simulations for 1980-2010.
    [Show full text]
  • The Role of Serial European Windstorm Clustering for Extreme Seasonal
    Nat. Hazards Earth Syst. Sci., 18, 2991–3006, 2018 https://doi.org/10.5194/nhess-18-2991-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. The role of serial European windstorm clustering for extreme seasonal losses as determined from multi-centennial simulations of high-resolution global climate model data Matthew D. K. Priestley1, Helen F. Dacre1, Len C. Shaffrey2, Kevin I. Hodges1,2, and Joaquim G. Pinto3 1Department of Meteorology, University of Reading, Reading, UK 2NCAS, Department of Meteorology, University of Reading, Reading, UK 3Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany Correspondence: Matthew D. K. Priestley ([email protected]) Received: 1 June 2018 – Discussion started: 18 June 2018 Revised: 4 October 2018 – Accepted: 26 October 2018 – Published: 12 November 2018 Abstract. Extratropical cyclones are the most damaging nat- the accumulated seasonal loss does not change with return ural hazard to affect western Europe. Serial clustering occurs period, generally ranging between 25 % and 50 %. when many intense cyclones affect one specific geographic Given the realistic dynamical representation of cyclone region in a short period of time which can potentially lead to clustering in HiGEM, and comparable statistics to ERA- very large seasonal losses. Previous studies have shown that Interim, we conclude that our estimation of clustering and its intense cyclones may be more likely to cluster than less in- dependence on the return period will be useful for informing tense cyclones. We revisit this topic using a high-resolution the development of risk models for European windstorms, climate model with the aim to determine how important clus- particularly for longer return periods.
    [Show full text]
  • Arkivbildarregister, I Västerås Arkivdepå Respektive Arboga Arkivdepå Lägg Märke Till… …Att Listan Ej Gör Anspråk Att Vara Komplett
    Arkivbildarregister, i Västerås arkivdepå respektive Arboga arkivdepå Lägg märke till… …att listan ej gör anspråk att vara komplett. …att samma arkivbildare i en del fall kan återkomma fler gånger, men under olika namn. Finner Du inte det Du söker eller behöver mer detaljerad information om arkivbilderna, så är Du välkommen att kontakta oss på antingen 021 – 18 68 80 eller [email protected]. De flesta av arkiven är helt öppna för forskning, men vissa har villkor för tillgängligheten. I vissa fall måste man söka tillstånd hos arkivägaren. Kontakta Arkiv Västmanland för mer information. Arkivbildare 1386 Unga Viljor Ängelsberg 234:e Rotarydistriktet AB Almö-Lindö arkiv AB Arboga maskiners verkstadsklubb AB Axelssons Rostfria verkstadsklubb Arboga AB Bergslagens Gemensamma Kraftförvaltning (BGK) AB Plåtmanufaktur, Mölntorps verkstäder AB. C. M. Wibergs vagn- och redskapsfabrik ABB Motorklubb med AMK bilservice ekonomiska förening ABF Arosgården ABF avd Arboga ABF avd Hallstahammar ABF avd Heby ABF avd Kolbäck ABF avd Kolsva ABF avd Kungsör ABF avd Kärrgruvan ABF avd Köping ABF avd Möklinta ABF avd Norberg ABF avd Ramnäs ABF avd Riddarhyttan ABF avd Sala ABF Dingtuna ABF Fagersta ABF Heby ABF Heby biarkiv Heby manskör ABF Heby biarkiv Lunhällens ABF barnfilmsklubben ABF Kolbäck ABF Kolsva ABF Kung Karls ABF Kungsåra ABF Kungsör ABF Kärrbo ABF Morgongåva ABF Möklinta ABF Norberg ABF och Arosgården ABF och Arosgården särarkiv 1 Kungsåra ABF och Arosgården särarkiv 1 Skultuna ABF och Arosgården, särarkiv 1 Skultuna ABF och Arosgården,
    [Show full text]
  • Handlingsprogram För Räddningstjänst 2021
    Handlingsprogram för räddningstjänst 2021 Dnr: 2020/707 MBR – K132 Handlingsprogram för räddningstjänst Med räddningstjänst avses i lagen de räddningsinsatser som staten eller kommunerna skall ansvara för vid olyckor och överhängande fara för olyckor för att hindra och begränsa skador på människor, egendom eller miljön. Enligt lagen om skydd mot olyckor skall kommunen ha ett handlingsprogram för räddningstjänst. I programmet skall anges målet för kommunens verksamhet samt de risker för olyckor som finns i kommunen och som kan leda till räddningsinsatser. I programmet skall också anges vilken förmåga kommunen har och avser att skaffa sig för att göra sådana insatser. Förmågan skall redovisas såväl med avseende på förhållandena i fred som under höjd beredskap. Vilken räddningstjänstförmåga RTMD har i stort redovisas i detta handlingsprogram. För ytterligare information hänvisas till RTMD:s hemsida och kansli i Västerås. Under år 2021 skall MSB presentera föreskrifter angående hur kommunernas handlingsprogram skall vara utformade varför detta handlingsprogram kommer att ersättas av ett nytt anpassat till dessa nya föreskrifter. Detta handlingsprogram träder i kraft 2021-03-16 och är antaget av direktionen för Räddningstjänsten Mälardalen 2021-03-16. 1 Innehåll 1 RTMD:s insatsområde för räddningstjänst ................................................................................................................ 4 2.1 Riskbild ..............................................................................................................................................................
    [Show full text]
  • European Windstorm Insurance Industry “Key Questions” Short Descriptions
    European Windstorm Insurance Industry “Key Questions” Short Descriptions CATIN SIGHT 02 EUROPEAN WINDSTORM - INSURANCE INDUSTRY “KEY QUESTIONS” - SHORT DESCRIPTIONS 03 01. Natural variability of Europe Windstorms vs. cycles vs. trends/climate There has been a geographical shift of windstorm activity in recent years whereby France has been hit by four windstorms and the UK has remained relatively quiet. Furthermore, models are starting to include a “short term” view of risk to allow for the fact that windstorm activity is perceived to have decreased in the past 20-25 years. • Are these changes natural variability of part of an ongoing climate-related trend? • Can we develop a better understanding of the natural variability “mechanisms” (e.g. NAO) and their relation to storminess? 02. Storms in the tail: better understanding limits to EUWS footprints: intensity, size, shape There is concern within the catastrophe modelling industry y that the storms that inhabit the tail of the curve (i.e. event with loss return periods of >200 years) have a size and direction unlike the most severe historical storms. • Can we get some more data-points from the “tail” of climate model runs to sit alongside existing catastrophe model output as a “second set of eyes”? 03. Correlation between wind and flood risk There is currently very little understanding (or indeed implementation in catastrophe models) of the correlation between wind and flood in Europe. • Do winters that possess multiple damaging windstorms also contain loss-making flood events? • How well correlated are wind and flood hazards not just in the tail but at shorter return periods? • Do stormier winter mean that the chance of an event with both wind/flood losses is greater owing to antecedent conditions? 04 EUROPEAN WINDSTORM - INSURANCE INDUSTRY “KEY QUESTIONS” - SHORT DESCRIPTIONS 04.
    [Show full text]
  • A Predictive Relationship Between Early Season North Atlantic Hurricane Activity and the Upcoming Winter North Atlantic Oscillation
    Geophysical Research Abstracts Vol. 18, EGU2016-4308, 2016 EGU General Assembly 2016 © Author(s) 2016. CC Attribution 3.0 License. A predictive relationship between early season North Atlantic hurricane activity and the upcoming winter North Atlantic Oscillation Jessica Boyd (1) and Mark Saunders (2) (1) JBA Risk Management, Skipton, United Kingdom ([email protected]), (2) Department of Space and Climate Physics, University College London, United Kingdom ([email protected]) The winter North Atlantic Oscillation (NAO) is linked strongly to European winter climate including windstorms. Predicting the winter NAO is key to making successful seasonal predictions of European winter climate. We observe that in recent decades there are many instances of an inverse relationship between the strength of the North Atlantic hurricane season and the strength of the subsequent European winter windstorm season. Stormy European winter seasons often follow quiet Atlantic hurricane seasons and calm European winters follow active hurricane seasons. We explore the strength and temporal stability of this inverse relationship, consider a facilitating physical mechanism, and briefly discuss the implications of our findings for end users, in particular global reinsurers. We find there is a statistically significant link between North Atlantic hurricane activity and the upcoming winter NAO. The relationship is established by the midway point of the hurricane season in early September. The link is strongest when hurricane activity is in the upper or lower tercile and when summer ENSO (El Niño Southern Oscillation) is neutral. The relationship works well going back 40 years to the mid 1970s. The early winter (October-November-December) NAO is predicted best but since the early 1980s the predictive link extends to the main winter (December-January-February) NAO.
    [Show full text]
  • The Essence of Sweden
    The Essence of Sweden get here at vastmanland.se Vildmarken Åar, sjöar och öar Västmanland är Europas närmaste vildmark med mindre än en I Västmanland finns hundratals sjöar och vattendrag med timme från Västerås stad och bara 90 minuter från Stockholm. utmärkt fiske. Bävern lever i många av de små skogssjöarna Här får besökarna ta del av vidsträckta landskap och djupa och det finns flera företag som erbjuder bäversafari och som oförstörda skogar. Regionen är speciellt attraktiv för aktiva hyr ut kanoter. familjer och här finns turistföretag som erbjuder allt från guidade turer till prisbelönt älgsafari. Den anrika och en gång mycket viktiga transportleden Strömsholms kanal har 26 slussar som är manuellt manövrerade. Svartådalen, som ligger i hjärtat av Västmanland, är känd för Kanalen har en fallhöjd på 100 meter och erbjuder en fantas- sitt rika fågelliv, sina våtmarker och skogar. Det här är en miljö tisk kanotupplevelse. som erbjuder fantastiska fotomöjligheter. Mälaren sträcker sig hela vägen till Stockholms skärgård och Regionen är en idealisk destination för fiskeentusiaster, fågel- med sina tusentals småöar är Mälaren populär bland båtägare skådare och botaniker och för aktiviteter som vandring, cykling och badentusiaster. Det finns båt- och sightseeingturer eller kanot. Tack vare Västmanlands geografiska placering kan som avgår från Västerås hamn till många av öarna i Västerås man här också finna ett rikt och ovanligt växtliv. skärgård, bland annat till Östra Holmen som är en populär baddestination. Wilderness Västmanland is Europe’s closest wilderness. Less than an hour The rivers, lakes and islands from the city of Västerås, and only 90 minutes from Stockholm, vast Västmanland boasts hundreds of lakes and rivers offering splendid landscapes and deep unspoiled forests offer great opportunities fishing, and scores of nature reserves and national parks.
    [Show full text]
  • December 1703 Windstorm
    December 1703 Windstorm 300-year Retrospective TM Risk Management Solutions I NTRODUCTION The December 7-8, 1703 Windstorm (November 26 -27 on the old calendar still used in England at the time) was the most damaging to have affected the southern part of Britain for at least 500 years. The fame of the storm owes much to the fact that it cut a swathe of damage through London, where a recently imprisoned former tile-manufacturer named Daniel Defoe cut his journalistic teeth by placing a newspaper article soliciting accounts of damage and deliverance that he went on to publish in a book: ‘The Storm’ (1704). While Defoe’s survey comprises a series of ‘snapshots’ of the impacts of the storm in towns and villages across southern Britain, the impacts in continental Europe have never been compiled. Continental Europe had already passed onto the modern Gregorian calendar (not introduced into Britain until 1752) and was therefore eleven days ahead of England: where the storm was dated November 26-27. The windfield also extended across the front-line in the long-running War of the Spanish Succession: that pitted France (including what is now Belgium) allied with Spain and Bavaria against Netherlands, with England and most of the German states. Newspapers on the continent were on one or other side in this conflict and colored their accounts of the storm accordingly, damning their enemies’ ports to imagined destruction while covering up their own losses. Available synoptic meteorological information reveals that this was a large deep and fast moving ‘daughter’ depression, with a central pressure falling to around 950 mb, embedded along the southern flank of an enormous and deep depression centered to the northeast of Scotland, and flanked by a band of high pressure over France.
    [Show full text]
  • Commuter Mobility: an Indicator of Municipality Attraction an Analysis Based on Swedish Register Data
    Commuter Mobility: An Indicator of Municipality Attraction An Analysis Based on Swedish Register Data Siv Schéele and Gunnar Andersson ([email protected]) Stockholm University Demography Unit, SUDA Note: this is a draft version, please do not cite or quote without permission. Abstract In the present paper, we study the behavior of commuters in the Mälar region that surrounds Stockholm, the capital of Sweden. The purpose is to get better insight into what factors that may be related to municipalities’ different levels of attraction. We study individual commuter behavior by means of Swedish register data on place of residence and place of work place for all residents in the region. Our baseline year is 2005 and we study the extent to which commuters change their behavior during a one-year follow up. Longitudinal micro-data on place of work and residence, and commuters’ various individual socio-demographic characteristics are linked to data on a range of municipality characteristics. Our data are complemented with standardized data on travel distances and travel times. We analyze the propensity of commuters to end commuting – by means of change of residence to the municipality where their workplace is located or by changing the workplace to the municipality where they live – by means of multinomial logistic regression. Migration rates and change of workplace rates are shown to decrease with the number of years being a commuter. The relative risks of domestic migration are strongly related to socio-demographic variables, whereas the relative risks of change of workplace mainly vary with individuals’ economic variables such as earned income and commuting distance.
    [Show full text]