Nat. Hazards Earth Syst. Sci., 18, 2991–3006, 2018 https://doi.org/10.5194/nhess-18-2991-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. The role of serial European windstorm clustering for extreme seasonal losses as determined from multi-centennial simulations of high-resolution global climate model data Matthew D. K. Priestley1, Helen F. Dacre1, Len C. Shaffrey2, Kevin I. Hodges1,2, and Joaquim G. Pinto3 1Department of Meteorology, University of Reading, Reading, UK 2NCAS, Department of Meteorology, University of Reading, Reading, UK 3Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany Correspondence: Matthew D. K. Priestley (
[email protected]) Received: 1 June 2018 – Discussion started: 18 June 2018 Revised: 4 October 2018 – Accepted: 26 October 2018 – Published: 12 November 2018 Abstract. Extratropical cyclones are the most damaging nat- the accumulated seasonal loss does not change with return ural hazard to affect western Europe. Serial clustering occurs period, generally ranging between 25 % and 50 %. when many intense cyclones affect one specific geographic Given the realistic dynamical representation of cyclone region in a short period of time which can potentially lead to clustering in HiGEM, and comparable statistics to ERA- very large seasonal losses. Previous studies have shown that Interim, we conclude that our estimation of clustering and its intense cyclones may be more likely to cluster than less in- dependence on the return period will be useful for informing tense cyclones. We revisit this topic using a high-resolution the development of risk models for European windstorms, climate model with the aim to determine how important clus- particularly for longer return periods.