Metabolic Mechanisms for the Evolution of Stable Symbiosis

Total Page:16

File Type:pdf, Size:1020Kb

Metabolic Mechanisms for the Evolution of Stable Symbiosis Metabolic mechanisms for the evolution of stable symbiosis Megan Elisabeth Stig Sørensen A thesis submitted for the degree of Doctor of Philosophy University of Sheffield Department of Animal and Plant Sciences September 2019 2 Abstract Endosymbiosis involves the merger of once independent organisms; this evolutionary transition has defined the evolutionary history of eukaryotes and continues to underpin the function of a wide range of ecosystems. Endosymbioses are evolutionarily dynamic because the inherent conflict between the self-interest of the partners make the breakdown of the interaction ever-likely and this is exacerbated by the environmental context dependence of the benefits of symbiosis. This necessitates selection for partner switching, which can reshuffle the genetic identities of symbiotic partnerships and so rescue symbioses from cheater-induced extinction and enable rapid adaptation to environmental change. However, the mechanisms of partner-specificity, that underlie the potential for partner switching, are unknown. Here I report the metabolic mechanisms that control partner specificity within the tractable microbial photosymbiosis between Paramecium bursaria and Chlorella. I have found that metabolic function, and not genetic identity, enables partner-switching, but that genetic variation plays an important role in maintaining variation in symbiotic phenotype. In addition, I observed that symbiont stress-responses played an important role in partner specificity, and that alleviating symbiont stress responses may be an important strategy of generalist host genotypes. Furthermore, I have used experimental evolution to show that a novel, initially non-beneficial association can rapidly evolve to become a beneficial symbiosis. These results demonstrate that partner integration is defined by metabolic compatibility and that initially maladapted host- symbiont pairings can rapidly evolve to overcome their lack of co-adaptation through alterations to metabolism and symbiont regulation. Understanding the process of novel partner integration and partner switching is crucial if we are to understand how new symbioses originate and stabilise. Moreover, mechanistic knowledge of partner switching is required to mitigate the breakdown of symbioses performing important ecosystem functions driven by environmental change, such as in coral reefs. 3 List of Contents Abstract 3 List of Figures 6 List of Tables 8 Acknowledgements 9 Declaration 10 Chapter 1 – Introduction 11 1.1 The Organelles 12 1.2 Secondary Endosymbioses 14 1.3 The parasitism-mutualism continuum 15 1.4 Evolution of partner dependency 17 1.5 Conflict avoidance 19 1.6 Ecology and Physiology of the P. bursaria – Chlorella endosymbiosis 20 1.7 Genetics of the P. bursaria – Chlorella endosymbiosis 26 1.8 Thesis Outline 29 Chapter 2 – Comparison of independent evolutionary origins reveals both convergence and divergence in the metabolic mechanisms of symbiosis 31 2.1 Introduction 31 2.2 Materials and Methods 33 2.3 Results 39 2.4 Discussion 51 2.5 Supplementary Figures 56 2.6 Supplementary Results 61 Chapter 3 – Light-dependent stress-responses underlie host-symbiont genotypic specificity in a photosymbiosis 62 3.1 Introduction 62 3.2 Materials & Methods 65 3.3 Results 68 3.4 Discussion 81 3.5 Supplementary Figures 87 3.6 Supplementary Tables 91 4 Chapter 4 – A novel host-symbiont interaction can rapidly evolve to become a beneficial symbiosis 93 4.1 Introduction 93 4.2 Materials and Methods 95 4.3 Results 98 4.4 Discussion 105 4.5 Supplementary Tables 110 Chapter 5 – Discussion 114 5.1 Stress and symbiosis 115 5.2 Partner Switching 116 5.3 Rapid evolution enables the establishment of symbiosis 118 5.4 Applications of endosymbiosis research 119 5.5 Future-directions 120 5.6 In conclusion 121 Appendix A – The review paper linked to Chapter 1 123 Appendix B – Statistical outputs for Chapter 2 131 Appendix C – Statistical outputs for Chapter 3 134 Appendix D – Statistical outputs for Chapter 4 137 Bibliography 139 5 List of Figures 1.1 Diagrammatic representation of the fitness interactions within endosymbioses 16 1.2. Diagrammatic representation of the P. bursaria - Chlorella endosymbiosis 22 1.3. The consequence of symbiosis for each partner 25 2.1. Correlated metabolite enrichment for the 186b and HA1 P. bursaria and Chlorella strains over time 40 2.2. Fitness of the native and non-native host-symbiont pairings relative to isogenic symbiont-free hosts 44 2.3. Difference in Chlorella global metabolism between strains across light conditions 45 2.4. Difference in P. bursaria global metabolism between strains across light conditions 48 2.5. Photophysiology measurements for the native and non-native host-symbiont pairings 51 S2.1. PCR result of the HA1 and 186b Chlorella strains 56 S2.2. Schematic pathways diagram of nitrogen enrichment in the arginine amino acid metabolism of the Chlorella metabolic fraction 57 S2.3. Schematic pathways diagram of nitrogen enrichment in other aspects of amino acid metabolism in the Chlorella metabolic fraction 58 S2.4. Schematic pathways diagram of nitrogen enrichment in purine metabolism in the Chlorella metabolic fraction 59 S2.5. The interaction of light intensity and strain identity on the 13C enrichment profile of carbohydrate metabolites from the P. bursaria fraction. 60 3.1. Conceptual diagrams of potential outcomes when comparing native and non-native host-symbiont pairings 64 3.2. Initial growth rates of the host-symbiont pairings across a light gradient 69 3.3. Symbiont load of the host-symbiont pairings across a light gradient 70 3.4. The clustering of the metabolic fractions by light 72 3.5. Clustering patterns of the Chlorella metabolic fraction subset by host-genotype 73 6 3.6. Differences in the Chlorella metabolism between symbiont genotypes at multiple light levels within the 186b P. bursaria host 75 3.7. Relative abundances of dark-stress associated metabolites across host genotypes in the dark 80 3.8. Relative abundances of a high-light stress associated metabolite across host genotypes and across light levels 81 S3.1. PCR confirmation of symbiont-genotype within the reciprocal cross infections 87 S3.2. The clustering of the metabolic fractions by light in PCA plots 88 S3.3. Separation by symbiont-genotype within the 186b host subset of the Chlorella metabolic fraction 89 S3.4. Shared response of Chlorella genotypes to light intensity in the Chlorella metabolic fraction 90 4.1. Weekly growth rates of the native and novel symbioses across the evolution experiment 98 4.2. Growth rate assays performed at multiple points throughout the evolution experiment 99 4.3. Symbiont load at the start and end of the evolution experiment 100 4.4. Fitness of the host-symbiont pairings relative to the symbiont-free host at the start and end of the evolution experiment 101 4.5. The trajectories of the metabolic profiles from the start to the end of the evolution experiment. 103 4.6. Metabolites of interest across the start and end of the evolution experiment within the P. bursaria fraction. 104 4.7. Metabolites of interest across the start and end of the evolution experiment within the Chlorella fraction. 105 7 List of Tables 2.1 15N enriched metabolites of the Chlorella fraction 41 2.2 13C enriched metabolites of the P. bursaria fraction 42 2.3 The identified metabolites of interest from the Chlorella global metabolism. 46 2.4 The identified metabolites of interest from the P. bursaria global metabolism. 49 3.1 Symbiont-genotype specific metabolites in the dark within the 186b P. bursaria host 76 3.2 Symbiont-genotype specific metabolites in the intermediate light within the 186b P. bursaria host 77 3.3 Symbiont-genotype specific metabolites in the high light within the 186b P. bursaria host 78 S3.1 Light-level associated shared Chlorella metabolites across the host and symbiont genotypes. 91 S4.1 Identified metabolites associated with PCA trajectories for the P. bursaria fraction. 110 S4.2 Identified metabolites associated with PCA trajectories for the Chlorella fraction 112 S4.3 Change in symbiont load for each HK1 replicate between the start and end of the evolution experiment 113 8 Acknowledgements First and foremost, I would like to thank my supervisors Michael Brockhurst, Duncan Cameron and A. Jamie Wood for making this project possible and extremely enjoyable. I have learnt a lot over the course of this PhD and it is due to their analytical guidance, which has taught me, among many things, an appreciation of the elegance of good research. I would like to thank Ewan Minter for establishing many of the techniques used in this project and for taking the time to teach these to me. I also wish to thank Chris Lowe for his role in establishing this project and especially for his help while I conducted work in Falmouth. I would like to thank Heather Walker for her technical expertise and help with the mass spectrometry. I am grateful to the BBSRC White Rose DTP program for funding my PhD. To the Brockhurst lab group, thank you for creating a culture that is scientifically exciting, supportive and fun. In particular, thank you to Ellie Harrison and Jamie Hall for your guidance and support. A special thank you to fellow officemates Cagla, Rosanna & Rachael whose friendship I value tremendously. Lastly to my family, Mor, Far & Kim, you have been a constant source of support and inspiration, and thank you for always being willing to listen to how the algae was doing. 9 Declaration I, the author, confirm that the Thesis is my own work. I am aware of the University’s Guidance on the Use of Unfair Means (www.sheffield.ac.uk/ssid/unfair-means). This work has not been previously been presented for an award at this, or any other university. The following publications have arisen from this thesis: • Sørensen, M.E.S., Lowe, C.D., Minter, E.J.A., Wood, A.J., Cameron, D.D., and Brockhurst, M.A.
Recommended publications
  • Taxonomy and Diversity of the Sponge Fauna from Walters Shoal, a Shallow Seamount in the Western Indian Ocean Region
    Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region By Robyn Pauline Payne A thesis submitted in partial fulfilment of the requirements for the degree of Magister Scientiae in the Department of Biodiversity and Conservation Biology, University of the Western Cape. Supervisors: Dr Toufiek Samaai Prof. Mark J. Gibbons Dr Wayne K. Florence The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. December 2015 Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region Robyn Pauline Payne Keywords Indian Ocean Seamount Walters Shoal Sponges Taxonomy Systematics Diversity Biogeography ii Abstract Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region R. P. Payne MSc Thesis, Department of Biodiversity and Conservation Biology, University of the Western Cape. Seamounts are poorly understood ubiquitous undersea features, with less than 4% sampled for scientific purposes globally. Consequently, the fauna associated with seamounts in the Indian Ocean remains largely unknown, with less than 300 species recorded. One such feature within this region is Walters Shoal, a shallow seamount located on the South Madagascar Ridge, which is situated approximately 400 nautical miles south of Madagascar and 600 nautical miles east of South Africa. Even though it penetrates the euphotic zone (summit is 15 m below the sea surface) and is protected by the Southern Indian Ocean Deep- Sea Fishers Association, there is a paucity of biodiversity and oceanographic data.
    [Show full text]
  • Light and Growth Medium Effect on Chlorella Vulgaris Biomass Production
    Journal of Environmental Chemical Engineering 2 (2014) 665–674 Contents lists available at ScienceDirect Journal of Environmental Chemical Engineering journal homepage: www.elsevier.com/locate/jece Light and growth medium effect on Chlorella vulgaris biomass production Matthew Forrest Blair, Bahareh Kokabian, Veera Gnaneswar Gude * Civil and Environmental Engineering Department, Mississippi State University, Mississippi State, MS 39762, USA ARTICLE INFO ABSTRACT Article history: Algae can serve as feedstock for many high value bioproducts and biofuels production. The key to Received 27 June 2013 economic algal biomass production is to optimize the growth conditions. This study presents the effect of Received in revised form 6 November 2013 light wavelengths and growth medium composition on the growth of Chlorella vulgaris. Different light Accepted 6 November 2013 wavelengths [blue, clear (white), green, and red] were used to test their effect on algal growth. Growth media formulations were varied to optimize the growth media composition for maximized algal biomass Keywords: production. Experimental study was conducted in three phases to evaluate: (1) the effect of different Nutrient optimization light wavelengths; (2) the effect of the recommended growth medium at 25%, 50%, and 100% of Growth rates suggested composition; and (3) the effect of nutrient concentrations (nitrogen and phosphorous). The Chlorella vulgaris Light effect effect of these factors was evaluated through specific algal growth rates and volumetric biomass Volumetric biomass productivity productivities during the entire growth period. In this study, blue light performed better (higher growth rate and biomass productivity) at longer growth periods (10–14 days) compared to clear, red and green light wavelengths. The growth media and nutrient effect results indicate that the growth of C.
    [Show full text]
  • Porifera) in Singapore and Description of a New Species of Forcepia (Poecilosclerida: Coelosphaeridae)
    Contributions to Zoology, 81 (1) 55-71 (2012) Biodiversity of shallow-water sponges (Porifera) in Singapore and description of a new species of Forcepia (Poecilosclerida: Coelosphaeridae) Swee-Cheng Lim1, 3, Nicole J. de Voogd2, Koh-Siang Tan1 1 Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore 2 Netherlands Centre for Biodiversity, Naturalis, PO Box 9517, 2300 RA Leiden, The Netherlands 3 E-mail: [email protected] Key words: intertidal, Southeast Asia, sponge assemblage, subtidal, tropical Abstract gia) patera (Hardwicke, 1822) was the first sponge de- scribed from Singapore in the 19th century. This was A surprisingly high number of shallow water sponge species followed by Leucosolenia flexilis (Haeckel, 1872), (197) were recorded from extensive sampling of natural inter- Coelocarteria singaporensis (Carter, 1883) (as Phloeo­ tidal and subtidal habitats in Singapore (Southeast Asia) from May 2003 to June 2010. This is in spite of a highly modified dictyon), and Callyspongia (Cladochalina) diffusa coastline that encompasses one of the world’s largest container Ridley (1884). Subsequently, Dragnewitsch (1906) re- ports as well as extensive oil refining and bunkering industries. corded 24 sponge species from Tanjong Pagar and Pu- A total of 99 intertidal species was recorded in this study. Of lau Brani in the Singapore Strait. A further six species these, 53 species were recorded exclusively from the intertidal of sponge were reported from Singapore in the 1900s, zone and only 45 species were found on both intertidal and subtidal habitats, suggesting that tropical intertidal and subtidal although two species, namely Cinachyrella globulosa sponge assemblages are different and distinct.
    [Show full text]
  • Non-Axenic Microalgae Cultivation in Space – Challenges for the Membrane Μgpbr of the ISS Experiment PBR@LSR
    48th International Conference on Environmental Systems ICES-2018-186 8-12 July 2018, Albuquerque, New Mexico Non-axenic microalgae cultivation in space – Challenges for the membrane µgPBR of the ISS experiment PBR@LSR Harald Helisch1, Stefan Belz2, Jochen Keppler3, Gisela Detrell4, Norbert Henn5, Stefanos Fasoulas6, Reinhold Ewald7 Institute of Space Systems, University of Stuttgart, Germany and Oliver Angerer8 German Aerospace Center (DLR), Bonn, Germany Keywords: PBR@LSR, ISS experiment, microalgae, Chlorella vulgaris, long-term cultivation, biofilm The spaceflight experiment PBR@LSR (Photobioreactor at the Life Support Rack) shall demonstrate for the first time the technology and performance of a hybrid life support system – a combination of physico-chemical and biotechnological components – under real space conditions during an operation period of 180 days. To be launched to the International Space Station (ISS) in 2018, PBR@LSR combines the carbon dioxide (CO2) concentrator of ESA’s Life Support Rack (LSR) with an advanced microalgae photobioreactor (PBR). Accommodated in the Destiny module, LSR will concentrate CO2 from the cabin atmosphere. A dedicated interface allows the utilization of the highly concentrated surplus CO2 for the cultivation of the green microalgae species Chlorella vulgaris. Current research at the University of Stuttgart focuses on the fundamental investigation and optimization of non-axenic cultivation processes in µg capable membrane PBRs. This includes the characterization of influences of accompanying bacteria on the non-axenic microalgae culture stability within the PBR suspension loop, photosynthetic capacity as well as overall biomass composition. This paper discusses in general possible influences of emerging bacteria- or algae induced biofilm formation and cell clustering due to non-axenic processing on the long term functionality of µg adapted PBR systems, e.g.
    [Show full text]
  • Genetic Diversity of Symbiotic Green Algae of Paramecium Bursaria Syngens Originating from Distant Geographical Locations
    plants Article Genetic Diversity of Symbiotic Green Algae of Paramecium bursaria Syngens Originating from Distant Geographical Locations Magdalena Greczek-Stachura 1, Patrycja Zagata Le´snicka 1, Sebastian Tarcz 2 , Maria Rautian 3 and Katarzyna Mozd˙ ze˙ ´n 1,* 1 Institute of Biology, Pedagogical University of Krakow, Podchor ˛azych˙ 2, 30-084 Kraków, Poland; [email protected] (M.G.-S.); [email protected] (P.Z.L.) 2 Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Krakow, Poland; [email protected] 3 Laboratory of Protistology and Experimental Zoology, Faculty of Biology and Soil Science, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia; [email protected] * Correspondence: [email protected] Abstract: Paramecium bursaria (Ehrenberg 1831) is a ciliate species living in a symbiotic relationship with green algae. The aim of the study was to identify green algal symbionts of P. bursaria originating from distant geographical locations and to answer the question of whether the occurrence of en- dosymbiont taxa was correlated with a specific ciliate syngen (sexually separated sibling group). In a comparative analysis, we investigated 43 P. bursaria symbiont strains based on molecular features. Three DNA fragments were sequenced: two from the nuclear genomes—a fragment of the ITS1-5.8S rDNA-ITS2 region and a fragment of the gene encoding large subunit ribosomal RNA (28S rDNA), Citation: Greczek-Stachura, M.; as well as a fragment of the plastid genome comprising the 30rpl36-50infA genes. The analysis of two Le´snicka,P.Z.; Tarcz, S.; Rautian, M.; Mozd˙ ze´n,K.˙ Genetic Diversity of ribosomal sequences showed the presence of 29 haplotypes (haplotype diversity Hd = 0.98736 for Symbiotic Green Algae of Paramecium ITS1-5.8S rDNA-ITS2 and Hd = 0.908 for 28S rDNA) in the former two regions, and 36 haplotypes 0 0 bursaria Syngens Originating from in the 3 rpl36-5 infA gene fragment (Hd = 0.984).
    [Show full text]
  • New Observations on Green Hydra Symbiosis
    Folia biologica (Kraków), vol. 55 (2007), No 1-2 Short Note New Observations on Green Hydra Symbiosis Goran KOVAÈEVIÆ, Mirjana KALAFATIÆ and Nikola LJUBEŠIÆ Accepted September 20, 2006 KOVAÈEVIÆ G., KALAFATIÆ M., LJUBEŠIÆ N. 2007. New observations on green hydra symbiosis. Folia biol. (Kraków) 55: 77-79. New observations on green hydra symbiosis are described. Herbicide norflurazon was chosen as a «trigger» for analysis of these observations. Green hydra (Hydra viridissima Pallas, 1766) is a typical example of endosymbiosis. In its gastrodermal myoeptihelial cells it contains individuals of Chlorella vulgaris Beij. (KESSLER &HUSS 1992). Ultrastructural changes were observed by means of TEM. The newly described morphological features of green hydra symbiosis included a widening of the perialgal space, missing symbiosomes and joining of the existing perialgal spaces. Also, on the basis of the newly described mechanisms, the recovery of green hydra after a period of intoxication was explained. The final result of the disturbed symbiosis between hydra and algae was the reassembly of the endosymbiosis in surviving individuals. Key words: Green hydra, Chlorella, perialgal space, symbiosome, symbiosis reassembly. Goran KOVAÈEVIÆ, Mirjana KALAFATIÆ, Faculty of Science, University of Zagreb, Depart- ment of Zoology, Rooseveltov trg 6, HR-10000 Zagreb, Croatia, E-mail: [email protected] Nikola LJUBEŠIÆ, Ruðer Boškoviæ Institute, Department of Molecular Genetics, Bijenièka cesta 54, HR-10000 Zagreb, Croatia. Symbiosis is one of the most important and most CATINE 1973; RAHAT 1991; SHIMIZU &FUJI- interesting subjects in evolutionary biology. In re- SAWA 2003). Green hydra is a typical example of cent years this area of research was much revived, endosymbiosis.
    [Show full text]
  • Predator-Prey Interactions Between the Ciliate Blepharisma Americanum
    Vol. 83: 211–224, 2019 AQUATIC MICROBIAL ECOLOGY Published online September 19 https://doi.org/10.3354/ame01913 Aquat Microb Ecol OPENPEN ACCESSCCESS Predator−prey interactions between the ciliate Blepharisma americanum and toxic (Microcystis spp.) and non-toxic (Chlorella vulgaris, Microcystis sp.) photosynthetic microbes Ian J. Chapman1,2, Daniel J. Franklin1, Andrew D. Turner3, Eddie J. A. McCarthy1, Genoveva F. Esteban1,* 1Bournemouth University, Department of Life and Environmental Sciences, Faculty of Science and Technology, Dorset, BH12 5BB, UK 2NSW Shellfish Program, NSW Food Authority, Taree, NSW 2430, Australia 3Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Weymouth, Dorset, DT4 8UB, UK ABSTRACT: Despite free-living protozoa being a major factor in modifying aquatic autotrophic biomass, ciliate−cyanobacteria interactions and their functional ecological roles have been poorly described, especially with toxic cyanobacteria. Trophic relationships have been neglected and grazing experiments give contradictory evidence when toxic taxa such as Microcystis are in - volved. Here, 2 toxic Microcystis strains (containing microcystins), 1 non-toxic Microcystis strain and a non-toxic green alga, Chlorella vulgaris, were used to investigate predator−prey interac- tions with a phagotrophic ciliate, Blepharisma americanum. Flow cytometric analysis for micro- algal measurements and a rapid ultra high performance liquid chromatography-tandem mass spectrometry protocol to quantify microcystins showed that non-toxic photosynthetic microbes were significantly grazed by B. americanum, which sustained ciliate populations. In contrast, despite constant ingestion of toxic Microcystis, rapid egestion of cells occurred. The lack of diges- tion resulted in no significant control of toxic cyanobacteria densities, a complete reduction in cil- iate numbers, and no observable encystment or cannibalistic behaviour (gigantism).
    [Show full text]
  • Trophic Ecology of the Tropical Pacific Sponge Mycale Grandis Inferred from Amino Acid Compound-Specific Isotopic Analyses
    Microbial Ecology (2020) 79:495–510 https://doi.org/10.1007/s00248-019-01410-x HOST MICROBE INTERACTIONS Trophic Ecology of the Tropical Pacific Sponge Mycale grandis Inferred from Amino Acid Compound-Specific Isotopic Analyses Joy L. Shih1 & Karen E. Selph1 & Christopher B. Wall2 & Natalie J. Wallsgrove 3 & Michael P. Lesser4 & Brian N. Popp3 Received: 19 March 2019 /Accepted: 2 July 2019 /Published online: 17 July 2019 # Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Many sponges host abundant and active microbial communities that may play a role in the uptake of dissolved organic matter (DOM) by the sponge holobiont, although the mechanism of DOM uptake and metabolism is uncertain. Bulk and compound- specific isotopic analysis of whole sponge, isolated sponge cells, and isolated symbiotic microbial cells of the shallow water tropical Pacific sponge Mycale grandis were used to elucidate the trophic relationships between the host sponge and its associated microbial community. δ15Nandδ13CvaluesofaminoacidsinM. grandis isolated sponge cells are not different from those of its bacterial symbionts. Consequently, there is no difference in trophic position of the sponge and its symbiotic microbes indicating that M. grandis sponge cell isolates do not display amino acid isotopic characteristics typical of metazoan feeding. Furthermore, both the isolated microbial and sponge cell fractions were characterized by a similarly high ΣVvalue—a measure of bacterial-re-synthesis of organic matter calculated from the sum of variance among individual δ15N values of trophic amino acids. These high ΣVvalues observed in the sponge suggest that M. grandis is not reliant on translocated photosynthate from photosymbionts or feeding on water column picoplankton, but obtains nutrition through the uptake of amino acids of bacterial origin.
    [Show full text]
  • Dry Weight and Cell Density of Individual Algal and Cyanobacterial Cells for Algae
    Dry Weight and Cell Density of Individual Algal and Cyanobacterial Cells for Algae Research and Development _______________________________________ A Thesis presented to the Faculty of the Graduate School at the University of Missouri-Columbia _______________________________________________________ In Partial Fulfillment of the Requirements for the Degree Master of Science _____________________________________________________ by WENNA HU Dr. Zhiqiang Hu, Thesis Supervisor July 2014 The undersigned, appointed by the Dean of the Graduate School, have examined the thesis entitled Dry Weight and Cell Density of Individual Algal and Cyanobacterial Cells for Algae Research and Development presented by Wenna Hu, a candidate for the degree of Master of Science, and hereby certify that, in their opinion, it is worthy of acceptance. Professor Zhiqiang Hu Professor Enos C. Inniss Professor Pamela Brown DEDICATION I dedicate this thesis to my beloved parents, whose moral encouragement and support help me earn my Master’s degree. Acknowledgements Foremost, I would like to express my sincere gratitude to my advisor and mentor Dr. Zhiqiang Hu for the continuous support of my graduate studies, for his patience, motivation, enthusiasm, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. Without his guidance and persistent help this thesis would not have been possible. I would like to thank my committee members, Dr. Enos Inniss and Dr. Pamela Brown for being my graduation thesis committee. Their guidance and enthusiasm of my graduate research is greatly appreciated. Thanks to Daniel Jackson in immunology core for the flow cytometer operation training, and Arpine Mikayelyan in life science center for fluorescent images acquisition.
    [Show full text]
  • Chemistry& Metabolism Chemical Information National Library Of
    Chemistry& Metabolism Chemical Information National Library of Medicine Chemical Resources of the Environmental Health & Toxicology Information Program chemistry.org: American Chemical Society - ACS HomePage Identified Compounds — Metabolomics Fiehn Lab AOCS > Publications > Online Catalog > Modern Methods for Lipid Analysis by Liquid Chromatography/Mass Spectrometry and Related Techniques (Lipase Database) Lipid Library Lipid Library Grom Analytik + HPLC GmbH: Homepage Fluorescence-based phospholipase assays—Table 17,3 | Life Technologies Phosphatidylcholine | PerkinElmer MetaCyc Encyclopedia of Metabolic Pathways MapMan Max Planck Institute of Molecular Plant Physiology MS analysis MetFrag Scripps Center For Metabolomics and Mass Spectrometry - XCMS MetaboAnalyst Lipid Analysis with GC-MS, LC-MS, FT-MS — Metabolomics Fiehn Lab MetLIn LOX and P450 inhibitors Lipoxygenase inhibitor BIOMOL International, LP - Lipoxygenase Inhibitors Lipoxygenase structure Lypoxygenases Lipoxygenase structure Plant databases (see also below) PlantsDB SuperSAGE & SAGE Serial Analysis of Gene Expression: Information from Answers.com Oncology: The Sidney Kimmel Comprehensive Cancer Center EMBL Heidelberg - The European Molecular Biology Laboratory EMBL - SAGE for beginners Human Genetics at Johns Hopkins - Kinzler, K Serial Analysis of Gene Expression The Science Creative Quarterly » PAINLESS GENE EXPRESSION PROFILING: SAGE (SERIAL ANALYSIS OF GENE EXPRESSION) IDEG6 software home page (Analysis of gene expression) GenXPro :: GENome-wide eXpression PROfiling
    [Show full text]
  • Morphology, Composition, Production, Processing and Applications Of
    Morphology, composition, production, processing and applications of Chlorella vulgaris: A review Carl Safi, Bachar Zebib, Othmane Merah, Pierre-Yves Pontalier, Carlos Vaca-Garcia To cite this version: Carl Safi, Bachar Zebib, Othmane Merah, Pierre-Yves Pontalier, Carlos Vaca-Garcia. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews, Elsevier, 2014, 35, pp.265-278. 10.1016/j.rser.2014.04.007. hal- 02064882 HAL Id: hal-02064882 https://hal.archives-ouvertes.fr/hal-02064882 Submitted on 12 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible This is an author’s version published in: http://oatao.univ-toulouse.fr/23269 Official URL: https://doi.org/10.1016/j.rser.2014.04.007 To cite this version: Safi, Carl and Zebib, Bachar and Merah, Othmane and Pontalier, Pierre- Yves and Vaca-Garcia, Carlos Morphology, composition, production,
    [Show full text]
  • What Is in Store for EPS Microalgae in the Next Decade?
    molecules Review What Is in Store for EPS Microalgae in the Next Decade? Guillaume Pierre 1 ,Cédric Delattre 1,2 , Pascal Dubessay 1,Sébastien Jubeau 3, Carole Vialleix 4, Jean-Paul Cadoret 4, Ian Probert 5 and Philippe Michaud 1,* 1 Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; [email protected] (G.P.); [email protected] (C.D.); [email protected] (P.D.) 2 Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France 3 Xanthella, Malin House, European Marine Science Park, Dunstaffnage, Argyll, Oban PA37 1SZ, Scotland, UK; [email protected] 4 GreenSea Biotechnologies, Promenade du sergent Navarro, 34140 Meze, France; [email protected] (C.V.); [email protected] (J.-P.C.) 5 Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France; probert@sb-roscoff.fr * Correspondence: [email protected]; Tel.: +33-(0)4-73-40-74-25 Academic Editor: Sylvia Colliec-Jouault Received: 12 October 2019; Accepted: 15 November 2019; Published: 25 November 2019 Abstract: Microalgae and their metabolites have been an El Dorado since the turn of the 21st century. Many scientific works and industrial exploitations have thus been set up. These developments have often highlighted the need to intensify the processes for biomass production in photo-autotrophy and exploit all the microalgae value including ExoPolySaccharides (EPS). Indeed, the bottlenecks limiting the development of low value products from microalgae are not only linked to biology but also to biological engineering problems including harvesting, recycling of culture media, photoproduction, and biorefinery. Even respecting the so-called “Biorefinery Concept”, few applications had a chance to emerge and survive on the market.
    [Show full text]