Linear Spaces
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Duality for Outer $ L^ P \Mu (\Ell^ R) $ Spaces and Relation to Tent Spaces
p r DUALITY FOR OUTER Lµpℓ q SPACES AND RELATION TO TENT SPACES MARCO FRACCAROLI p r Abstract. We prove that the outer Lµpℓ q spaces, introduced by Do and Thiele, are isomorphic to Banach spaces, and we show the expected duality properties between them for 1 ă p ď8, 1 ď r ă8 or p “ r P t1, 8u uniformly in the finite setting. In the case p “ 1, 1 ă r ď8, we exhibit a counterexample to uniformity. We show that in the upper half space setting these properties hold true in the full range 1 ď p,r ď8. These results are obtained via greedy p r decompositions of functions in Lµpℓ q. As a consequence, we establish the p p r equivalence between the classical tent spaces Tr and the outer Lµpℓ q spaces in the upper half space. Finally, we give a full classification of weak and strong type estimates for a class of embedding maps to the upper half space with a fractional scale factor for functions on Rd. 1. Introduction The Lp theory for outer measure spaces discussed in [13] generalizes the classical product, or iteration, of weighted Lp quasi-norms. Since we are mainly interested in positive objects, we assume every function to be nonnegative unless explicitly stated. We first focus on the finite setting. On the Cartesian product X of two finite sets equipped with strictly positive weights pY,µq, pZ,νq, we can define the classical product, or iterated, L8Lr,LpLr spaces for 0 ă p, r ă8 by the quasi-norms 1 r r kfkL8ppY,µq,LrpZ,νqq “ supp νpzqfpy,zq q yPY zÿPZ ´1 r 1 “ suppµpyq ωpy,zqfpy,zq q r , yPY zÿPZ p 1 r r p kfkLpppY,µq,LrpZ,νqq “ p µpyqp νpzqfpy,zq q q , arXiv:2001.05903v1 [math.CA] 16 Jan 2020 yÿPY zÿPZ where we denote by ω “ µ b ν the induced weight on X. -
ON SEQUENCE SPACES DEFINED by the DOMAIN of TRIBONACCI MATRIX in C0 and C Taja Yaying and Merve ˙Ilkhan Kara 1. Introduction Th
Korean J. Math. 29 (2021), No. 1, pp. 25{40 http://dx.doi.org/10.11568/kjm.2021.29.1.25 ON SEQUENCE SPACES DEFINED BY THE DOMAIN OF TRIBONACCI MATRIX IN c0 AND c Taja Yaying∗;y and Merve Ilkhan_ Kara Abstract. In this article we introduce tribonacci sequence spaces c0(T ) and c(T ) derived by the domain of a newly defined regular tribonacci matrix T: We give some topological properties, inclusion relations, obtain the Schauder basis and determine α−; β− and γ− duals of the spaces c0(T ) and c(T ): We characterize certain matrix classes (c0(T );Y ) and (c(T );Y ); where Y is any of the spaces c0; c or `1: Finally, using Hausdorff measure of non-compactness we characterize certain class of compact operators on the space c0(T ): 1. Introduction Throughout the paper N = f0; 1; 2; 3;:::g and w is the space of all real valued sequences. By `1; c0 and c; we mean the spaces all bounded, null and convergent sequences, respectively. Also by `p; cs; cs0 and bs; we mean the spaces of absolutely p-summable, convergent, null and bounded series, respectively, where 1 ≤ p < 1: We write φ for the space of all sequences that terminate in zero. Moreover, we denote the space of all sequences of bounded variation by bv: A Banach space X is said to be a BK-space if it has continuous coordinates. The spaces `1; c0 and c are BK- spaces with norm kxk = sup jx j : Here and henceforth, for simplicity in notation, `1 k k the summation without limit runs from 0 to 1: Also, we shall use the notation e = (1; 1; 1;:::) and e(k) to be the sequence whose only non-zero term is 1 in the kth place for each k 2 N: Let X and Y be two sequence spaces and let A = (ank) be an infinite matrix of real th entries. -
Chapter 4 the Lebesgue Spaces
Chapter 4 The Lebesgue Spaces In this chapter we study Lp-integrable functions as a function space. Knowledge on functional analysis required for our study is briefly reviewed in the first two sections. In Section 1 the notions of normed and inner product spaces and their properties such as completeness, separability, the Heine-Borel property and espe- cially the so-called projection property are discussed. Section 2 is concerned with bounded linear functionals and the dual space of a normed space. The Lp-space is introduced in Section 3, where its completeness and various density assertions by simple or continuous functions are covered. The dual space of the Lp-space is determined in Section 4 where the key notion of uniform convexity is introduced and established for the Lp-spaces. Finally, we study strong and weak conver- gence of Lp-sequences respectively in Sections 5 and 6. Both are important for applications. 4.1 Normed Spaces In this and the next section we review essential elements of functional analysis that are relevant to our study of the Lp-spaces. You may look up any book on functional analysis or my notes on this subject attached in this webpage. Let X be a vector space over R. A norm on X is a map from X ! [0; 1) satisfying the following three \axioms": For 8x; y; z 2 X, (i) kxk ≥ 0 and is equal to 0 if and only if x = 0; (ii) kαxk = jαj kxk, 8α 2 R; and (iii) kx + yk ≤ kxk + kyk. The pair (X; k·k) is called a normed vector space or normed space for short. -
FUNCTIONAL ANALYSIS 1. Banach and Hilbert Spaces in What
FUNCTIONAL ANALYSIS PIOTR HAJLASZ 1. Banach and Hilbert spaces In what follows K will denote R of C. Definition. A normed space is a pair (X, k · k), where X is a linear space over K and k · k : X → [0, ∞) is a function, called a norm, such that (1) kx + yk ≤ kxk + kyk for all x, y ∈ X; (2) kαxk = |α|kxk for all x ∈ X and α ∈ K; (3) kxk = 0 if and only if x = 0. Since kx − yk ≤ kx − zk + kz − yk for all x, y, z ∈ X, d(x, y) = kx − yk defines a metric in a normed space. In what follows normed paces will always be regarded as metric spaces with respect to the metric d. A normed space is called a Banach space if it is complete with respect to the metric d. Definition. Let X be a linear space over K (=R or C). The inner product (scalar product) is a function h·, ·i : X × X → K such that (1) hx, xi ≥ 0; (2) hx, xi = 0 if and only if x = 0; (3) hαx, yi = αhx, yi; (4) hx1 + x2, yi = hx1, yi + hx2, yi; (5) hx, yi = hy, xi, for all x, x1, x2, y ∈ X and all α ∈ K. As an obvious corollary we obtain hx, y1 + y2i = hx, y1i + hx, y2i, hx, αyi = αhx, yi , Date: February 12, 2009. 1 2 PIOTR HAJLASZ for all x, y1, y2 ∈ X and α ∈ K. For a space with an inner product we define kxk = phx, xi . Lemma 1.1 (Schwarz inequality). -
Functional Analysis Lecture Notes Chapter 3. Banach
FUNCTIONAL ANALYSIS LECTURE NOTES CHAPTER 3. BANACH SPACES CHRISTOPHER HEIL 1. Elementary Properties and Examples Notation 1.1. Throughout, F will denote either the real line R or the complex plane C. All vector spaces are assumed to be over the field F. Definition 1.2. Let X be a vector space over the field F. Then a semi-norm on X is a function k · k: X ! R such that (a) kxk ≥ 0 for all x 2 X, (b) kαxk = jαj kxk for all x 2 X and α 2 F, (c) Triangle Inequality: kx + yk ≤ kxk + kyk for all x, y 2 X. A norm on X is a semi-norm which also satisfies: (d) kxk = 0 =) x = 0. A vector space X together with a norm k · k is called a normed linear space, a normed vector space, or simply a normed space. Definition 1.3. Let I be a finite or countable index set (for example, I = f1; : : : ; Ng if finite, or I = N or Z if infinite). Let w : I ! [0; 1). Given a sequence of scalars x = (xi)i2I , set 1=p jx jp w(i)p ; 0 < p < 1; 8 i kxkp;w = > Xi2I <> sup jxij w(i); p = 1; i2I > where these quantities could be infinite.:> Then we set p `w(I) = x = (xi)i2I : kxkp < 1 : n o p p p We call `w(I) a weighted ` space, and often denote it just by `w (especially if I = N). If p p w(i) = 1 for all i, then we simply call this space ` (I) or ` and write k · kp instead of k · kp;w. -
Elements of Linear Algebra, Topology, and Calculus
00˙AMS September 23, 2007 © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher. Appendix A Elements of Linear Algebra, Topology, and Calculus A.1 LINEAR ALGEBRA We follow the usual conventions of matrix computations. Rn×p is the set of all n p real matrices (m rows and p columns). Rn is the set Rn×1 of column vectors× with n real entries. A(i, j) denotes the i, j entry (ith row, jth column) of the matrix A. Given A Rm×n and B Rn×p, the matrix product Rm×p ∈ n ∈ AB is defined by (AB)(i, j) = k=1 A(i, k)B(k, j), i = 1, . , m, j = 1∈, . , p. AT is the transpose of the matrix A:(AT )(i, j) = A(j, i). The entries A(i, i) form the diagonal of A. A Pmatrix is square if is has the same number of rows and columns. When A and B are square matrices of the same dimension, [A, B] = AB BA is termed the commutator of A and B. A matrix A is symmetric if −AT = A and skew-symmetric if AT = A. The commutator of two symmetric matrices or two skew-symmetric matrices− is symmetric, and the commutator of a symmetric and a skew-symmetric matrix is skew-symmetric. The trace of A is the sum of the diagonal elements of A, min(n,p ) tr(A) = A(i, i). i=1 X We have the following properties (assuming that A and B have adequate dimensions) tr(A) = tr(AT ), (A.1a) tr(AB) = tr(BA), (A.1b) tr([A, B]) = 0, (A.1c) tr(B) = 0 if BT = B, (A.1d) − tr(AB) = 0 if AT = A and BT = B. -
LEBESGUE MEASURE and L2 SPACE. Contents 1. Measure Spaces 1 2. Lebesgue Integration 2 3. L2 Space 4 Acknowledgments 9 References
LEBESGUE MEASURE AND L2 SPACE. ANNIE WANG Abstract. This paper begins with an introduction to measure spaces and the Lebesgue theory of measure and integration. Several important theorems regarding the Lebesgue integral are then developed. Finally, we prove the completeness of the L2(µ) space and show that it is a metric space, and a Hilbert space. Contents 1. Measure Spaces 1 2. Lebesgue Integration 2 3. L2 Space 4 Acknowledgments 9 References 9 1. Measure Spaces Definition 1.1. Suppose X is a set. Then X is said to be a measure space if there exists a σ-ring M (that is, M is a nonempty family of subsets of X closed under countable unions and under complements)of subsets of X and a non-negative countably additive set function µ (called a measure) defined on M . If X 2 M, then X is said to be a measurable space. For example, let X = Rp, M the collection of Lebesgue-measurable subsets of Rp, and µ the Lebesgue measure. Another measure space can be found by taking X to be the set of all positive integers, M the collection of all subsets of X, and µ(E) the number of elements of E. We will be interested only in a special case of the measure, the Lebesgue measure. The Lebesgue measure allows us to extend the notions of length and volume to more complicated sets. Definition 1.2. Let Rp be a p-dimensional Euclidean space . We denote an interval p of R by the set of points x = (x1; :::; xp) such that (1.3) ai ≤ xi ≤ bi (i = 1; : : : ; p) Definition 1.4. -
General Inner Product & Fourier Series
General Inner Products 1 General Inner Product & Fourier Series Advanced Topics in Linear Algebra, Spring 2014 Cameron Braithwaite 1 General Inner Product The inner product is an algebraic operation that takes two vectors of equal length and com- putes a single number, a scalar. It introduces a geometric intuition for length and angles of vectors. The inner product is a generalization of the dot product which is the more familiar operation that's specific to the field of real numbers only. Euclidean space which is limited to 2 and 3 dimensions uses the dot product. The inner product is a structure that generalizes to vector spaces of any dimension. The utility of the inner product is very significant when proving theorems and runing computations. An important aspect that can be derived is the notion of convergence. Building on convergence we can move to represenations of functions, specifally periodic functions which show up frequently. The Fourier series is an expansion of periodic functions specific to sines and cosines. By the end of this paper we will be able to use a Fourier series to represent a wave function. To build toward this result many theorems are stated and only a few have proofs while some proofs are trivial and left for the reader to save time and space. Definition 1.11 Real Inner Product Let V be a real vector space and a; b 2 V . An inner product on V is a function h ; i : V x V ! R satisfying the following conditions: (a) hαa + α0b; ci = αha; ci + α0hb; ci (b) hc; αa + α0bi = αhc; ai + α0hc; bi (c) ha; bi = hb; ai (d) ha; aiis a positive real number for any a 6= 0 Definition 1.12 Complex Inner Product Let V be a vector space. -
Function Space Tensor Decomposition and Its Application in Sports Analytics
East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 12-2019 Function Space Tensor Decomposition and its Application in Sports Analytics Justin Reising East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Applied Statistics Commons, Multivariate Analysis Commons, and the Other Applied Mathematics Commons Recommended Citation Reising, Justin, "Function Space Tensor Decomposition and its Application in Sports Analytics" (2019). Electronic Theses and Dissertations. Paper 3676. https://dc.etsu.edu/etd/3676 This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. Function Space Tensor Decomposition and its Application in Sports Analytics A thesis presented to the faculty of the Department of Mathematics East Tennessee State University In partial fulfillment of the requirements for the degree Master of Science in Mathematical Sciences by Justin Reising December 2019 Jeff Knisley, Ph.D. Nicole Lewis, Ph.D. Michele Joyner, Ph.D. Keywords: Sports Analytics, PCA, Tensor Decomposition, Functional Analysis. ABSTRACT Function Space Tensor Decomposition and its Application in Sports Analytics by Justin Reising Recent advancements in sports information and technology systems have ushered in a new age of applications of both supervised and unsupervised analytical techniques in the sports domain. These automated systems capture large volumes of data points about competitors during live competition. -
Using Functional Distance Measures When Calibrating Journey-To-Crime Distance Decay Algorithms
USING FUNCTIONAL DISTANCE MEASURES WHEN CALIBRATING JOURNEY-TO-CRIME DISTANCE DECAY ALGORITHMS A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Natural Sciences in The Interdepartmental Program of Natural Sciences by Joshua David Kent B.S., Louisiana State University, 1994 December 2003 ACKNOWLEDGMENTS The work reported in this research was partially supported by the efforts of Dr. James Mitchell of the Louisiana Department of Transportation and Development - Information Technology section for donating portions of the Geographic Data Technology (GDT) Dynamap®-Transportation data set. Additional thanks are paid for the thirty-five residence of East Baton Rouge Parish who graciously supplied the travel data necessary for the successful completion of this study. The author also wishes to acknowledge the support expressed by Dr. Michael Leitner, Dr. Andrew Curtis, Mr. DeWitt Braud, and Dr. Frank Cartledge - their efforts helped to make this thesis possible. Finally, the author thanks his wonderful wife and supportive family for their encouragement and tolerance. ii TABLE OF CONTENTS ACKNOWLEDGMENTS .............................................................................................................. ii LIST OF TABLES.......................................................................................................................... v LIST OF FIGURES ...................................................................................................................... -
Calculus of Variations
MIT OpenCourseWare http://ocw.mit.edu 16.323 Principles of Optimal Control Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 16.323 Lecture 5 Calculus of Variations • Calculus of Variations • Most books cover this material well, but Kirk Chapter 4 does a particularly nice job. • See here for online reference. x(t) x*+ αδx(1) x*- αδx(1) x* αδx(1) −αδx(1) t t0 tf Figure by MIT OpenCourseWare. Spr 2008 16.323 5–1 Calculus of Variations • Goal: Develop alternative approach to solve general optimization problems for continuous systems – variational calculus – Formal approach will provide new insights for constrained solutions, and a more direct path to the solution for other problems. • Main issue – General control problem, the cost is a function of functions x(t) and u(t). � tf min J = h(x(tf )) + g(x(t), u(t), t)) dt t0 subject to x˙ = f(x, u, t) x(t0), t0 given m(x(tf ), tf ) = 0 – Call J(x(t), u(t)) a functional. • Need to investigate how to find the optimal values of a functional. – For a function, we found the gradient, and set it to zero to find the stationary points, and then investigated the higher order derivatives to determine if it is a maximum or minimum. – Will investigate something similar for functionals. June 18, 2008 Spr 2008 16.323 5–2 • Maximum and Minimum of a Function – A function f(x) has a local minimum at x� if f(x) ≥ f(x �) for all admissible x in �x − x�� ≤ � – Minimum can occur at (i) stationary point, (ii) at a boundary, or (iii) a point of discontinuous derivative. -
Fact Sheet Functional Analysis
Fact Sheet Functional Analysis Literature: Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen. Teubner, 1986. Knabner, P., Angermann, L.: Numerik partieller Differentialgleichungen. Springer, 2000. Triebel, H.: H¨ohere Analysis. Harri Deutsch, 1980. Dobrowolski, M.: Angewandte Funktionalanalysis, Springer, 2010. 1. Banach- and Hilbert spaces Let V be a real vector space. Normed space: A norm is a mapping k · k : V ! [0; 1), such that: kuk = 0 , u = 0; (definiteness) kαuk = jαj · kuk; α 2 R; u 2 V; (positive scalability) ku + vk ≤ kuk + kvk; u; v 2 V: (triangle inequality) The pairing (V; k · k) is called a normed space. Seminorm: In contrast to a norm there may be elements u 6= 0 such that kuk = 0. It still holds kuk = 0 if u = 0. Comparison of two norms: Two norms k · k1, k · k2 are called equivalent if there is a constant C such that: −1 C kuk1 ≤ kuk2 ≤ Ckuk1; u 2 V: If only one of these inequalities can be fulfilled, e.g. kuk2 ≤ Ckuk1; u 2 V; the norm k · k1 is called stronger than the norm k · k2. k · k2 is called weaker than k · k1. Topology: In every normed space a canonical topology can be defined. A subset U ⊂ V is called open if for every u 2 U there exists a " > 0 such that B"(u) = fv 2 V : ku − vk < "g ⊂ U: Convergence: A sequence vn converges to v w.r.t. the norm k · k if lim kvn − vk = 0: n!1 1 A sequence vn ⊂ V is called Cauchy sequence, if supfkvn − vmk : n; m ≥ kg ! 0 for k ! 1.