Nonlinear Spectral Theory Henning Wunderlich
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Symmetric and Pseudoisotropic Distributions: -Fund Separation
Hindawi Publishing Corporation Journal of Probability and Statistics Volume 2015, Article ID 235452, 11 pages http://dx.doi.org/10.1155/2015/235452 Research Article Portfolio Theory for -Symmetric and Pseudoisotropic Distributions: -Fund Separation and the CAPM Nils Chr. Framstad DepartmentofEconomics,UniversityofOslo,P.O.Box1095,Blindern,0317Oslo,Norway Correspondence should be addressed to Nils Chr. Framstad; [email protected] Received 30 June 2015; Revised 6 October 2015; Accepted 12 October 2015 Academic Editor: Chunsheng Ma Copyright © 2015 Nils Chr. Framstad. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The shifted pseudoisotropic multivariate distributions are shown to satisfy Ross’ stochastic dominance criterion for two-fund monetary separation in the case with risk-free investment opportunity and furthermore to admit the Capital Asset Pricing Model under an embedding in L condition if 1<≤2, with the betas given in an explicit form. For the -symmetric subclass, the market without risk-free investment opportunity admits 2-fund separation if = 1+1/(2−1), ∈N, generalizing the classical elliptical case =1, and we also give the precise number of funds needed, from which it follows that we cannot, except degenerate cases, have a CAPM without risk-free opportunity. For the symmetric stable subclass, the index of stability is only of secondary interest, and several common restrictions in terms of that index can be weakened by replacing it by the (no smaller) indices of symmetry/of embedding. Finally, dynamic models with intermediate consumption inherit the separation properties of the static models. -
Functional Analysis Lecture Notes Chapter 3. Banach
FUNCTIONAL ANALYSIS LECTURE NOTES CHAPTER 3. BANACH SPACES CHRISTOPHER HEIL 1. Elementary Properties and Examples Notation 1.1. Throughout, F will denote either the real line R or the complex plane C. All vector spaces are assumed to be over the field F. Definition 1.2. Let X be a vector space over the field F. Then a semi-norm on X is a function k · k: X ! R such that (a) kxk ≥ 0 for all x 2 X, (b) kαxk = jαj kxk for all x 2 X and α 2 F, (c) Triangle Inequality: kx + yk ≤ kxk + kyk for all x, y 2 X. A norm on X is a semi-norm which also satisfies: (d) kxk = 0 =) x = 0. A vector space X together with a norm k · k is called a normed linear space, a normed vector space, or simply a normed space. Definition 1.3. Let I be a finite or countable index set (for example, I = f1; : : : ; Ng if finite, or I = N or Z if infinite). Let w : I ! [0; 1). Given a sequence of scalars x = (xi)i2I , set 1=p jx jp w(i)p ; 0 < p < 1; 8 i kxkp;w = > Xi2I <> sup jxij w(i); p = 1; i2I > where these quantities could be infinite.:> Then we set p `w(I) = x = (xi)i2I : kxkp < 1 : n o p p p We call `w(I) a weighted ` space, and often denote it just by `w (especially if I = N). If p p w(i) = 1 for all i, then we simply call this space ` (I) or ` and write k · kp instead of k · kp;w. -
Elements of Linear Algebra, Topology, and Calculus
00˙AMS September 23, 2007 © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher. Appendix A Elements of Linear Algebra, Topology, and Calculus A.1 LINEAR ALGEBRA We follow the usual conventions of matrix computations. Rn×p is the set of all n p real matrices (m rows and p columns). Rn is the set Rn×1 of column vectors× with n real entries. A(i, j) denotes the i, j entry (ith row, jth column) of the matrix A. Given A Rm×n and B Rn×p, the matrix product Rm×p ∈ n ∈ AB is defined by (AB)(i, j) = k=1 A(i, k)B(k, j), i = 1, . , m, j = 1∈, . , p. AT is the transpose of the matrix A:(AT )(i, j) = A(j, i). The entries A(i, i) form the diagonal of A. A Pmatrix is square if is has the same number of rows and columns. When A and B are square matrices of the same dimension, [A, B] = AB BA is termed the commutator of A and B. A matrix A is symmetric if −AT = A and skew-symmetric if AT = A. The commutator of two symmetric matrices or two skew-symmetric matrices− is symmetric, and the commutator of a symmetric and a skew-symmetric matrix is skew-symmetric. The trace of A is the sum of the diagonal elements of A, min(n,p ) tr(A) = A(i, i). i=1 X We have the following properties (assuming that A and B have adequate dimensions) tr(A) = tr(AT ), (A.1a) tr(AB) = tr(BA), (A.1b) tr([A, B]) = 0, (A.1c) tr(B) = 0 if BT = B, (A.1d) − tr(AB) = 0 if AT = A and BT = B. -
An Abstract Algebraic–Topological Approach to the Notions of a First
An abstract algebraic{topological approach to the notions of a ¯rst and a second dual space I H. Poppe, R. Bartsch 1 Introduction By IR and C= we denote the reals and the complex numbers respectively and by IK we mean IR or C= . Now let (X; jj ¢ jj) be a normed IK{vector space and X0 := ff : X ! IKj f linear and continuousg the (¯rst) dual space (dual) of X. Hence X0 consists of functions which at the same time are an algebraic homomorphism (a linear map) and a topological homomorphism (a continuous map). By the usual operatornorm, (X0; jj ¢ jj) again becomes a normed space (even a Banach{space) meaning that X and X0 belong to the same class of spaces. Hence at once we can construct the second dual space (bidual) X00 by: X00 := ((X; jj ¢ jj)0; jj ¢ jj)0. Then the canonical map J : X ! X00 is de¯ned via the evaluation map(1) ! : X £ IKX ! IK by J(x) := !(x; ¢) 2 X00 with 8x 2 X : !(x; ¢): X0 ! IK; 8x0 2 X0 : !(x; ¢)(x0) = !(x; x0) = x0(x). 1.1 Proposition X !(x; ¢):(IK ;¿p) ! IK is continuous for all x 2 X. X X ¿p Proof: For any net (fi)i2I from IK , f 2 IK , fi ¡! f implies especially fi(x) ! f(x) and thus !(x; fi) = fi(x) ! f(x) = !(x; f). 1.2 Remark So the map J is well{de¯ned since we have 8x 2 X : !(x; ¢) 2 X00, i.e. !(x; ¢): 0 (X ; jj ¢ jj) ! IK is linear and continuous (w.r.t. -
Grothendieck Spaces with the Dunford–Pettis Property
GROTHENDIECK SPACES WITH THE DUNFORD–PETTIS PROPERTY ANGELA A. ALBANESE*, JOSÉ BONET+ AND WERNER J. RICKER Abstract. Banach spaces which are Grothendieck spaces with the Dunford– Pettis property (briefly, GDP) are classical. A systematic treatment of GDP– Fréchet spaces occurs in [12]. This investigation is continued here for locally convex Hausdorff spaces. The product and (most) inductive limits of GDP– space are again GDP–spaces. Also, every complete injective space is a GDP– space. For p ∈ {0} ∪ [1, ∞) it is shown that the classical co–echelon spaces kp(V ) and Kp(V ) are GDP–spaces if and only if they are Montel. On the other hand, K∞(V ) is always a GDP–space and k∞(V ) is a GDP–space whenever its (Fréchet) predual, i.e., the Köthe echelon space λ1(A), is distinguished. 1. Introduction. Grothendieck spaces with the Dunford–Pettis property (briefly, GDP) play a prominent role in the theory of Banach spaces and vector measures; see Ch.VI of [17], especially the Notes and Remarks, and [18]. Known examples include L∞, ∞ ∞ H (D), injective Banach spaces (e.g. ` ) and certain C(K) spaces. D. Dean showed in [14] that a GDP–space does not admit any Schauder decomposition; see also [26, Corollary 8]. This has serious consequences for spectral measures in such spaces, [31]. For non–normable spaces the situation changes dramatically. Every Fréchet Montel space X is a GDP–space, [12, Remark 2.2]. Other than Montel spaces, the only known non–normable Fréchet space which is a GDP–space is the Köthe echelon space λ∞(A), for an arbitrary Köthe matrix A, [12, Proposition 3.1]. -
Linear Spaces
Chapter 2 Linear Spaces Contents FieldofScalars ........................................ ............. 2.2 VectorSpaces ........................................ .............. 2.3 Subspaces .......................................... .............. 2.5 Sumofsubsets........................................ .............. 2.5 Linearcombinations..................................... .............. 2.6 Linearindependence................................... ................ 2.7 BasisandDimension ..................................... ............. 2.7 Convexity ............................................ ............ 2.8 Normedlinearspaces ................................... ............... 2.9 The `p and Lp spaces ............................................. 2.10 Topologicalconcepts ................................... ............... 2.12 Opensets ............................................ ............ 2.13 Closedsets........................................... ............. 2.14 Boundedsets......................................... .............. 2.15 Convergence of sequences . ................... 2.16 Series .............................................. ............ 2.17 Cauchysequences .................................... ................ 2.18 Banachspaces....................................... ............... 2.19 Completesubsets ....................................... ............. 2.19 Transformations ...................................... ............... 2.21 Lineartransformations.................................. ................ 2.21 -
On Hereditary Reflexivity of Topological Vector Spaces
GLASNIK MATEMATICKIˇ Vol. 43(63)(2008), 397 – 422 ON HEREDITARY REFLEXIVITY OF TOPOLOGICAL VECTOR SPACES. THE DE RHAM COCHAIN AND CHAIN SPACES Ju. T. Lisica Peoples’ Friendship University of Russia, Russia Dedicated to Professor Sibe Mardeˇsi´c Abstract. For proving reflexivity of the spaces of de Rham coho- mology and homology of C∞-manifolds the author considers the notion of hereditary reflexivity as well as the notion of dual hereditary reflexivity of locally convex topological vector spaces which is interesting in itself. Com- plete barrelled nuclear spaces with complete nuclear duals turn out to be hereditarily reflexive. The Pontryagin duality in locally convex topological spaces is also considered. 1. Introduction p p c Let Ω (M), Ωc (M), Ωp(M), Ωp(M), p ≥ 0, be the de Rham cochain com- plex of C∞-differential forms, the de Rham cochain complex of C∞-differential forms with compact supports and the de Rham chain complex of C∞-differen- tial forms with coefficients in Schwartz distributions with compact sup- ports (currents with compact supports), the de Rham chain complex of C∞-differential forms with coefficients in Schwartz distributions (currents) of a C∞-manifold M, respectively. The locally convex topology on Ωp(M) is the topology of compact con- p vergence for all derivatives, on Ωc (M) it is the topology of the strict inductive 2000 Mathematics Subject Classification. 46A03, 46A04, 55N07, 55P55. Key words and phrases. De Rham cohomology, currents, nuclear spaces, hereditary reflexivity, dual hereditary reflexivity, Pontryagin duality. This research was supported by a grant of Russia’s Fund of Fundamental Researches (Grant # 06-01-00341). -
Semilinear Wave Equations on Asymptotically De Sitter, Kerr-De Sitter and Minkowski Spacetimes
SEMILINEAR WAVE EQUATIONS ON ASYMPTOTICALLY DE SITTER, KERR-DE SITTER AND MINKOWSKI SPACETIMES PETER HINTZ AND ANDRAS VASY Abstract. In this paper we show the small data solvability of suitable semi- linear wave and Klein-Gordon equations on geometric classes of spaces, which include so-called asymptotically de Sitter and Kerr-de Sitter spaces, as well as asymptotically Minkowski spaces. These spaces allow general infinities, called conformal infinity in the asymptotically de Sitter setting; the Minkowski type setting is that of non-trapping Lorentzian scattering metrics introduced by Baskin, Vasy and Wunsch. Our results are obtained by showing the global Fredholm property, and indeed invertibility, of the underlying linear operator on suitable L2-based function spaces, which also possess appropriate algebra or more complicated multiplicative properties. The linear framework is based on the b-analysis, in the sense of Melrose, introduced in this context by Vasy to describe the asymptotic behavior of solutions of linear equations. An inter- esting feature of the analysis is that resonances, namely poles of the inverse of the Mellin transformed b-normal operator, which are `quantum' (not purely symbolic) objects, play an important role. 1. Introduction In this paper we consider semilinear wave equations in contexts such as asymp- totically de Sitter and Kerr-de Sitter spaces, as well as asymptotically Minkowski spaces. The word `asymptotically' here does not mean that the asymptotic behav- ior has to be that of exact de Sitter, etc., spaces, or even a perturbation of these at infinity; much more general infinities, that nonetheless possess a similar structure as far as the underlying analysis is concerned, are allowed. -
1.1.3 Reminder of Some Simple Topological Concepts Definition 1.1.17
1. Preliminaries The Hausdorffcriterion could be paraphrased by saying that smaller neigh- borhoods make larger topologies. This is a very intuitive theorem, because the smaller the neighbourhoods are the easier it is for a set to contain neigh- bourhoods of all its points and so the more open sets there will be. Proof. Suppose τ τ . Fixed any point x X,letU (x). Then, since U ⇒ ⊆ ∈ ∈B is a neighbourhood of x in (X,τ), there exists O τ s.t. x O U.But ∈ ∈ ⊆ O τ implies by our assumption that O τ ,soU is also a neighbourhood ∈ ∈ of x in (X,τ ). Hence, by Definition 1.1.10 for (x), there exists V (x) B ∈B s.t. V U. ⊆ Conversely, let W τ. Then for each x W ,since (x) is a base of ⇐ ∈ ∈ B neighbourhoods w.r.t. τ,thereexistsU (x) such that x U W . Hence, ∈B ∈ ⊆ by assumption, there exists V (x)s.t.x V U W .ThenW τ . ∈B ∈ ⊆ ⊆ ∈ 1.1.3 Reminder of some simple topological concepts Definition 1.1.17. Given a topological space (X,τ) and a subset S of X,the subset or induced topology on S is defined by τ := S U U τ . That is, S { ∩ | ∈ } a subset of S is open in the subset topology if and only if it is the intersection of S with an open set in (X,τ). Alternatively, we can define the subspace topology for a subset S of X as the coarsest topology for which the inclusion map ι : S X is continuous. -
Microlocal Analysis of Asymptotically Hyperbolic Spaces and High-Energy Resolvent Estimates
Inside Out II MSRI Publications Volume 60, 2012 Microlocal analysis of asymptotically hyperbolic spaces and high-energy resolvent estimates ANDRÁS VASY In this paper we describe a new method for analyzing the Laplacian on asymp- totically hyperbolic spaces, which was introduced by the author in 2010. This new method in particular constructs the analytic continuation of the resolvent for even metrics (in the sense of Guillarmou), and gives high-energy estimates in strips. The key idea is an extension across the boundary for a problem obtained from the Laplacian shifted by the spectral parameter. The extended problem is nonelliptic — indeed, on the other side it is related to the Klein– Gordon equation on an asymptotically de Sitter space — but nonetheless it can be analyzed by methods of Fredholm theory. This method is a special case of a more general approach to the analysis of PDEs which includes, for instance, Kerr–de Sitter- and Minkowski-type spaces. The present paper is self-contained, and deals with asymptotically hyperbolic spaces without bur- dening the reader with material only needed for the analysis of the Lorentzian problems considered in earlier work by the author. 1. Introduction In this paper we describe a new method for analyzing the Laplacian on asymp- totically hyperbolic, or conformally compact, spaces, which was introduced in [Vasy 2010a]. This new method in particular constructs the analytic continuation of the resolvent for even metrics (in the sense of [Guillarmou 2005]), and gives high-energy estimates in strips. The key idea is an extension across the boundary for a problem obtained from the Laplacian shifted by the spectral parameter. -
Basic Differentiable Calculus Review
Basic Differentiable Calculus Review Jimmie Lawson Department of Mathematics Louisiana State University Spring, 2003 1 Introduction Basic facts about the multivariable differentiable calculus are needed as back- ground for differentiable geometry and its applications. The purpose of these notes is to recall some of these facts. We state the results in the general context of Banach spaces, although we are specifically concerned with the finite-dimensional setting, specifically that of Rn. Let U be an open set of Rn. A function f : U ! R is said to be a Cr map for 0 ≤ r ≤ 1 if all partial derivatives up through order r exist for all points of U and are continuous. In the extreme cases C0 means that f is continuous and C1 means that all partials of all orders exists and are continuous on m r r U. A function f : U ! R is a C map if fi := πif is C for i = 1; : : : ; m, m th where πi : R ! R is the i projection map defined by πi(x1; : : : ; xm) = xi. It is a standard result that mixed partials of degree less than or equal to r and of the same type up to interchanges of order are equal for a C r-function (sometimes called Clairaut's Theorem). We can consider a category with objects nonempty open subsets of Rn for various n and morphisms Cr-maps. This is indeed a category, since the composition of Cr maps is again a Cr map. 1 2 Normed Spaces and Bounded Linear Oper- ators At the heart of the differential calculus is the notion of a differentiable func- tion. -
A General Form of Gelfand-Kazhdan Criterion
A GENERAL FORM OF GELFAND-KAZHDAN CRITERION BINYONG SUN AND CHEN-BO ZHU Abstract. We formalize the notion of matrix coefficients for distributional vectors in a representation of a real reductive group, which consist of generalized functions on the group. As an application, we state and prove a Gelfand-Kazhdan criterion for a real reductive group in very general settings. 1. Tempered generalized functions and Casselman-Wallach representations In this section, we review some basic terminologies in representation theory, which are necessary for this article. The two main ones are tempered generalized functions and Casselman-Wallach representations. We refer the readers to [W1, W2] as general references. Let G be a real reductive Lie group, by which we mean that (a) the Lie algebra g of G is reductive; (b) G has finitely many connected components; and (c) the connected Lie subgroup of G with Lie algebra [g, g] has a finite center. We say that a (complex valued) function f on G is of moderate growth if there is a continuous group homomorphism ρ : G → GLn(C), for some n ≥ 1, such that t t |f(x)| ≤ tr(ρ(x) ρ(x)) + tr(ρ(x−1) ρ(x−1)), x ∈ G. Here “¯” stands for the complex conjugation, and “ t” the transpose, of a matrix. ∞ arXiv:0903.1409v6 [math.RT] 25 Jan 2011 A smooth function f ∈ C (G) is said to be tempered if Xf has moderate growth for all X in the universal enveloping algebra U(gC). Here and as usual, gC is the complexification of g, and U(gC) is identified with the space of all left invariant differential operators on G.