Implications for the Cretaceous-Paleocene Boundary Event in Shallow Platform Environments and Correlation to the Deep Sea
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
IODP-ICDP Kolloquium 2006 in Greifswald Ernst-Moritz-Arndt-Universität
IODP-ICDP Kolloquium 2006 in Greifswald Ernst-Moritz-Arndt-Universität 27. - 29. März 2006 IODP-ICDP-Kolloquium 2006 27. - 29. März 2006 im Rahmen des 550-jährigen Jubiläums der Ernst-Moritz-Arndt-Universität Greifswald Gemeinsames Kolloquium der DFG-Schwerpunkte IODP - Integrated Ocean Drilling Program und ICDP - International Continental Scientific Drilling Program 27. - 29. März 2006 im Berufsbildungszentrum Greifswald Institut für Geographie und Geologie Friedrich-Ludwig-Jahn-Str. 17a D-17487 Greifswald Tel. 03834 864560 Email: [email protected] IODP-ICDP-Kolloquium Greifswald 27.-29.3.2006 Umgebung Tagungszentrum 500 m . r t S - u a n e h t Friedrich-Ludwig -Jahn-Str a . bft-Tankstelle R - Wolgaster Straße r Geol. e h t l Institut a P W e ß a r Tagungszentrum t S 1: Cafeteria, Icebreaker r e Karl-Liebknecht-Ring u 2: Vortragshalle 3 a h 3: Posterraum c s r (4: Schwimmbad) a Eingang 2 W Pappelallee P Geographie 1 4 Eingang Geologie F.-L.-J.-Str. 17a Makarenkostr. Parkplätze Eingang Geologenkeller Innenstadtplan Ryck Hansering Hansering Roßmühlenstraße Hörsaal Abendvortrag Straße Friedrich-Löffler-Straße J-S-Bach- Knopfstraße Brüggstraße Fischstraße Kuhstraße Steinbeckerstraße Schuhhagen Lange Straße Markt Mensa I Rathaus Dom Mühlenstraße Straße Hansering Domstraße Wolgaster Straße Wall Goethestraße Anklamer Straße Wall Martin-Luther- Stephanistraße Bahnhofstraße 200 m IODP-ICDP-Kolloquium Greifswald 27.-29.3.2006 - Programm 1 Montag, 27. März 2006 11:00 13:00 Registrierung 13:00 14:00 Eröffnung - Oberbürgermeister der Universitäts- und Hansestadt Greifswald, Dr. Arthur König - Prodekan der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Greifswald, Prof. Dr. Reinhard Zölitz-Möller - DFG-Referent Dr. -
The Paleoecology and Biogeography of Ordovician Edrioasteroids
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2011 The Paleoecology and Biogeography of Ordovician Edrioasteroids Rene Anne Lewis University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Paleontology Commons Recommended Citation Lewis, Rene Anne, "The Paleoecology and Biogeography of Ordovician Edrioasteroids. " PhD diss., University of Tennessee, 2011. https://trace.tennessee.edu/utk_graddiss/1094 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Rene Anne Lewis entitled "The Paleoecology and Biogeography of Ordovician Edrioasteroids." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Geology. Michael L. McKinney, Major Professor We have read this dissertation and recommend its acceptance: Colin D. Sumrall, Linda C. Kah, Arthur C. Echternacht Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) THE PALEOECOLOGY AND BIOGEOGRAPHY OF ORDOVICIAN EDRIOASTEROIDS A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville René Anne Lewis August 2011 Copyright © 2011 by René Anne Lewis All rights reserved. -
Palaeogene Marine Stratigraphy in China
LETHAIA REVIEW Palaeogene marine stratigraphy in China XIAOQIAO WAN, TIAN JIANG, YIYI ZHANG, DANGPENG XI AND GUOBIAO LI Wan, X., Jiang, T., Zhang, Y., Xi, D. & Li G. 2014: Palaeogene marine stratigraphy in China. Lethaia, Vol. 47, pp. 297–308. Palaeogene deposits are widespread in China and are potential sequences for locating stage boundaries. Most strata are non-marine origin, but marine sediments are well exposed in Tibet, the Tarim Basin of Xinjiang, and the continental margin of East China Sea. Among them, the Tibetan Tethys can be recognized as a dominant marine area, including the Indian-margin strata of the northern Tethys Himalaya and Asian- margin strata of the Gangdese forearc basin. Continuous sequences are preserved in the Gamba–Tingri Basin of the north margin of the Indian Plate, where the Palaeogene sequence is divided into the Jidula, Zongpu, Zhepure and Zongpubei formations. Here, the marine sequence ranges from Danian to middle Priabonian (66–35 ma), and the stage boundaries are identified mostly by larger foraminiferal assemblages. The Paleocene/Eocene boundary is found between the Zongpu and Zhepure forma- tions. The uppermost marine beds are from the top of the Zongpubei Formation (~35 ma), marking the end of Indian and Asian collision. In addition, the marine beds crop out along both sides of the Yarlong Zangbo Suture, where they show a deeper marine facies, yielding rich radiolarian fossils of Paleocene and Eocene. The Tarim Basin of Xinjiang is another important area of marine deposition. Here, marine Palae- ogene strata are well exposed in the Southwest Tarim Depression and Kuqa Depres- sion. -
Asteroid Impact, Not Volcanism, Caused the End-Cretaceous Dinosaur Extinction
Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction Alfio Alessandro Chiarenzaa,b,1,2, Alexander Farnsworthc,1, Philip D. Mannionb, Daniel J. Luntc, Paul J. Valdesc, Joanna V. Morgana, and Peter A. Allisona aDepartment of Earth Science and Engineering, Imperial College London, South Kensington, SW7 2AZ London, United Kingdom; bDepartment of Earth Sciences, University College London, WC1E 6BT London, United Kingdom; and cSchool of Geographical Sciences, University of Bristol, BS8 1TH Bristol, United Kingdom Edited by Nils Chr. Stenseth, University of Oslo, Oslo, Norway, and approved May 21, 2020 (received for review April 1, 2020) The Cretaceous/Paleogene mass extinction, 66 Ma, included the (17). However, the timing and size of each eruptive event are demise of non-avian dinosaurs. Intense debate has focused on the highly contentious in relation to the mass extinction event (8–10). relative roles of Deccan volcanism and the Chicxulub asteroid im- An asteroid, ∼10 km in diameter, impacted at Chicxulub, in pact as kill mechanisms for this event. Here, we combine fossil- the present-day Gulf of Mexico, 66 Ma (4, 18, 19), leaving a crater occurrence data with paleoclimate and habitat suitability models ∼180 to 200 km in diameter (Fig. 1A). This impactor struck car- to evaluate dinosaur habitability in the wake of various asteroid bonate and sulfate-rich sediments, leading to the ejection and impact and Deccan volcanism scenarios. Asteroid impact models global dispersal of large quantities of dust, ash, sulfur, and other generate a prolonged cold winter that suppresses potential global aerosols into the atmosphere (4, 18–20). These atmospheric dinosaur habitats. -
First Report of Swimming Trace Fossils of Fish from the Upper Permian and Lower Triassic of the Dolomites (Italy)
Annales Societatis Geologorum Poloniae (2018), vol. 88: ...–... doi: https://doi.org/10.14241/asgp.2018.013 FIRST REPORT OF SWIMMING TRACE FOSSILS OF FISH FROM THE UPPER PERMIAN AND LOWER TRIASSIC OF THE DOLOMITES (ITALY) Ausonio RONCHI1, Giuseppe SANTI1, Lorenzo MARCHETTI 2, Massimo BERNARDI 3 & Piero GIANOLLA4 1 Dipartimento di Scienze della Terra e dell’Ambiente, University of Pavia, Italy; e-mails: [email protected]; [email protected] 2 Urweltmuseum GEOSKOP/Burg Lichtenberg (Pfalz), Thallichtenberg, Germany; e-mail: [email protected] 3 MUSE – Museo delle Scienze, Trento, Italy; e-mail: [email protected] 4 Dipartimento di Fisica e Scienze della Terra, University of Ferrara, Italy; e-mail: [email protected] Ronchi, A., Santi, G., Marchetti, L, Bernardi, M. & Gianolla, R., 2018. First report of swimming trace fossils of fish from the Upper Permian and Lower Triassic of the Dolomites (Italy). Annales Societatis Geologorum Poloniae, 88: xxx-xxx Abstract: In the Upper Permian continental to marginal-marine succession of the Southern Alps (Dolomites, north Italy), the ichnological record consists of diverse vertebrate footprints and non-diverse invertebrate trace fossils, mainly occurring in the “Bletterbach ichnoassociation” of the Val Gardena Sandstone Formation. After the Perm- ian-Triassic Boundary event, vertebrate ichnoassociations are scarce until the Middle Triassic (Anisian), whereas the uppermost Permian–Lower Triassic Werfen Formation preserves a rich invertebrate trace-fossil record. To date, fish body and trace fossils (Undichna) are very rare in the pre- and post-extinction deposits of the Dolomites; only Undichna gosiutensis Gibert, 2001 was identified in the “Voltago Conglomerate” (Middle Anisian), whereas some unidentified fossil fish casts were found in the Permian Val Gardena Sandstone and some fish remains in the overlying Werfen Formation. -
This Is an Open Access Document Downloaded from ORCA, Cardiff University's Institutional Repository
This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository: http://orca.cf.ac.uk/93788/ This is the author’s version of a work that was submitted to / accepted for publication. Citation for final published version: Wright, V. Paul and Cherns, Lesley 2016. How far did feedback between biodiversity and early diagenesis affect the nature of early Palaeozoic sea floors? Palaeontology 59 (6) , pp. 753-765. 10.1111/pala.12258 file Publishers page: https://doi.org/10.1111/pala.12258 <https://doi.org/10.1111/pala.12258> Please note: Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper. This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders. SYMPOSIUM How far did feedback between biodiversity and early diagenesis affect the nature of early Palaeozoic sea floors? By V. PAUL WRIGHT1 and LESLEY CHERNS2 1 Natural Sciences, National Museum of Wales, Cathays Park, Cardiff, CF10 3NP, UK; e- mail [email protected] 2 School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK; e-mail [email protected] Abstract: Latest Precambrian to Early Palaeozoic biosphere evolution triggered changes in early diagenesis and carbonate precipitation which fed back to biodiversity through colonisation of hard substrates. -
GUIDEBOOK the Mid-Triassic Muschelkalk in Southern Poland: Shallow-Marine Carbonate Sedimentation in a Tectonically Active Basin
31st IAS Meeting of Sedimentology Kraków 2015 GUIDEBOOK The Mid-Triassic Muschelkalk in southern Poland: shallow-marine carbonate sedimentation in a tectonically active basin Guide to field trip B5 • 26–27 June 2015 Joachim Szulc, Michał Matysik, Hans Hagdorn 31st IAS Meeting of Sedimentology INTERNATIONAL ASSOCIATION Kraków, Poland • June 2015 OF SEDIMENTOLOGISTS 225 Guide to field trip B5 (26–27 June 2015) The Mid-Triassic Muschelkalk in southern Poland: shallow-marine carbonate sedimentation in a tectonically active basin Joachim Szulc1, Michał Matysik2, Hans Hagdorn3 1Institute of Geological Sciences, Jagiellonian University, Kraków, Poland ([email protected]) 2Natural History Museum of Denmark, University of Copenhagen, Denmark ([email protected]) 3Muschelkalk Musem, Ingelfingen, Germany (encrinus@hagdorn-ingelfingen) Route (Fig. 1): From Kraków we take motorway (Żyglin quarry, stop B5.3). From Żyglin we drive by A4 west to Chrzanów; we leave it for road 781 to Płaza road 908 to Tarnowskie Góry then to NW by road 11 to (Kans-Pol quarry, stop B5.1). From Płaza we return to Tworog. From Tworog west by road 907 to Toszek and A4, continue west to Mysłowice and leave for road A1 then west by road 94 to Strzelce Opolskie. From Strzelce to Siewierz (GZD quarry, stop B5.2). From Siewierz Opolskie we take road 409 to Kalinów and then turn we drive A1 south to Podskale cross where we leave south onto a local road to Góra Sw. Anny (accomoda- for S1 westbound to Pyrzowice and then by road 78 to tion). From Góra św. Anny we drive north by a local road Niezdara. -
The Geologic Time Scale Is the Eon
Exploring Geologic Time Poster Illustrated Teacher's Guide #35-1145 Paper #35-1146 Laminated Background Geologic Time Scale Basics The history of the Earth covers a vast expanse of time, so scientists divide it into smaller sections that are associ- ated with particular events that have occurred in the past.The approximate time range of each time span is shown on the poster.The largest time span of the geologic time scale is the eon. It is an indefinitely long period of time that contains at least two eras. Geologic time is divided into two eons.The more ancient eon is called the Precambrian, and the more recent is the Phanerozoic. Each eon is subdivided into smaller spans called eras.The Precambrian eon is divided from most ancient into the Hadean era, Archean era, and Proterozoic era. See Figure 1. Precambrian Eon Proterozoic Era 2500 - 550 million years ago Archaean Era 3800 - 2500 million years ago Hadean Era 4600 - 3800 million years ago Figure 1. Eras of the Precambrian Eon Single-celled and simple multicelled organisms first developed during the Precambrian eon. There are many fos- sils from this time because the sea-dwelling creatures were trapped in sediments and preserved. The Phanerozoic eon is subdivided into three eras – the Paleozoic era, Mesozoic era, and Cenozoic era. An era is often divided into several smaller time spans called periods. For example, the Paleozoic era is divided into the Cambrian, Ordovician, Silurian, Devonian, Carboniferous,and Permian periods. Paleozoic Era Permian Period 300 - 250 million years ago Carboniferous Period 350 - 300 million years ago Devonian Period 400 - 350 million years ago Silurian Period 450 - 400 million years ago Ordovician Period 500 - 450 million years ago Cambrian Period 550 - 500 million years ago Figure 2. -
Cretaceous - Tertiary Mass Extinction Meteoritic Versus Volcanic Causes
GENERAL I ARTICLE Cretaceous - Tertiary Mass Extinction Meteoritic Versus Volcanic Causes P V Sukumaran The bolide impact theory for mass extinctions at the Cretaceous-tertiary (K-T) boundary was a revolutionary concept. This theory was contested by short duration global volcanism as a possible alternative cause for the K-T extinction. Though there is a converging evidence for an extra-terrestrial impact coinciding with the P V Sukumaran took his terminal Cretaceous, the causative link between the M Tech degree in impact and the K-T mass extinction is debatable. Thus, Applied Geology from the while the impact theory is re-emerging, available evidence University of Saugar and has been with the is still insufficient to rule out either of the two hypotheses. Geological Survey of India since 1974. His interests Introduction include geochemistry, petrology and palae oceanography. He is It is now widely believed that life on earth began very early in presently posted to the its geological history, probably about 4000 My (million years) Marine Wing of the ago (Mojzsis and others, 1996). Since then it underwent Department and has participated in many several evolutionary branchings to the complex diversity as scientific cruises both as we see today. Nevertheless, it was not a smooth voyage for life Chief Scientist and as a all along, the evolution was punctuated by geologically participating scientist. ins tan taneous events of mass mortality. New species emerged at the expense of their predecessors following each extinction event and life went on evolving ever more vibrantly. In the geologic record of rock strata, such mass extinction events are identifiable based on sudden absence and reduction in diversity of fossil assemblage across stratigraphic boundaries. -
Uncorking the Bottle: What Triggered the Paleocene/Eocene Thermal Maximum Methane Release? Miriame
PALEOCEANOGRAPHY, VOL. 16, NO. 6, PAGES 549-562, DECEMBER 2001 Uncorking the bottle: What triggered the Paleocene/Eocene thermal maximum methane release? MiriamE. Katz,• BenjaminS. Cramer,Gregory S. Mountain,2 Samuel Katz, 3 and KennethG. Miller,1,2 Abstract. The Paleocene/Eocenethermal maximum (PETM) was a time of rapid global warming in both marine and continentalrealms that has been attributed to a massivemethane (CH4) releasefrom marine gas hydrate reservoirs. Previously proposedmechanisms for thismethane release rely on a changein deepwatersource region(s) to increasewater temperatures rapidly enoughto trigger the massivethermal dissociationof gas hydratereservoirs beneath the seafloor.To establish constraintson thermaldissociation, we modelheat flow throughthe sedimentcolumn and showthe effectof the temperature changeon the gashydrate stability zone throughtime. In addition,we provideseismic evidence tied to boreholedata for methanerelease along portions of the U.S. continentalslope; the releasesites are proximalto a buriedMesozoic reef front. Our modelresults, release site locations, published isotopic records, and oceancirculation models neither confirm nor refute thermaldissociation as the triggerfor the PETM methanerelease. In the absenceof definitiveevidence to confirmthermal dissociation,we investigatean altemativehypothesis in which continentalslope failure resulted in a catastrophicmethane release.Seismic and isotopic evidence indicates that Antarctic source deepwater circulation and seafloor erosion caused slope retreatalong -
Clay Minerals at the Paleocene–Eocene Thermal Maximum: Interpretations, Limits, and Perspectives
minerals Review Clay Minerals at the Paleocene–Eocene Thermal Maximum: Interpretations, Limits, and Perspectives Fabio Tateo Istituto di Geoscienze e Georisorse, Consiglio Nazionale delle Ricerche (IGG-CNR) Padova, c/o Dipartimento di Geoscienze, Università di Padova, Via Gradenigo 6, I-35131 Padova, Italy; [email protected] Received: 20 October 2020; Accepted: 26 November 2020; Published: 30 November 2020 Abstract: The Paleocene–Eocene Thermal Maximum (PETM) was an “extreme” episode of environmental stress that affected the Earth in the past, and it has numerous affinities concerning the rapid increase in the greenhouse effect. It has left several biological, compositional, and sedimentary facies footprints in sedimentary records. Clay minerals are frequently used to decipher environmental effects because they represent their source areas, essentially in terms of climatic conditions and of transport mechanisms (a more or less fast travel, from the bedrocks to the final site of recovery). Clay mineral variations at the PETM have been studied by several authors in terms of climatic and provenance indicators, but also as tracers of more complicated interplay among different factors requiring integrated interpretation (facies sorting, marine circulation, wind transport, early diagenesis, etc.). Clay minerals were also believed to play a role in the recovery of pre-episode climatic conditions after the PETM exordium, by becoming a sink of atmospheric CO2 that is considered a necessary step to switch off the greenhouse hyperthermal effect. This review aims to consider the use of clay minerals made by different authors to study the effects of the PETM and their possible role as effective (simple) proxy tools for environmental reconstructions. -
Redalyc.Palynology of Lower Palaeogene (Thanetian-Ypresian
Geologica Acta: an international earth science journal ISSN: 1695-6133 [email protected] Universitat de Barcelona España TRIPATHI, S.K.M.; KUMAR, M.; SRIVASTAVA, D. Palynology of Lower Palaeogene (Thanetian-Ypresian) coastal deposits from the Barmer Basin (Akli Formation, Western Rajasthan, India): Palaeoenvironmental and palaeoclimatic implications Geologica Acta: an international earth science journal, vol. 7, núm. 1-2, marzo-junio, 2009, pp. 147- 160 Universitat de Barcelona Barcelona, España Available in: http://www.redalyc.org/articulo.oa?id=50513109009 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Geologica Acta, Vol.7, Nos 1-2, March-June 2009, 147-160 DOI: 10.1344/105.000000275 Available online at www.geologica-acta.com Palynology of Lower Palaeogene (Thanetian-Ypresian) coastal deposits from the Barmer Basin (Akli Formation, Western Rajasthan, India): Palaeoenvironmental and palaeoclimatic implications S.K.M. TRIPATHI M. KUMAR and D. SRIVASTAVA Birbal Sahni Institute of Palaeobotany 53, University Road, Lucknow, 226007, India. Tripathi E-mail: [email protected] Kumar E-mail: [email protected] Srivastava E-mail: [email protected] ABSTRACT The 32-m thick sedimentary succession of the Paleocene-Eocene Akli Formation (Barmer basin, Rajasthan, India), which is exposed in an open-cast lignite mine, interbed several lignite seams that alternate with fossilif- erous carbonaceous clays, green clays and widespread siderite bands and chert nodules. The palynofloral assemblages consist of spore, pollen and marine dinoflagellate cysts that indicate a Thanetian to Ypresian age.