De Novo Assembly of Schizothorax Waltoni Transcriptome to Identify Immune-Related Genes Cite This: RSC Adv.,2018,8, 13945 and Microsatellite Markers†

Total Page:16

File Type:pdf, Size:1020Kb

De Novo Assembly of Schizothorax Waltoni Transcriptome to Identify Immune-Related Genes Cite This: RSC Adv.,2018,8, 13945 and Microsatellite Markers† RSC Advances View Article Online PAPER View Journal | View Issue De novo assembly of Schizothorax waltoni transcriptome to identify immune-related genes Cite this: RSC Adv.,2018,8, 13945 and microsatellite markers† Hua Ye,ab Zhengshi Zhang,ab Chaowei Zhou,ab Chengke Zhu,ab Yuejing Yang,ab Mengbin Xiang,ab Xinghua Zhou,ab Jian Zhou*c and Hui Luo *ab Schizothorax waltoni (S. waltoni) is one kind of the subfamily Schizothoracinae and an indigenous economic tetraploid fish to Tibet in China. It is rated as a vulnerable species in the Red List of China's Vertebrates, owing to overexploitation and biological invasion. S. waltoni plays an important role in ecology and local fishery economy, but little information is known about genetic diversity, local adaptation, immune system and so on. Functional gene identification and molecular marker development are the first and essential step for the following biological function and genetics studies. For this purpose, the transcriptome from pooled tissues of three adult S. waltoni was sequenced and Creative Commons Attribution-NonCommercial 3.0 Unported Licence. analyzed. Using paired-end reads from the Illumina Hiseq4000 platform, 83 103 transcripts with an N50 length of 2337 bp were assembled, which could be further clustered into 66 975 unigenes with an N50 length of 2087 bp. The majority of the unigenes (58 934, 87.99%) were successfully annotated by 7 public databases, and 15 KEGG pathways of immune-related genes were identified for the following functional research. Furthermore, 19 497 putative simple sequence repeats (SSRs) of 1–6 bp unit length were detected from 14 690 unigenes (21.93%) with an average distribution density of 1 : 3.28 kb. We identified 3590 unigenes (5.36%) containing more than one SSR, providing abundant potential Received 21st January 2018 polymorphic markers in functional genes. This is the first reported high-throughput transcriptome Accepted 9th April 2018 analysis of S. waltoni, and it would provide valuable genetic resources for the functional genes involved This article is licensed under a DOI: 10.1039/c8ra00619a in multiple biological processes, including the immune system, genetic conservation, and molecular rsc.li/rsc-advances marker-assisted breeding of S. waltoni. Open Access Article. Published on 16 April 2018. Downloaded 9/28/2021 1:03:04 AM. Introduction shes on the QTP.4 There are 15 genera and over 100 species belonging to schizothoracine in the world, and about 76 species The Qinghai-Tibetan Plateau (QTP), 2.5 million km2 with an and subspecies belong to 11 genera on the QTP and the adjacent average altitude reaching 4000 m, is the highest and the largest, areas in China.5,6 The schizothoracine shes are characterized and also one of the youngest plateaus in the world. Known as by slow growth rates, late maturity, low fecundity, long-lived, the World's Roof, QTP has become a global hotspot for research and restricted distributions.5 Those characteristics of the on biodiversity, phylogeny, adaptation, and evolution.1–3 schizothoracine shes make them more affected by habitat – Accompanied by the upli of QTP, the environment had modication, intense exploitation, and biological invasions.7 9 undergone tremendous changes. Extreme environment, such as Therefore, the schizothoracine shes can be used as the hypoxia, chilliness, high radiation, has almost certainly affected paragon models to study high altitude adaptation, historical the component fauna of the plateau and the adjacent areas.3 and contemporary environmental changes, and evolutionary The schizothoracine shes are well adapted to the harsh biology.10,11 conditions, and became the predominant group of endemic Schizothorax waltoni, an indigenous economic tetraploid sh to Tibet in China, is one kind of the subfamily Schizothoracinae and only distributed in the middle reaches of the Yarlung 12 aCollege of Animal Science, Southwest University, Chongqing 402460, China. E-mail: Tsangpo River. It is rated as a vulnerable species in the Red List [email protected] of China's Vertebrates.13 Owing to overexploitation and biological bKey Laboratory of Freshwater Fish Reproduction and Development (Ministry of invasion, the population and catched individual size of S. wal- Education), Key Laboratory of Aquatic Science of Chongqing, 400175, China toni have been declining rapidly in recent years.14 Although S. cFisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, waltoni plays an important role in ecology and local shery 611731, China. E-mail: [email protected] † Electronic supplementary information (ESI) available. See DOI: economy, little information is known about genetic diversity, 10.1039/c8ra00619a local adaptation, immune system and so on. Existing related This journal is © The Royal Society of Chemistry 2018 RSC Adv.,2018,8, 13945–13953 | 13945 View Article Online RSC Advances Paper studies of S. waltoni were mainly focused on population unigenes with an average length of 956 bp (ranging from 224 to recording, morphology, phylogeny, mitogenome, and several 29 395 bp) (Table 1). The N50 lengths of transcripts and unig- fundamental aspects of biology.5,9,12,15–17 In order to protect enes were 2337 and 2087 bp, respectively, which is similar to germplasm resources of S. waltoni, the research on articial that of Gymnodiptychus dybowskii (N50 of 2407 bp) and Schizo- culture and breeding has been carried out in Tibet. However, thorax pseudaksaiensis (N50 of 2283 bp),24 and Gymnodiptychus the shery industry is threatened by the multiple infectious pachycheilus (N50 of 2322 bp),10 and longer than that of Gym- pathogens, since S. waltoni is particularly vulnerable to patho- nocypris przewalskii (N50 of 1495 bp),25 G. przewalskii (N50 of genic microorganism and environmental pollutants under 1836 bp),26 shorter than that of Schizothorax prenanti (N50 of articial culture conditions. Prerequisite condition to preven- 2539 bp).27 Irrespective of difference between organisms, several tion and treatment of diseases is understanding the functions factors can affect the N50 length of transcripts and unigenes, of genes and pathways involved in the immune system. Mean- including sequencing technique, read number, assembly so- while, microsatellite markers, the versatile and popular genetic ware, and parameters. Among these unigenes, 42 890 (51.6%) marker with applications in conservation biology, population unigenes were no more than 500 bp in length, 28 037 (33.7%) genetics, and evolutionary biology, can be used for the studies unigenes exceeded 1000 bp and 14 968 (18.0%) unigenes were of marker-assisted selection in the improvement of economic longer than 2000 bp (Fig. 1). These proportions were also traits.18,19 The large-scale development of microsatellite markers similar to that of S. prenanti.27 The detailed frequency distri- is necessary to carry out the research of marker-assisted selec- bution of the unigenes length is shown in Fig. 1. tion, conservation biology, and population genetics. However, functional gene identication and marker development of S. waltoni still remain poorly explored.14,20 Functional annotation With the advent and development of next generation Functional annotation of S. waltoni transcriptome was carried sequencing (NGS) technology, it is a cost- and time-efficiency out by searching against several public nucleotide and protein Creative Commons Attribution-NonCommercial 3.0 Unported Licence. method of transcriptome sequences to identify genes and databases. As a result, 57 301 (85.6%), 35 510 (53.0%), and develop genetic markers.21–23 In this study, we used the Illumina 28 877 (43.1%) unigenes showed signicant similarities (E- À Hiseq 4000 platform to analyze the pooled tissues tran- value < 10 5) to the NCBI nucleotide (NT), protein (NR), and scriptome of S. waltoni. The major objective of this study was to Swiss-prot databases, respectively (Table 2). A total of 58 934 obtain a comprehensive S. waltoni transcriptome information (88.0%) unigenes showed homologous matches in at least one from the multiple tissues, and provide an abundant resource for database (Table 2). The annotation ratio of assembled unigenes the following functional studies. Genes involved in immune higher than previously reported in other sh, such as Hypo- system were annotated and emphasized since the general rthodus septemfasciatus (41.5%),28 G. przewalskii (77.8%),25 Cyp- interest of immune response of sh species, including S. wal- rinus carpio (81.1%)29 and Ctenopharyngodon idella (82.8%),30 This article is licensed under a toni. A large number of microsatellite markers were also slightly lower than that of S. prenanti (94.4%).27 The high detected and analyzed for the conservation genetics studies and percentage of annotation ratio might be due to many long marker-assisted selection breeding in S. waltoni. sequences obtained from transcriptome data and higher Open Access Article. Published on 16 April 2018. Downloaded 9/28/2021 1:03:04 AM. average length of unigenes, as well as the abundant sequence Results and discussion databases.31,32 The E-value distribution of unigenes which could be correctly annotated in the NR database showed that 28.1% of de novo Transcriptome sequencing and assembly the unigenes had perfect matches, 30.3% of the unigenes Aer sequencing using Illumina Hiseq 4000 platform, three showed signicant homology to the previously stored À cDNA libraries of S. waltoni generated 155 932 320 raw reads sequences (less than 1 Â 10 45), and 41.6% of the unigenes À À with a read length of 150 bp. Aer read quality evaluation, low showed homology ranging from 1 Â 10 45 to 1 Â 10 5 (Fig. 2A). quality trimming and length ltering, 147 852 684 clean reads The similarity distribution of the top Blast hits for each were le. As a result for the trinity assembly, we obtained 83 103 sequence ranged from 17–100%. Among the similarity distri- transcripts ranging from 224 to 29 395 bp with average length of bution, 16.5% of the unigenes had the similarity of 60–80%, 1139 bp (Table 1).
Recommended publications
  • Phylogeography of Schizopygopsis Stoliczkai (Cyprinidae) in Northwest Tibetan Plateau Area
    Received: 11 April 2017 | Revised: 14 August 2017 | Accepted: 17 August 2017 DOI: 10.1002/ece3.3452 ORIGINAL RESEARCH Phylogeography of Schizopygopsis stoliczkai (Cyprinidae) in Northwest Tibetan Plateau area Kunyuan Wanghe1,2,3,4 | Yongtao Tang1,2,3,4 | Fei Tian1,2,4 | Chenguang Feng1,2,3,4 | Renyi Zhang5 | Guogang Li6 | Sijia Liu1,2,3,4 | Kai Zhao1,2,4 1Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Abstract Plateau Biology, Chinese Academy of Schizopygopsis stoliczkai (Cyprinidae, subfamily Schizothoracinae) is one of the major Sciences, Xining, Qinghai, China freshwater fishes endemic to the northwestern margin of the Tibetan Plateau. In the 2Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute current study, we used mitochondrial DNA markers cytochrome b (Cyt b) and 16S of Plateau Biology, Chinese Academy of rRNA (16S), as well as the nuclear marker, the second intron of the nuclear beta- actin Sciences, Xining, Qinghai, China gene (Act2), to uncover the phylogeography of S. stoliczkai. In total, we obtained 74 3Qinghai Key Laboratory of Animal Ecological Genomics, Xining, Qinghai, China haplotypes from 403 mitochondrial concatenated sequences. The mtDNA markers 4University of Chinese Academy of Sciences, depict the phylogenetic structures of S. stoliczkai, which consist of clade North and Beijing, China clade South. The split time of the two clades is dated back to 4.27 Mya (95% 5Guizhou Normal University, Guiyang, China HPD = 1.96–8.20 Mya). The estimated split time is earlier than the beginning of the 6Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, ice age of Pleistocene (2.60 Mya), suggesting that the northwestern area of the Tibetan Mengla, China Plateau probably contain at least two glacial refugia for S.
    [Show full text]
  • Resolving Cypriniformes Relationships Using an Anchored Enrichment Approach Carla C
    Stout et al. BMC Evolutionary Biology (2016) 16:244 DOI 10.1186/s12862-016-0819-5 RESEARCH ARTICLE Open Access Resolving Cypriniformes relationships using an anchored enrichment approach Carla C. Stout1*†, Milton Tan1†, Alan R. Lemmon2, Emily Moriarty Lemmon3 and Jonathan W. Armbruster1 Abstract Background: Cypriniformes (minnows, carps, loaches, and suckers) is the largest group of freshwater fishes in the world (~4300 described species). Despite much attention, previous attempts to elucidate relationships using molecular and morphological characters have been incongruent. In this study we present the first phylogenomic analysis using anchored hybrid enrichment for 172 taxa to represent the order (plus three out-group taxa), which is the largest dataset for the order to date (219 loci, 315,288 bp, average locus length of 1011 bp). Results: Concatenation analysis establishes a robust tree with 97 % of nodes at 100 % bootstrap support. Species tree analysis was highly congruent with the concatenation analysis with only two major differences: monophyly of Cobitoidei and placement of Danionidae. Conclusions: Most major clades obtained in prior molecular studies were validated as monophyletic, and we provide robust resolution for the relationships among these clades for the first time. These relationships can be used as a framework for addressing a variety of evolutionary questions (e.g. phylogeography, polyploidization, diversification, trait evolution, comparative genomics) for which Cypriniformes is ideally suited. Keywords: Fish, High-throughput
    [Show full text]
  • Teleostei: Cypriniformes: Cyprinidae) Inferred from Complete Mitochondrial Genomes
    Biochemical Systematics and Ecology 64 (2016) 6e13 Contents lists available at ScienceDirect Biochemical Systematics and Ecology journal homepage: www.elsevier.com/locate/biochemsyseco Molecular phylogeny of the subfamily Schizothoracinae (Teleostei: Cypriniformes: Cyprinidae) inferred from complete mitochondrial genomes * Jie Zhang a, b, Zhuo Chen a, Chuanjiang Zhou b, Xianghui Kong b, a College of Life Science, Henan Normal University, Xinxiang 453007, PR China b College of Fisheries, Henan Normal University, Xinxiang 453007, PR China article info abstract Article history: The schizothoracine fishes, members of the Teleost order Cypriniformes, are one of the Received 16 June 2015 most diverse group of cyprinids in the QinghaieTibetan Plateau and surrounding regions. Received in revised form 19 October 2015 However, taxonomy and phylogeny of these species remain unclear. In this study, we Accepted 14 November 2015 determined the complete mitochondrial genome of Schizopygopsis malacanthus. We also Available online xxx used the newly obtained sequence, together with 31 published schizothoracine mito- chondrial genomes that represent eight schizothoracine genera and six outgroup taxa to Keywords: reconstruct the phylogenetic relationships of the subfamily Schizothoracinae by different Mitochondrial genome Phylogeny partitioned maximum likelihood and partitioned Bayesian inference at nucleotide and fi Schizothoracinae amino acid levels. The schizothoracine shes sampled form a strongly supported mono- Schizopygopsis malacanthus phyletic group that is the sister taxon to Barbus barbus. A sister group relationship between the primitive schizothoracine group and the specialized schizothoracine group þ the highly specialized schizothoracine group was supported. Moreover, members of the specialized schizothoracine group and the genera Schizothorax, Schizopygopsis, and Gym- nocypris were found to be paraphyletic. © 2015 Published by Elsevier Ltd.
    [Show full text]
  • BMC Evolutionary Biology Biomed Central
    BMC Evolutionary Biology BioMed Central Research article Open Access Evolution of miniaturization and the phylogenetic position of Paedocypris, comprising the world's smallest vertebrate Lukas Rüber*1, Maurice Kottelat2, Heok Hui Tan3, Peter KL Ng3 and Ralf Britz1 Address: 1Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK, 2Route de la Baroche 12, Case postale 57, CH-2952 Cornol, Switzerland (permanent address) and Raffles Museum of Biodiversity Research, National University of Singapore, Kent Ridge, Singapore 119260 and 3Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 119260 Email: Lukas Rüber* - [email protected]; Maurice Kottelat - [email protected]; Heok Hui Tan - [email protected]; Peter KL Ng - [email protected]; Ralf Britz - [email protected] * Corresponding author Published: 13 March 2007 Received: 23 October 2006 Accepted: 13 March 2007 BMC Evolutionary Biology 2007, 7:38 doi:10.1186/1471-2148-7-38 This article is available from: http://www.biomedcentral.com/1471-2148/7/38 © 2007 Rüber et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Paedocypris, a highly developmentally truncated fish from peat swamp forests in Southeast Asia, comprises the world's smallest vertebrate. Although clearly a cyprinid fish, a hypothesis about its phylogenetic position among the subfamilies of this largest teleost family, with over 2400 species, does not exist.
    [Show full text]
  • Population Genetic Structure and Its Implication in the Conservation of Schizopygopsis Pylzovi in Yellow River As Inferred from Mitochondrial DNA Sequence Analysis
    Population genetic structure and its implication in the conservation of Schizopygopsis pylzovi in Yellow River as inferred from mitochondrial DNA sequence analysis Y.N. Ma1, Y.Y. Du2, Y.P. Zhang2 and T. Wang1,2 1Department of Chemistry and Life Sciences, Gansu Normal University for Nationalities, Hezuo, Gansu, China 2Gansu Key Laboratory of Cold Water Fishes Germplasm Resources and Genetics Breeding, Gansu Fishery Research Institute, Lanzhou, Gansu, China Corresponding author: T. Wang E-mail: [email protected] Genet. Mol. Res. 15 (3): gmr.15038480 Received January 25, 2016 Accepted April 15, 2015 Published August 29, 2016 DOI http://dx.doi.org/10.4238/gmr.15038480 Copyright © 2016 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution ShareAlike (CC BY-SA) 4.0 License. ABSTRACT. To assess the genetic diversity, structure, and population dynamics of Schizopygopsis pylzovi, we examined the changes in mitochondrial DNA sequences (the mtDNA control region and the Cyt b gene; 1835 bp) in 304 individuals from nine populations. The samples were segregated into 112 haplotypes, with high haplotype diversity and low nucleotide diversity. The haplotype diversity was highest in the Minhe (HS) range of Huangshui River and lowest in the Weiyuan (WY) range of Weihe River. Analysis of molecular variance showed that 69.64% of the total genetic variance was contributed by within-the-group variation and 30.36% was contributed by among-the-group variation. Pairwise FST revealed significant divergence between the populations. The FST Genetics and Molecular Research 15 (3): gmr.15038480 Y.N. Ma et al.
    [Show full text]
  • Downloaded from Transcriptome Shotgun Assembly (TSA) Database on 29 November 2020 (Ftp://Ftp.Ddbj.Nig.Ac.Jp/Ddbj Database/Tsa/, Table S3)
    viruses Article Discovery and Characterization of Actively Replicating DNA and Retro-Transcribing Viruses in Lower Vertebrate Hosts Based on RNA Sequencing Xin-Xin Chen, Wei-Chen Wu and Mang Shi * School of Medicine, Sun Yat-sen University, Shenzhen 518107, China; [email protected] (X.-X.C.); [email protected] (W.-C.W.) * Correspondence: [email protected] Abstract: In a previous study, a metatranscriptomics survey of RNA viruses in several important lower vertebrate host groups revealed huge viral diversity, transforming the understanding of the evolution of vertebrate-associated RNA virus groups. However, the diversity of the DNA and retro-transcribing viruses in these host groups was left uncharacterized. Given that RNA sequencing is capable of revealing viruses undergoing active transcription and replication, we collected previously generated datasets associated with lower vertebrate hosts, and searched them for DNA and retro-transcribing viruses. Our results revealed the complete genome, or “core gene sets”, of 18 vertebrate-associated DNA and retro-transcribing viruses in cartilaginous fishes, ray- finned fishes, and amphibians, many of which had high abundance levels, and some of which showed systemic infections in multiple organs, suggesting active transcription or acute infection within the host. Furthermore, these new findings recharacterized the evolutionary history in the families Hepadnaviridae, Papillomaviridae, and Alloherpesviridae, confirming long-term virus–host codivergence relationships for these virus groups.
    [Show full text]
  • The Nu River: a Habitat in Danger Krystal Chen, International Rivers
    The Nu River: A Habitat in Danger Krystal Chen, International Rivers The Nu River is an important freshwater ecological system in Nu River (NFGRPA) was established in 2010, and approved by southwestern China. It boasts a wealth of fish species, more than 40 % the Ministry of Agriculture. The protected area covers 316 km of of which are endemic to the region. The region is worth protecting the Nu’s main stream and tributaries in the Nu Prefecture, where for its immense value to biodiversity research. However, the number seven species have been chosen as key protected species, including of fish species in the Nu has seen a sharp decrease in recent years, Schizothorax nukiangensis, Schizothorax gongshanensis, Tor hemispinus, and big fish are found and caught much less often. Overfishing and Placocheilus cryptonemus, Anguilla nebulosi, Akrokolioplax bicornis, and ecological degradation have been cited as possible causes. With five Pareuchiloglanis gongshanensis. Fifteen other species endemic to the Nu cascading hydropower stations planned in the upper and middle are also protected. reaches of the Nu, fish species in the Nu River now face alarming ZHENG Haitao conducted a preliminary analysis on the Index of threats. Biological Integrity (IBI) of the fish species in the upper and middle Fish biodiversity in the Nu River Region reaches of the Nu in 2004. The result showed that the integrity of fish species in the area is in good condition with low human intervention. According to CHEN Xiaoyong’s Fish Directory in Yunnan1 and Constraints mainly come from natural elements, such as habitat type other recent research2 conducted by his team, 62 species from 12 and food availability.
    [Show full text]
  • Guide to Monogenoidea of Freshwater Fish of Palaeartic and Amur Regions
    GUIDE TO MONOGENOIDEA OF FRESHWATER FISH OF PALAEARTIC AND AMUR REGIONS O.N. PUGACHEV, P.I. GERASEV, A.V. GUSSEV, R. ERGENS, I. KHOTENOWSKY Scientific Editors P. GALLI O.N. PUGACHEV D. C. KRITSKY LEDIZIONI-LEDIPUBLISHING © Copyright 2009 Edizioni Ledizioni LediPublishing Via Alamanni 11 Milano http://www.ledipublishing.com e-mail: [email protected] First printed: January 2010 Cover by Ledizioni-Ledipublishing ISBN 978-88-95994-06-2 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, transmitted or utilized in any form or by any means, electonical, mechanical, photocopying or oth- erwise, without permission in writing from the publisher. Front cover: /Dactylogyrus extensus,/ three dimensional image by G. Strona and P. Galli. 3 Introduction; 6 Class Monogenoidea A.V. Gussev; 8 Subclass Polyonchoinea; 15 Order Dactylogyridea A.V. Gussev, P.I. Gerasev, O.N. Pugachev; 15 Suborder Dactylogyrinea: 13 Family Dactylogyridae; 17 Subfamily Dactylogyrinae; 13 Genus Dactylogyrus; 20 Genus Pellucidhaptor; 265 Genus Dogielius; 269 Genus Bivaginogyrus; 274 Genus Markewitschiana; 275 Genus Acolpenteron; 277 Genus Pseudacolpenteron; 280 Family Ancyrocephalidae; 280 Subfamily Ancyrocephalinae; 282 Genus Ancyrocephalus; 282 Subfamily Ancylodiscoidinae; 306 Genus Ancylodiscoides; 307 Genus Thaparocleidus; 308 Genus Pseudancylodiscoides; 331 Genus Bychowskyella; 332 Order Capsalidea A.V. Gussev; 338 Family Capsalidae; 338 Genus Nitzschia; 338 Order Tetraonchidea O.N. Pugachev; 340 Family Tetraonchidae; 341 Genus Tetraonchus; 341 Genus Salmonchus; 345 Family Bothitrematidae; 359 Genus Bothitrema; 359 Order Gyrodactylidea R. Ergens, O.N. Pugachev, P.I. Gerasev; 359 Family Gyrodactylidae; 361 Subfamily Gyrodactylinae; 361 Genus Gyrodactylus; 362 Genus Paragyrodactylus; 456 Genus Gyrodactyloides; 456 Genus Laminiscus; 457 Subclass Oligonchoinea A.V.
    [Show full text]
  • Department of Zoology Hazara University, Mansehra Pakistan 2016
    COMPARATIVE PHYLOGEOGRAPHY OF SCHIZOTHORACINAE FISH IN NORTHERN PAKISTAN AND WESTERN CHINA MUHAMMAD FIAZ KHAN DEPARTMENT OF ZOOLOGY HAZARA UNIVERSITY, MANSEHRA PAKISTAN 2016 HAZARA UNIVERSITY, MANSEHRA DEPARTMENT OF ZOOLOGY COMPARATIVE PHYLOGEOGRAPHY OF SCHIZOTHORACINAE FISH IN NORTHERN PAKISTAN AND WESTERN CHINA BY MUHAMMAD FIAZ KHAN This research study has been conducted as partial fulfillment of the requirement for the Degree of Doctor of Philosophy in Zoology, Hazara University Mansehra, Pakistan August 22, 2016 COMPARATIVE PHYLOGEOGRAPHY OF SCHIZOTHORACINAE FISH IN NORTHERN PAKISTAN AND WESTERN CHINA SUBMITTED BY: MUHAMMAD FIAZ KHAN (PhD scholar) SUPERVISOR: Dr. Muhammad Nasir Khan Khattak Assistant Professor Department of Zoology Hazara University, Mansehra CO-SUPERVISOR: Prof. Chen Yifeng Institute of Hydrobiology Chinese Academy of Sciences Wuhan, China DEPARTMENT OF ZOOLOGY HAZARA UNIVERSITY, MANSEHRA PAKISTAN, 2016 DEDICATION THIS WORK IS DEDICATED TO MY PARENTS AND MY SUPERVISOR Table of Contents Chapter 1 1 INTRODUCTION 1 1.1 Study Area 1 1.2 Introduction to Qinghai-Tibetan China 3 1.3 Classifications of Fishes 3 1.4 Pakistan freshwater resources 4 1.5 Fishes of Pakistan 5 1.6 Fishes of China 6 1.7 Taxonomy of genus schizothorax 6 1.8 Origin of Schizothoracinae Fishes 8 1.9 Pleistocene glaciations 8 1.10 Phylogeographic predictions based on glaciations history 10 1.11 Role of Phylogeography in evolution 12 1.12 Rationale of the study 13 1.13 The objectives of the current study was 13 Chapter 2 14 REVIEW OF LITERATURE 14 2.1 Phylogeography 14 2.2 Genetic markers used in phylogeography 16 2.2.1 Mitochondrial genes (mtDNA) 16 2.2.2 Characteristics of Mitochondrial DNA 16 i 2.2.3 Cytochrome B Gene 19 2.2.4 Control region (D-Loop) 20 2.3 Importance of genetic material in fish identification 22 2.4 Disadvantages of mitochondrial material 23 2.5 Phylogeography of Schizothoracines fishes 23 2.6 Worldwide Distribution of Schizothorax 23 2.7 Role of glaciations history in Phylogeography 26 Chapter 3 29 MATERIALS AND METHODS 29 3.1.
    [Show full text]
  • Phylogenetic Analysis Among Cyprinidae Family Using 16Srrna
    International Journal of Fisheries and Aquatic Studies 2014; 1(6): 66-71 ISSN: 2347-5129 IJFAS 2014; 1(6): 66-71 © 2013 IJFAS Phylogenetic analysis among Cyprinidae family using www.fisheriesjournal.com 16SrRNA Received: 20-05-2014 Accepted: 02-06-2014 Utpala Sharma Utpala Sharma, Varsha singhal, Dayal P. Gupta, Partha Sarathi Mohanty Department of Zoology, Faculty of Science, Abstract Dayalbagh Educational Institute, In the present study, the cyprinid fishes (Labeo rohita, Catla catla, Cirrihinus mrigala) of Agra region were Agra (282005), India selected for resolving their phylogeny. Sequencing of fishes were done using mitochondrial 16S rRNA gene and it was compared with other cyprind fishes on the basis of similarity. 17 sequences of cyprinid fishes Varsha singhal were downloaded from NCBI along with one out group of family Balitoridae as a root of tree. They were Department of Zoology, examined to construct the phylogenetic tree within the most diverse family Cyprinidae. The present study Faculty of Science, Dayalbagh Educational Institute, reveals the high rate of mutation in the fishes. The overall transition/ transversion bias R shows the high Agra (282005), India deviation from the neutral evolution where R= 0.5. In the phylogenetic tree the neutrality test is conducted which rejected the neutral variation. The negative values of Tajima’s D test shows the bottle neck effect Dayal P. Gupta whereas values of Li and Fu’S D* and Li and Fu’s F* test show excess of external mutation. The maximum Department of Zoology, parsimony analysis method shows the relation of Catla catla with subfamily Labeoninae and these are Department of Zoology, indicated through the bootstrap values.
    [Show full text]
  • Phylogeny of the Specialized Schizothoracine Fishes (Teleostei: Cypriniformes: Cyprinidae)
    Zoological Studies 40(2): 147-157 (2001) Phylogeny of the Specialized Schizothoracine Fishes (Teleostei: Cypriniformes: Cyprinidae) Zi-Ming Chen1,2 and Yi-Feng Chen1,* 1Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China 2Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China (Accepted January 30, 2001) Zi-Ming Chen and Yi-Feng Chen (2001) Phylogeny of the specialized schizothoracine fishes (Teleostei: Cypriniformes: Cyprinidae). Zoological Studies 40(2): 147-157. To elucidate phylogenetic relationships within the specialized schizothoracine fishes, we used 41 variable osteological and external characters among this groups, three species of Schizothorax, and 1 fossil species. When the 3 species of Schizothorax were desig- nated as an outgroup and all 41 characters were set as unordered with equal weighting, the data matrix yielded a single most-parsimonious tree with a tree length of 71 steps, a consistency index of 0.6761, and a retention index of 0.7416. Meanwhile, a bootstrap test was conducted to verify the reliability of the results. The matrix was also analyzed for different conditions: all characters were ordered and the fossil species was added as an outgroup. The phylogenetic analyses presented herein support the following hypotheses. 1) All species of the specialized schizo-thoracines fishes form a monophyletic group. 2) Monophyly of the genus Ptychobarbus is not supported by the bootstrap test or when these characters are ordered. 3) The genus Gymnodiptychus forms a monophyletic group. 4) All species of Ptychobarbus and Gymnodiptychus form a monophyletic group with Diptychus as its sister group. Key words: Cyprinidae, Specialized schizothoracine fishes, Character analysis, Phylogenetic relationships, Tibetan Plateau.
    [Show full text]
  • And Adaptive Evolution in Their Mitochondrial Genomes
    Genes Genet. Syst. (2014) 89, p. 187–191 Polyphyletic origins of schizothoracine fish (Cyprinidae, Osteichthyes) and adaptive evolution in their mitochondrial genomes Takahiro Yonezawa1,2, Masami Hasegawa1,2 and Yang Zhong1,3* 1School of Life Sciences, Fudan University, SongHu Rd. 2005, Shanghai 200438, China 2The Institute of Statistical Mathematics, Midori-cho 10-3, Tachikawa, Tokyo 190-8562, Japan 3Institute of Biodiversity Science and Geobiology, Tibet University, JiangSu Rd. 36, Lhasa, 850000, China (Received 25 July 2014, accepted 9 October 2014) The schizothoracine fish, also called snow trout, are members of the Cyprinidae, and are the most diversified teleost fish in the Qinghai-Tibetan Plateau (QTP). Clarifying the evolutionary history of the schizothoracine fish is therefore important for better understanding the biodiversity of the QTP. Although mor- phological and molecular phylogenetic studies have supported the monophyly of the Schizothoracinae, a recent molecular phylogenetic study based on the mito- chondrial genome questioned the monophyly of this taxon. However, the phylo- genetic analysis of that study was on the basis of only three schizothoracine species, and the support values were low. In this report, we inferred the phylo- genetic tree on the basis of mitochondrial genome data including 21 schizothora- cine species and five closely related species, and the polyphyletic origins of the Schizothoracinae were strongly supported. The tree further suggests that the Schizothoracinae consists of two clades, namely the “morphologically specialized clade” and the “morphologically primitive clade”, and that these two clades migrated independently of each other to the QTP and adapted to high altitude. We also detected in their mitochondrial genomes strong signals of posi- tive selection, which probably represent evidence of high-altitude adaptation.
    [Show full text]