1-Iodo-1-Pentyne
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Investigation of Base-Free Copper-Catalysed Azide–Alkyne Click Cycloadditions (Cuaac) in Natural Deep Eutectic Solvents As Green and Catalytic Reaction Media
Investigation of Base-free Copper-Catalysed Azide–Alkyne Click Cycloadditions (CuAAc) in Natural Deep Eutectic Solvents as Green and Catalytic Reaction Media Salvatore V. Giofrè,1* Matteo Tiecco,2* Angelo Ferlazzo,3 Roberto Romeo,1 Gianluca Ciancaleoni,4 Raimondo Germani2 and Daniela Iannazzo3 1. Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale Annunziata, I-98168 Messina, Italy. 2. Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, via Elce di Sotto 8, I- 06123 Perugia, Italy. 3. Dipartimento di Ingegneria, Università of Messina, Contrada Di Dio, I-98166 Messina, Italy 4. Dipartimento di Chimica e Chimica Industriale (DCCI), Università di Pisa, Via Giuseppe Moruzzi, 13, I-56124 Pisa, Italy. * Corresponding authors Email addresses: [email protected] (Salvatore V. Giofrè); [email protected] (Matteo Tiecco). ABSTRACT The click cycloaddition reaction of azides and alkynes affording 1,2,3-triazoles is a transformation widely used to obtain relevant products in chemical biology, medicinal chemistry, materials science and other fields. In this work, a set of Natural Deep Eutectic Solvents (NADESs) as “active” reaction media has been investigated in the copper-catalysed azide–alkyne cycloaddition reactions (CuAAc). The use of these green liquids as green and catalytic solvents has shown to improve the reaction effectiveness, giving excellent yields. The NADESs proved to be “active” in this transformation for the absence of added bases in all the performed reactions and in several cases for their reducing capabilities. The results were rationalized by DFT calculations which demonstrated the involvement of H-bonds between DESs and alkynes as well as a stabilization of copper catalytic intermediates. -
New Methodologies for the Synthesis Of
NEW METHODOLOGIES FOR THE SYNTHESIS OF ORGANOPHOSPHORUS COMPOUNDS by MONIKA I. ANTCZAK Master of Science, 2002 Wroclaw University of Technology Wroclaw, Poland Submitted to the Graduate Faculty of the College of Science and Engineering Texas Christian University in partial fulfillment of the requirements for the degree of Doctor of Philosophy December 2008 NEW METHODOLOGIESFOR THE SYNTHESISOF ORGANOPHOSPHORUSCOMPOLNDS by MonikaI. Antczak Dissertationapproved: Maior Professor f Scienceand Engineering Copyright by Monika I. Antczak 2008 ACKNOWLEDGMENTS I wish to acknowledge Prof. Jean-Luc Montchamp for the constant interest in the progress of my work over the past five years. I also wish to thank him for his advice and intense discussions, which helped me in expanding my knowledge and understanding of organic chemistry, and in guiding me in my educational progress at Texas Christian University. His patience and support helped me overcome some difficult situation and successfully completing my Ph.D. program. I express my gratitude to my colleagues and friends, Jennifer Tellez, Dr. Laëtitia Coudray, Yamina Belabassi and Dr. Clemence Queffelec for their help, guidance and support. I also would like to thank Dr. Onofrio Annunziata, Dr. Waldek Zerda and Dr. Dale Huckaby for their guidance and interesting discussions during these years. I wish to thank: Monika Wieligor and Dr. Mauricio Quiroz for their friendship and constant support. Finally, I wish to thank my parents for their unconditional love and support. The Chemistry Department at Texas Christian University, the National Science Foundation (CHE-0242898), the National Institute of General Medical Sciences/NIH (R01 GM067610), and the Robert A. Welch Foundation (P-1666) are gratefully acknowledged for the financial support of this research. -
XXXV International Congress of the European Association of Poisons Centres and Clinical Toxicologists (EAPCCT) 26–29 May 2015, St Julian's, Malta
Clinical Toxicology ISSN: 1556-3650 (Print) 1556-9519 (Online) Journal homepage: http://www.tandfonline.com/loi/ictx20 XXXV International Congress of the European Association of Poisons Centres and Clinical Toxicologists (EAPCCT) 26–29 May 2015, St Julian's, Malta To cite this article: (2015) XXXV International Congress of the European Association of Poisons Centres and Clinical Toxicologists (EAPCCT) 26–29 May 2015, St Julian's, Malta, Clinical Toxicology, 53:4, 233-403, DOI: 10.3109/15563650.2015.1024953 To link to this article: http://dx.doi.org/10.3109/15563650.2015.1024953 Published online: 26 Mar 2015. Submit your article to this journal Article views: 3422 View related articles View Crossmark data Citing articles: 2 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ictx20 Download by: [UPSTATE Medical University Health Sciences Library] Date: 28 December 2016, At: 10:31 Clinical Toxicology (2015), 53, 233–403 Copyright © 2015 Informa Healthcare USA, Inc. ISSN: 1556-3650 print / 1556-9519 online DOI: 10.3109/15563650.2015.1024953 ABSTRACTS XXXV International Congress of the European Association of Poisons Centres and Clinical Toxicologists (EAPCCT) 26–29 May 2015, St Julian ’ s, Malta 1. Modelling dose-concentration-response Introduction: The American Association of Poison Control Cen- ters (AAPCC) published its fi rst annual report in 1983. Call data Ursula Gundert-Remy from sixteen US poison centers was chronicled in that report. Seven submitted data for the entire year. By July 2000, 63 centers Institute for Clinical Pharmacology and Toxicology, Charit é were part of the national poison center system, but only 59 submit- Medical School, Berlin, Germany ted data for the full year. -
A Conceptual Design of Fluorous Surfactants Based on a Heterocyclic Core, Put Into Practice Through Synthesis of Fluorous 1,2,3-Triazoles Roger W
Chiang Mai J. Sci. 2009; 36(2) 247 Chiang Mai J. Sci. 2009; 36(2) : 247-257 www.science.cmu.ac.th/journal-science/josci.html Invited Paper A Conceptual Design of Fluorous Surfactants Based on a Heterocyclic Core, Put into Practice Through Synthesis of Fluorous 1,2,3-Triazoles Roger W. Read* and Xiao Bei Wang School of Chemistry, The University of New South Wales, UNSW Sydney NSW 2052, Australia. *Author for correspondence; e-mail: [email protected] ABSTRACT The concept of a design of fluorous surfactants based on a heterocyclic core molecule is introduced and illustrated through the synthesis of polyfluoroalkyl-substituted 1,2,3-triazoles. A two step, one-pot process is described in which a small range of perfluoroalkylethyl azides is prepared in situ and made to undergo Huisgen 1,3-dipolar cycloaddition with terminal alkynes. Measurement of the changes in surface tension of the library of fluorous triazoles at different concentrations in m-xylene reveals unusual behaviour in molecules with a secondary, C8 alkyl substituent. Keywords: organic synthesis, heterocycles, fluorous chemistry, surfactants, click chemistry, polyfluoroalkyl-1,2,3-triazoles. 1. INTRODUCTION Fluorous surfactants have been studied might have applications in the design of new widely, not least for their interest in drug delivery systems and, through self- combination with perfluorocarbons, as assembly, unique molecular devices. emergency blood replacements.[1] Highly Considerable literature exists in the area of fluorinated amphiphiles and colloid systems fluorous block polymers with localised are chemically stable and can carry high crystalline segments and fluorous liposomes concentrations of oxygen and carbon dioxide, and vesicles for drug delivery, but, with a few and therefore have many applications in the exceptions [8-11], most fluorous components biomedical field [2,3]. -
Chapter 8 - Alkynes: an Introduction to Organic Synthesis
Chapter 8 - Alkynes: An Introduction to Organic Synthesis Draw structures corresponding to each of the following names. 1. ethynylcyclopropane Answer: CCH 2. 3,10-dimethyl-6-sec-butylcyclodecyne Answer: 3. 4-bromo-3,3-dimethyl-1-hexen-5-yne CH3 Br Answer: H 2C CH C CH C C H CH3 4. acetylene Answer: H CCH Provide names for each compound below. CH3 5. CH3C CCHCH2CH2CH3 Answer: 4-methyl-2-heptyne CH 3 6. CCH Answer: 1-ethynyl-2-methylcyclopentane Test Items for McMurry’s Organic Chemistry, Seventh Edition 59 The compound below has been isolated from the safflower plant. Consider its structure to answer the following questions. H H CCCCCCCC H H3C C C C H H C H H 7. What is the molecular formula for this natural product? Answer: C13H10 8. What is the degree of unsaturation for this compound? Answer: We can arrive at the degree of unsaturation for a structure in two ways. Since we know that the degree of unsaturation is the number of rings and/or multiple bonds in a compound, we can simply count them. There are three double bonds (3 degrees) and three triple bonds (six degrees), so the degree of unsaturation is 9. We can verify this by using the molecular formula, C13H10, to calculate a degree of unsaturation. The saturated 13-carbon compound should have the base formula C13H28, so (28 - 10) ÷ 2 = 18 ÷ 2 = 9. 9. Assign E or Z configuration to each of the double bonds in the compound. Answer: H H E CCCCCCCCE H H3C C C C H H C H H 10. -
(12) Patent Application Publication (10) Pub. No.: US 2011/00284.18 A1 Parker Et Al
US 2011 002841 8A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/00284.18 A1 Parker et al. (43) Pub. Date: Feb. 3, 2011 (54) USE OF GABBA RECEPTOR ANTAGONISTS Publication Classification FOR THE TREATMENT OF EXCESSIVE SLEEPINESS AND DISORDERS ASSOCATED (51) Int. Cl. WITH EXCESSIVE SLEEPINESS A63L/7028 (2006.01) A 6LX 3/557 (2006.01) (75) Inventors: Kathy P. Parker, Rochester, NY A63L/335 (2006.01) (US); David B. Rye, Dunwoody, A63L/4355 (2006.01) GA (US); Andrew Jenkins, A63L/047 (2006.01) Decatur, GA (US) A6IP 25/00 (2006.01) Correspondence Address: (52) U.S. Cl. ........... 514/29: 514/220; 514/450, 514/291; FISH & RICHARDSON P.C. (AT) 5147738 P.O BOX 1022 Minneapolis, MN 55440-1022 (US) (57) ABSTRACT (73) Assignee: Emory University, Atlanta, GA GABA receptor mediated hypersomnia can be treated by (US) administering a GABA receptor antagonist (e.g., flumazenil; clarithromycin; picrotoxin; bicuculline; cicutoxin; and (21) Appl. No.: 12/922,044 oenanthotoxin). In some embodiments, the GABA receptor antagonist is flumazenil or clarithromycin. The GABA (22) PCT Filed: Mar. 12, 2009 receptor mediated hypersomnia includes shift work sleep disorder, obstructive sleep apnea/hypopnea syndrome, narco (86). PCT No.: PCT/USO9/37034 lepsy, excessive sleepiness, hypersomnia (e.g., idiopathic hypersomnia; recurrent hyperSonmia; endozepine related S371 (c)(1), recurrent stupor; and amphetamine resistant hyperSonmia), (2), (4) Date: Sep. 10, 2010 and excessive sleepiness associated with shift work sleep disorder, obstructive sleep apnea/hypopnea syndrome, and Related U.S. Application Data hypersomnia (e.g., idiopathic hypersomnia; recurrent hyper (60) Provisional application No. -
Strategies for the Synthesis of Ynamides
I. SYNTHESIS OF INDOLINES AND INDOLES VIA INTRAMOLECULAR [4 + 2] CYCLOADDITION OF YNAMIDES AND CONJUGATED ENYNES II. SYNTHESIS OF NITROGEN HETEROCYCLES IN SUPERCRITICAL CARBON DIOXIDE by Joshua Ross Dunetz B. A., Chemistry Haverford College, 2000 SUBMITTED TO THE DEPARTMENT OF CHEMISTRY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 2005 © Massachusetts Institute of Technology, 2005 All rights reserved Signature of Author .................... ·Department of Chemistry September 1, 2005 a( / Certified by ................................... ................................ Rick L. Danheiser Arthur C. Cope Professor of Chemistry, Thesis Supervisor Acceptedby......................... ............................................ I.... 7 Robert W. Field MASSACHUSETSINSTn '.vE I F TrwfhNl erv-v I Chairman, Department Committee on Graduate Students OCT 1 2005 d }cl/CF , LIBRARIES ~ This doctoral thesis has been examined by a committee in the Department of Chemistry as follows: Professor Timothy F. Jamison . ... Chairman Professor Rick L. Danheiser ........... ... ............................ Thesis Supervisor Professor Barbara Imperiali. ...... ................................................ 2 ACKNOWLEDGMENTS All acknowledgments must begin with my thesis advisor, Rick Danheiser. I first remember meeting him at the Cambridge Brewing Company during recruiting weekend five years ago, and we sat for hours in the restaurant discussing the merits of the 2000 New York Mets and whether one of our favorite baseball teams had a chance to make the playoffs that year. Ultimately, I decided to attend MIT with the hope of joining his group, and during my time in his laboratory Rick has been an excellent mentor and chemistry role model. I continue to be amazed not only by the extent of his knowledge, but also by his ability to articulate chemical principles in an easy and straightforward manner. -
WHO Guidelines for Indoor Air Quality : Selected Pollutants
WHO GUIDELINES FOR INDOOR AIR QUALITY WHO GUIDELINES FOR INDOOR AIR QUALITY: WHO GUIDELINES FOR INDOOR AIR QUALITY: This book presents WHO guidelines for the protection of pub- lic health from risks due to a number of chemicals commonly present in indoor air. The substances considered in this review, i.e. benzene, carbon monoxide, formaldehyde, naphthalene, nitrogen dioxide, polycyclic aromatic hydrocarbons (especially benzo[a]pyrene), radon, trichloroethylene and tetrachloroethyl- ene, have indoor sources, are known in respect of their hazard- ousness to health and are often found indoors in concentrations of health concern. The guidelines are targeted at public health professionals involved in preventing health risks of environmen- SELECTED CHEMICALS SELECTED tal exposures, as well as specialists and authorities involved in the design and use of buildings, indoor materials and products. POLLUTANTS They provide a scientific basis for legally enforceable standards. World Health Organization Regional Offi ce for Europe Scherfi gsvej 8, DK-2100 Copenhagen Ø, Denmark Tel.: +45 39 17 17 17. Fax: +45 39 17 18 18 E-mail: [email protected] Web site: www.euro.who.int WHO guidelines for indoor air quality: selected pollutants The WHO European Centre for Environment and Health, Bonn Office, WHO Regional Office for Europe coordinated the development of these WHO guidelines. Keywords AIR POLLUTION, INDOOR - prevention and control AIR POLLUTANTS - adverse effects ORGANIC CHEMICALS ENVIRONMENTAL EXPOSURE - adverse effects GUIDELINES ISBN 978 92 890 0213 4 Address requests for publications of the WHO Regional Office for Europe to: Publications WHO Regional Office for Europe Scherfigsvej 8 DK-2100 Copenhagen Ø, Denmark Alternatively, complete an online request form for documentation, health information, or for per- mission to quote or translate, on the Regional Office web site (http://www.euro.who.int/pubrequest). -
Fall TNP Herbals.Pptx
8/18/14 Introduc?on to Objecves Herbal Medicine ● Discuss history and role of psychedelic herbs Part II: Psychedelics, in medicine and illness. Legal Highs, and ● List herbs used as emerging legal and illicit Herbal Poisons drugs of abuse. ● Associate main plant and fungal families with Jason Schoneman RN, MS, AGCNS-BC representave poisonous compounds. The University of Texas at Aus?n ● Discuss clinical management of main toxic Schultes et al., 1992 compounds. Psychedelics Sacraments: spiritual tools or sacred medicine by non-Western cultures vs. Dangerous drugs of abuse vs. Research and clinical tools for mental and physical http://waynesword.palomar.edu/ww0703.htm disorders History History ● Shamanic divinaon ○ S;mulus for spirituality/religion http://orderofthesacredspiral.blogspot.com/2012/06/t- mckenna-on-psilocybin.html http://www.cosmicelk.net/Chukchidirections.htm 1 8/18/14 History History http://www.10zenmonkeys.com/2007/01/10/hallucinogenic- weapons-the-other-chemical-warfare/ http://rebloggy.com/post/love-music-hippie-psychedelic- woodstock http://fineartamerica.com/featured/misterio-profundo-pablo- amaringo.html History ● Psychotherapy ○ 20th century: un;l 1971 ● Recreaonal ○ S;mulus of U.S. cultural revolu;on http://qsciences.digi-info-broker.com http://www.uspharmacist.com/content/d/feature/c/38031/ http://en.wikipedia.org/nervous_system 2 8/18/14 Main Groups Main Groups Tryptamines LSD, Psilocybin, DMT, Ibogaine Other Ayahuasca, Fly agaric Phenethylamines MDMA, Mescaline, Myristicin Pseudo-hallucinogen Cannabis Dissociative -
Is Palatability of a Root-Hemiparasitic Plant Influenced by Its Host Species?
Oecologia (2005) 146: 227–233 DOI 10.1007/s00442-005-0192-3 PLANTANIMALINTERACTIONS Martin Scha¨dler Æ Mareike Roeder Æ Roland Brandl Diethart Matthies Is palatability of a root-hemiparasitic plant influenced by its host species? Received: 16 November 2004 / Accepted: 21 June 2005 / Published online: 19 July 2005 Ó Springer-Verlag 2005 Abstract Palatability of parasitic plants may be influ- Introduction enced by their host species, because the parasites take up nutrients and secondary compounds from the hosts. If Parasitic plants attack shoots or roots of other plants and parasitic plants acquired the full spectrum of secondary take up water, nutrients and solutes from the hosts by compounds from their host, one would expect a corre- means of specialized contact organs (haustoria, Kuijt lation between host and parasite palatability. We 1969). About 1% of all plants are parasitic and parasitic examined the palatability of leaves of the root-hemi- plants are common components of many plant commu- parasite Melampyrum arvense grown with different host nities (Molau 1995). The majority of parasitic plants are plants and the palatability of these host plants for two actually hemiparasites that have green leaves and are generalist herbivores, the caterpillar of Spodoptera lit- able to photosynthesize (Kuijt 1969). Parasitic plants can toralis and the slug Arion lusitanicus. We used 19 species drastically reduce the growth of their host plants and of host plants from 11 families that are known to con- some are important agricultural pests (Parker and Riches tain a wide spectrum of anti-herbivore compounds. 1993; Pennings and Callaway 2002). Because parasitic Growth of M. -
PALLADIUM CATALYSED OLIGOMERIZATION of 1-ALKYNES by Ann Beal Hunt
RICE UNIVERSITY PALLADIUM CATALYSED OLIGOMERIZATION OP 1-ALKYNES by Ann Beal Hunt A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS Thesis Director’s Signature: Houston, Texas August 197^ ABSTRACT PALLADIUM CATALYSED OLIGOMERIZATION OF 1-ALKYNES by Ann Beal Hunt The oligomerization of 1-pentyne using palladium acetyl acetonate catalyst with various solvents and ligands was in¬ vestigated. An equimolar mixture of HOAc and Et N proved 3 to be a superior solvent. The major product observed in most cases was the dimer, 6-methylene-nona-^-yne, although both cis and trans-dec-^t-ene-6-yne were observed in most cases. Trimers were formed when phosphines were replaced with bldentate amines or phosphite ligands. A one to one mixture of PPh and (CH 0) P gave the highest yield of 3 3 3 oligomers with 6-methylene-nona-4-yne as the major product. No aromatics were formed with any of the reaction systems studied. 19 The general mechanism proposed, by Meriwether and 15 elaborated by Maitlis is in agreement with these results. ACKNOWLEDGEMENTS I wish to thank Rice University and the Robert A. Welch Foundation for their financial support. to Jerry and my parents TABLE OF CONTENTS Introduction 1 Results and Discussion 15 Experimental 3H Bibliography Ml Appendix: spectra M3 1 INTRODUCTION There has been considerable interest in the metal catalyzed oligomerization of acetylenes since Reppe's initial discovery in 19^8 that nickel catalysed the tetra- 21 merization of acetylene to cyclooctatetraene. 20 Odaira in 1966 observed the formation of conjugated trans-polyacetylene upon addition of PdCl to acetylene in 2 acetic acid. -
Cicuta Douglasii) Tubers
Toxicon 108 (2015) 11e14 Contents lists available at ScienceDirect Toxicon journal homepage: www.elsevier.com/locate/toxicon Short communication The non-competitive blockade of GABAA receptors by an aqueous extract of water hemlock (Cicuta douglasii) tubers * Benedict T. Green a, , Camila Goulart b, 1, Kevin D. Welch a, James A. Pfister a, Isabelle McCollum a, Dale R. Gardner a a Poisonous Plant Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Logan, UT, USA b Graduate Program in Animal Science, Universidade Federal de Goias, Goiania,^ Goias, Brazil article info abstract Article history: Water hemlocks (Cicuta spp.) are acutely toxic members of the Umbellierae family; the toxicity is due to Received 22 July 2015 the presence of C17-polyacetylenes such as cicutoxin. There is only limited evidence of noncompetitive Received in revised form antagonism by C17-polyacetylenes at GABAA receptors. In this work with WSS-1 cells, we documented 9 September 2015 the noncompetitive blockade of GABA receptors by an aqueous extract of water hemlock (Cicuta dou- Accepted 14 September 2015 A glasii) and modulated the actions of the extract with a pretreatment of 10 mM midazolam. Available online 28 September 2015 Published by Elsevier Ltd. Keywords: Water hemlock Cicutoxin C17-polyacetylenes Benzodiazepines Barbiturates Midazolam Water hemlocks (Cicuta spp.) are acutely toxic members of the antagonists of the GABAA receptor by binding to the picrotoxin Umbellierae, or carrot family, that grow in wet habitats such as binding site within the chloride channel to block ion flow through streambeds or marshlands, and have been considered one of the the channel (Ratra et al., 2001; Chen et al., 2006; 2011; Olsen, most toxic plants of North America for many years (Kingsbury, 2006).