Gfsorganics & Fragrances

Total Page:16

File Type:pdf, Size:1020Kb

Gfsorganics & Fragrances Chemicals for Flavors GFSOrganics & Fragrances GFS offers a broad range of specialty organic chemicals Specialized chemistries we as building blocks and intermediates for the manufacture of offer include: flavors and fragrances. • Alkynes Over 5,500 materials, including 1,400 chemicals from natural sources, are used for flavor • Alkynols enhancements and aroma profiles. These aroma chemicals are integral components of • Olefins the continued growth within consumer products and packaged foods. The diversity of products can be attributed to the broad spectrum of organic compounds derived from • Unsaturated Acids esters, aldehydes, lactones, alcohols and several other functional groups. • Unsaturated Esters • DIPPN and other Products GFS Chemicals manufactures a wide range of organic intermediates that have been utilized in a multitude of personal care applications. For example, we support Why GFS? several market leading companies in the manufacture and supply of alkyne based aroma chemicals. • Specialized Chemistries • Tailored Specifications As such, we understand the demanding nature of this fast changing market and are fully • From Grams to Metric Tons equipped to overcome process challenges and manufacture the novel chemical products • Responsive Technical Staff that you need, when you need them. We offer flexible custom manufacturing services to produce high purity products with the assurance of quality and full confidentiality. • Uncompromised Product Quality Our state-of-the-art manufacturing facility, located in Columbus, OH is ISO 9001:2008 certified. As a U.S. based manufacturer we have a proven record of helping you take products from development to commercialization. Our technical sales experts are readily accessible to discuss your project needs and unique product specifications. Don’t hesitate to request a quote. Your Trusted Partner from Start to Success For more information contact: Dick Haas - Sales & Business Development Organic Specialty Chemicals ® [email protected] CHEMICALS 614-224-5013 ext 340 www.gfschemicals.com Quality. Reliability. Integrity… How our Products Serve your Application Needs Categories Product Examples GFS Item # CAS Number Alkynes 1-Butyne 3029 107-00-6 1-Heptyne 3164 628-71-7 5-Decyne 3077 1942-46-7 2-Pentyne 3271 627-21-4 4-Nonyne 3258 1942-45-6 3-Octyne 3388 15232-76-5 6-Dodecyne 3122 6975-99-1 1-Decyne 3075 764-93-2 1-Hexyne 3193 693-02-7 1,7-Octadiyne 3248 871-84-1 Alkynols Propargyl alcohol 3295 107-19-7 1-Octyn-3-ol 3937 818-72-4 4-Pentyn-1-ol 3276 5390-04- 5 2-Butyn-1-ol 3033 764-01-2 2-Methyl-3-butyn-2-ol 3210 115-19-5 3-Octyn-1-ol 3259 20739-58-6 1-Heptyn-3-ol 3168 7383-19-9 Olefins 1-Heptene 3160 592-76-7 trans-2-Heptene 3161 14686-13-6 2-Bromo-1-propene 5283 557-93-7 1-Methyl-1,4-cyclohexadiene 3211 4313-57-9 1,4-Cyclohexadiene 3389 628-41-1 1-Pentene 3396 109-67-1 1-Hexene 3405 41446-63-3 7-Bromo-1-heptene 5252 4117-09-3 4-Penten-1-ol 3269 821-09-0 8-Chloro-1-octene 5344 871-90-9 Unsaturated Acids 2-Butynoic Acid 3032 590-93-2 4-Pentynoic Acid 3273 6089-09-4 6-Heptynoic Acid 3167 30964-00-2 5-Hexenoic Acid 3455 1577-22-6 Unsaturated Esters Ethyl-2-butynoate 3132 4341-76-8 Methyl-5-hexynoate 3215 77758-51-1 Ethyl-2-hexynoate 3386 16205-90-6 Ethyl-2-pentynoate 3136 16930-95-3 Other Categories 1-Amino-5-hexene 5529 34825-70-2 2,2-Diisopropylpropane nitrile (DIPPN) 2962 55897-64-8 1-Methoxy-1-butene-3-yne 3889 2798-73-4 3-Amino-3-methyl-1-butyne 3395 2978-58-7 Propargyl Amine 3959 2450-71-7 Phenylacetylene 3279 536-74-3 TMS Acetylene 3340 1066-54-2 Please note that our chemical products are not FDA approved or intended for direct use in food, cosmetics or drugs. GFS ORGANIC® C C CHEMICALS ® CHEMICALS Visit www.gfsorganics.com For More Information Contact - [email protected] (614) 224-5013 x 355 Manufacturing in Columbus, Ohio since 1928 BNFF051215 www.gfschemicals.com #2.
Recommended publications
  • Investigation of Base-Free Copper-Catalysed Azide–Alkyne Click Cycloadditions (Cuaac) in Natural Deep Eutectic Solvents As Green and Catalytic Reaction Media
    Investigation of Base-free Copper-Catalysed Azide–Alkyne Click Cycloadditions (CuAAc) in Natural Deep Eutectic Solvents as Green and Catalytic Reaction Media Salvatore V. Giofrè,1* Matteo Tiecco,2* Angelo Ferlazzo,3 Roberto Romeo,1 Gianluca Ciancaleoni,4 Raimondo Germani2 and Daniela Iannazzo3 1. Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale Annunziata, I-98168 Messina, Italy. 2. Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, via Elce di Sotto 8, I- 06123 Perugia, Italy. 3. Dipartimento di Ingegneria, Università of Messina, Contrada Di Dio, I-98166 Messina, Italy 4. Dipartimento di Chimica e Chimica Industriale (DCCI), Università di Pisa, Via Giuseppe Moruzzi, 13, I-56124 Pisa, Italy. * Corresponding authors Email addresses: [email protected] (Salvatore V. Giofrè); [email protected] (Matteo Tiecco). ABSTRACT The click cycloaddition reaction of azides and alkynes affording 1,2,3-triazoles is a transformation widely used to obtain relevant products in chemical biology, medicinal chemistry, materials science and other fields. In this work, a set of Natural Deep Eutectic Solvents (NADESs) as “active” reaction media has been investigated in the copper-catalysed azide–alkyne cycloaddition reactions (CuAAc). The use of these green liquids as green and catalytic solvents has shown to improve the reaction effectiveness, giving excellent yields. The NADESs proved to be “active” in this transformation for the absence of added bases in all the performed reactions and in several cases for their reducing capabilities. The results were rationalized by DFT calculations which demonstrated the involvement of H-bonds between DESs and alkynes as well as a stabilization of copper catalytic intermediates.
    [Show full text]
  • Part I: Carbonyl-Olefin Metathesis of Norbornene
    Part I: Carbonyl-Olefin Metathesis of Norbornene Part II: Cyclopropenimine-Catalyzed Asymmetric Michael Reactions Zara Maxine Seibel Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 1 © 2016 Zara Maxine Seibel All Rights Reserved 2 ABSTRACT Part I: Carbonyl-Olefin Metathesis of Norbornene Part II: Cyclopropenimine-Catalyzed Asymmetric Michael Reactions Zara Maxine Seibel This thesis details progress towards the development of an organocatalytic carbonyl- olefin metathesis of norbornene. This transformation has not previously been done catalytically and has not been done in practical manner with stepwise or stoichiometric processes. Building on the previous work of the Lambert lab on the metathesis of cyclopropene and an aldehyde using a hydrazine catalyst, this work discusses efforts to expand to the less stained norbornene. Computational and experimental studies on the catalytic cycle are discussed, including detailed experimental work on how various factors affect the difficult cycloreversion step. The second portion of this thesis details the use of chiral cyclopropenimine bases as catalysts for asymmetric Michael reactions. The Lambert lab has previously developed chiral cyclopropenimine bases for glycine imine nucleophiles. The scope of these catalysts was expanded to include glycine imine derivatives in which the nitrogen atom was replaced with a carbon atom, and to include imines derived from other amino acids. i Table of Contents List of Abbreviations…………………………………………………………………………..iv Part I: Carbonyl-Olefin Metathesis…………………………………………………………… 1 Chapter 1 – Metathesis Reactions of Double Bonds………………………………………….. 1 Introduction………………………………………………………………………………. 1 Olefin Metathesis………………………………………………………………………… 2 Wittig Reaction…………………………………………………………………………... 6 Tebbe Olefination………………………………………………………………………... 9 Carbonyl-Olefin Metathesis…………………………………………………………….
    [Show full text]
  • 14.8 Organic Synthesis Using Alkynes
    14_BRCLoudon_pgs4-2.qxd 11/26/08 9:04 AM Page 666 666 CHAPTER 14 • THE CHEMISTRY OF ALKYNES The reaction of acetylenic anions with alkyl halides or sulfonates is important because it is another method of carbon–carbon bond formation. Let’s review the methods covered so far: 1. cyclopropane formation by the addition of carbenes to alkenes (Sec. 9.8) 2. reaction of Grignard reagents with ethylene oxide and lithium organocuprate reagents with epoxides (Sec. 11.4C) 3. reaction of acetylenic anions with alkyl halides or sulfonates (this section) PROBLEMS 14.18 Give the structures of the products in each of the following reactions. (a) ' _ CH3CC Na| CH3CH2 I 3 + L (b) ' _ butyl tosylate Ph C C Na| + L 3 H3O| (c) CH3C' C MgBr ethylene oxide (d) L '+ Br(CH2)5Br HC C_ Na|(excess) + 3 14.19 Explain why graduate student Choke Fumely, in attempting to synthesize 4,4-dimethyl-2- pentyne using the reaction of H3C C'C_ Na| with tert-butyl bromide, obtained none of the desired product. L 3 14.20 Propose a synthesis of 4,4-dimethyl-2-pentyne (the compound in Problem 14.19) from an alkyl halide and an alkyne. 14.21 Outline two different preparations of 2-pentyne that involve an alkyne and an alkyl halide. 14.22 Propose another pair of reactants that could be used to prepare 2-heptyne (the product in Eq. 14.28). 14.8 ORGANIC SYNTHESIS USING ALKYNES Let’s tie together what we’ve learned about alkyne reactions and organic synthesis. The solu- tion to Study Problem 14.2 requires all of the fundamental operations of organic synthesis: the formation of carbon–carbon bonds, the transformation of functional groups, and the establish- ment of stereochemistry (Sec.
    [Show full text]
  • Catalytic Pyrolysis of Plastic Wastes for the Production of Liquid Fuels for Engines
    Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019 Supporting information for: Catalytic pyrolysis of plastic wastes for the production of liquid fuels for engines Supattra Budsaereechaia, Andrew J. Huntb and Yuvarat Ngernyen*a aDepartment of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand. E-mail:[email protected] bMaterials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand Fig. S1 The process for pelletization of catalyst PS PS+bentonite PP ) t e PP+bentonite s f f o % ( LDPE e c n a t t LDPE+bentonite s i m s n HDPE a r T HDPE+bentonite Gasohol 91 Diesel 4000 3500 3000 2500 2000 1500 1000 500 Wavenumber (cm-1) Fig. S2 FTIR spectra of oil from pyrolysis of plastic waste type. Table S1 Compounds in oils (%Area) from the pyrolysis of plastic wastes as detected by GCMS analysis PS PP LDPE HDPE Gasohol 91 Diesel Compound NC C Compound NC C Compound NC C Compound NC C 1- 0 0.15 Pentane 1.13 1.29 n-Hexane 0.71 0.73 n-Hexane 0.65 0.64 Butane, 2- Octane : 0.32 Tetradecene methyl- : 2.60 Toluene 7.93 7.56 Cyclohexane 2.28 2.51 1-Hexene 1.05 1.10 1-Hexene 1.15 1.16 Pentane : 1.95 Nonane : 0.83 Ethylbenzen 15.07 11.29 Heptane, 4- 1.81 1.68 Heptane 1.26 1.35 Heptane 1.22 1.23 Butane, 2,2- Decane : 1.34 e methyl- dimethyl- : 0.47 1-Tridecene 0 0.14 2,2-Dimethyl- 0.63 0 1-Heptene 1.37 1.46 1-Heptene 1.32 1.35 Pentane,
    [Show full text]
  • “Alkenyl Nonaflates from Carbonyl Compounds: New Synthesis, Elimination Reactions, and Systematic Study of Heck and Sonogashira Cross-Couplings”
    “Alkenyl nonaflates from carbonyl compounds: New synthesis, elimination reactions, and systematic study of Heck and Sonogashira cross-couplings” A thesis submitted to the Freie Universität Berlin for the degree of Dr. rer. nat. Faculty of Chemistry and Biochemistry 2009 Michael Alexander Kolja Vogel Department of Biology, Chemistry and Pharmacy FU Berlin 1. Gutachter: Prof. Dr. C. B. W. Stark 2. Gutachter: Prof. Dr. H.-U. Reißig Promotionsdatum: 19.06.2009 Contents Contents Contents 3 Abbreviations 7 Declaration and Copyright Statement 9 The Author 12 Acknowledgements 13 Abstract / Zusammenfassung 14 Introduction and Objective 16 Chapter 1 Alkenyl nonaflates from enolizable carbonyl precursors – 25 methodology, preparation, and elimination reactions 1.1. Purification of NfF and compatibility experiments with bases 26 1.2. Application of the internal quenching protocol for the 30 preparation of cyclic alkenyl nonaflates 1.3. Reactions of acyclic ketones with NfF and phosphazene bases 36 1.3.1 General remarks 36 1.3.2. Synthesis of alkynes: reactivity and selectivity 38 1.4. The formation of allenes 45 1.5. Conversion of aldehydes with NfF and phosphazene bases 50 1.5.1. Alkenyl nonaflate formation 50 1.5.2. Formation of terminal alkynes 52 1.6. Conclusions 54 Chapter 2 The alkenyl nonaflates in the Heck reaction – 56 methodology and reactivity 3 Contents 2.1. General remarks 57 2.2. Methodology and initial experiments 59 2.3. Systematic investigations 61 2.3.1. The solvent effect 61 2.3.2. The effect of different bases 65 2.3.3. The effect of additives 66 2.3.4. The effect of triphenylphosphine 71 2.3.5.
    [Show full text]
  • Title Crystallization of Stereospecific Olefin Copolymers (Special Issue on Physical Chemistry) Author(S) Sakaguchi, Fumio; Kita
    Crystallization of Stereospecific Olefin Copolymers (Special Title Issue on Physical Chemistry) Author(s) Sakaguchi, Fumio; Kitamaru, Ryozo; Tsuji, Waichiro Bulletin of the Institute for Chemical Research, Kyoto Citation University (1966), 44(4): 295-315 Issue Date 1966-10-31 URL http://hdl.handle.net/2433/76134 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University Crystallization of Stereospecifie Olefin Copolymers Fumio SAKAGUCHI,Ryozo KITAMARU and Waichiro TSUJI* (Tsuji Laboratory) Received August 13, 1966 The stereoregularity of isotactic poly(4-methyl-1-pentene) was characterized and isomorphism phenomena were examined for the copolymeric systems of 4-methyl-1-pentene with several olefins in order to study the crystallization phenomena in these olefin copoly- mers polymerized with stereospecific catalysts. The structural heterogeneity or the fine crystalline structure of poly(4-methyl-1-pentene) could be correlated with its molecular structure by viewing this stereoregular homopolymer as if it were a copolymer. Cocrystallization or isomorphism phenomenon was recognized for the copolymeric systems of 4-methyl-1-pentene with butene-1, pentene-1, decene-1 and 3-methyl-1-butene, while no evidence of the phenomenon was obtained for the copolymeric systems with styrene and propylene. The degree of the isomorphism of those copolymers was discussed with the informations on the crystalline phases obtained from the X-ray study, on the constitution of the copolymeric chains in the amorphous phases obtained from the viscoelastic studies and on the other thermodynamical properties of these systems. INTRODUCTION Many works have been made with regard to the homopolymerization of olefins with stereospecific catalysts, i. e. complex catalysts composed of the combination of organometallic compound and transitional metallic compound.
    [Show full text]
  • New Methodologies for the Synthesis Of
    NEW METHODOLOGIES FOR THE SYNTHESIS OF ORGANOPHOSPHORUS COMPOUNDS by MONIKA I. ANTCZAK Master of Science, 2002 Wroclaw University of Technology Wroclaw, Poland Submitted to the Graduate Faculty of the College of Science and Engineering Texas Christian University in partial fulfillment of the requirements for the degree of Doctor of Philosophy December 2008 NEW METHODOLOGIESFOR THE SYNTHESISOF ORGANOPHOSPHORUSCOMPOLNDS by MonikaI. Antczak Dissertationapproved: Maior Professor f Scienceand Engineering Copyright by Monika I. Antczak 2008 ACKNOWLEDGMENTS I wish to acknowledge Prof. Jean-Luc Montchamp for the constant interest in the progress of my work over the past five years. I also wish to thank him for his advice and intense discussions, which helped me in expanding my knowledge and understanding of organic chemistry, and in guiding me in my educational progress at Texas Christian University. His patience and support helped me overcome some difficult situation and successfully completing my Ph.D. program. I express my gratitude to my colleagues and friends, Jennifer Tellez, Dr. Laëtitia Coudray, Yamina Belabassi and Dr. Clemence Queffelec for their help, guidance and support. I also would like to thank Dr. Onofrio Annunziata, Dr. Waldek Zerda and Dr. Dale Huckaby for their guidance and interesting discussions during these years. I wish to thank: Monika Wieligor and Dr. Mauricio Quiroz for their friendship and constant support. Finally, I wish to thank my parents for their unconditional love and support. The Chemistry Department at Texas Christian University, the National Science Foundation (CHE-0242898), the National Institute of General Medical Sciences/NIH (R01 GM067610), and the Robert A. Welch Foundation (P-1666) are gratefully acknowledged for the financial support of this research.
    [Show full text]
  • Complexes for Click Azide-Alkyne Cycloaddition Reactions
    Well-defined Copper(I) Complexes for Click Azide-Alkyne Cycloaddition Reactions: One Click Beyond Silvia Díez-González* Department of Chemistry, Imperial College London Exhibition Road, South Kensington, SW7 2AZ London (UK) [email protected] Abstract: The discovery of copper(I) species as excellent catalysts for the regioselective cycloaddition reactions of azides and alkynes served as proof-of-concept of the importance of Click chemistry and opened a broad field of research that has found numerous ramifications in biochemistry, materials and medicinal science, for instance. The use of ligands in this context not only serves to stabilize the oxidation state of copper, but has also been shown to increase and modulate its reactivity. Still, efforts focused on developing more efficient catalytic systems for this transformation remain limited. Herein, the catalytic activities of ligated copper systems are reviewed in a way intended inspirational for further developments. 1. Introduction Transition metal catalysis is one of the most powerful tools available to chemists for the development of cleaner and more sustainable processes. Although simple metal salts can mediate a number of transformations, it was the use of ligands that catapulted organometallic catalysis to its present leading status. In particular, the use of well-defined complexes allows for a better control of the nature of the species present in the reaction media and generally avoids the need for excess of ligand and/or reagents for achieving optimal catalytic performance. These two points are crucial in the continuous quest of molecular chemistry for more efficient and less contaminating processes capable of providing diverse and complex architectures.
    [Show full text]
  • A Conceptual Design of Fluorous Surfactants Based on a Heterocyclic Core, Put Into Practice Through Synthesis of Fluorous 1,2,3-Triazoles Roger W
    Chiang Mai J. Sci. 2009; 36(2) 247 Chiang Mai J. Sci. 2009; 36(2) : 247-257 www.science.cmu.ac.th/journal-science/josci.html Invited Paper A Conceptual Design of Fluorous Surfactants Based on a Heterocyclic Core, Put into Practice Through Synthesis of Fluorous 1,2,3-Triazoles Roger W. Read* and Xiao Bei Wang School of Chemistry, The University of New South Wales, UNSW Sydney NSW 2052, Australia. *Author for correspondence; e-mail: [email protected] ABSTRACT The concept of a design of fluorous surfactants based on a heterocyclic core molecule is introduced and illustrated through the synthesis of polyfluoroalkyl-substituted 1,2,3-triazoles. A two step, one-pot process is described in which a small range of perfluoroalkylethyl azides is prepared in situ and made to undergo Huisgen 1,3-dipolar cycloaddition with terminal alkynes. Measurement of the changes in surface tension of the library of fluorous triazoles at different concentrations in m-xylene reveals unusual behaviour in molecules with a secondary, C8 alkyl substituent. Keywords: organic synthesis, heterocycles, fluorous chemistry, surfactants, click chemistry, polyfluoroalkyl-1,2,3-triazoles. 1. INTRODUCTION Fluorous surfactants have been studied might have applications in the design of new widely, not least for their interest in drug delivery systems and, through self- combination with perfluorocarbons, as assembly, unique molecular devices. emergency blood replacements.[1] Highly Considerable literature exists in the area of fluorinated amphiphiles and colloid systems fluorous block polymers with localised are chemically stable and can carry high crystalline segments and fluorous liposomes concentrations of oxygen and carbon dioxide, and vesicles for drug delivery, but, with a few and therefore have many applications in the exceptions [8-11], most fluorous components biomedical field [2,3].
    [Show full text]
  • S1 Supporting Information Copper-Catalyzed
    Supporting Information Copper-Catalyzed Semihydrogenation of Internal Alkynes with Molecular Hydrogen Takamichi Wakamatsu, Kazunori Nagao, Hirohisa Ohmiya*, and Masaya Sawamura* Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan Table of Contents Instrumentation and Chemicals S1 Characterization Data for Alkynes S1–S2 Procedure for the Copper-Catalyzed Semihydrogenation of Alkynes S2 Characterization Data for Alkenes S3–S5 References S5 NMR Spectra S6–S31 Instrumentation and Chemicals NMR spectra were recorded on a JEOL ECX-400, operating at 400 MHz for 1H NMR and 100.5 13 1 13 MHz for C NMR. Chemical shift values for H and C are referenced to Me4Si and the residual solvent resonances, respectively. Mass spectra were obtained with Thermo Fisher Scientific Exactive, JEOL JMS-T100LP or JEOL JMS-700TZ at the Instrumental Analysis Division, Equipment Management Center, Creative Research Institution, Hokkaido University. TLC analyses were performed on commercial glass plates bearing 0.25-mm layer of Merck Silica gel 60F254. Silica gel (Kanto Chemical Co., Silica gel 60 N, spherical, neutral) was used for column chromatography. Materials were obtained from commercial suppliers or prepared according to standard procedure unless otherwise noted. CuCl was purchased from Aldrich Chemical Co., stored under nitrogen, and used as it is. NatOBu, octane and 6-dodecyne 1a were purchased from TCI Chemical Co., stored under nitrogen, and used as it is. Diphenylacetylene 1j was purchased from Wako Chemical Co., stored under nitrogen, and used as it is. 1,4-Dioxane was purchased from Kanto Chemical Co., distilled from sodium/benzophenone and stored over 4Å molecular sieves under nitrogen.
    [Show full text]
  • Chapter 8 - Alkynes: an Introduction to Organic Synthesis
    Chapter 8 - Alkynes: An Introduction to Organic Synthesis Draw structures corresponding to each of the following names. 1. ethynylcyclopropane Answer: CCH 2. 3,10-dimethyl-6-sec-butylcyclodecyne Answer: 3. 4-bromo-3,3-dimethyl-1-hexen-5-yne CH3 Br Answer: H 2C CH C CH C C H CH3 4. acetylene Answer: H CCH Provide names for each compound below. CH3 5. CH3C CCHCH2CH2CH3 Answer: 4-methyl-2-heptyne CH 3 6. CCH Answer: 1-ethynyl-2-methylcyclopentane Test Items for McMurry’s Organic Chemistry, Seventh Edition 59 The compound below has been isolated from the safflower plant. Consider its structure to answer the following questions. H H CCCCCCCC H H3C C C C H H C H H 7. What is the molecular formula for this natural product? Answer: C13H10 8. What is the degree of unsaturation for this compound? Answer: We can arrive at the degree of unsaturation for a structure in two ways. Since we know that the degree of unsaturation is the number of rings and/or multiple bonds in a compound, we can simply count them. There are three double bonds (3 degrees) and three triple bonds (six degrees), so the degree of unsaturation is 9. We can verify this by using the molecular formula, C13H10, to calculate a degree of unsaturation. The saturated 13-carbon compound should have the base formula C13H28, so (28 - 10) ÷ 2 = 18 ÷ 2 = 9. 9. Assign E or Z configuration to each of the double bonds in the compound. Answer: H H E CCCCCCCCE H H3C C C C H H C H H 10.
    [Show full text]
  • Hydrogenationn of 4-Octyne Catalyzedd by Pd[(M^W'- (CF3)2C6H3)) Bian](Ma) in THF
    UvA-DARE (Digital Academic Repository) Palladium-catalyzed stereoselective hydrogenation of alkynes to (Z)-alkenes in common solvents and supercritical CO2 Kluwer, A.M. Publication date 2004 Link to publication Citation for published version (APA): Kluwer, A. M. (2004). Palladium-catalyzed stereoselective hydrogenation of alkynes to (Z)- alkenes in common solvents and supercritical CO2. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:04 Oct 2021 5 Kineti5 cc study and Spectroscopic Investigationn of the semi- hydrogenationn of 4-octyne catalyzedd by Pd[(m^w'- (CF3)2C6H3)) bian](ma) in THF 5.11 Introduction Homogeneouss hydrogenation by transition metal complexes has played a key role in the fundamental understandingg of catalytic reactions and has proven to be of great utility in practical applications.
    [Show full text]