Syntheses and Eliminations of Cyclopentyl Derivatives David John Rausch Iowa State University
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Direct Preparation of Some Organolithium Compounds from Lithium and RX Compounds Katashi Oita Iowa State College
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1955 Direct preparation of some organolithium compounds from lithium and RX compounds Katashi Oita Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Oita, Katashi, "Direct preparation of some organolithium compounds from lithium and RX compounds " (1955). Retrospective Theses and Dissertations. 14262. https://lib.dr.iastate.edu/rtd/14262 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overiaps. -
Part I: Carbonyl-Olefin Metathesis of Norbornene
Part I: Carbonyl-Olefin Metathesis of Norbornene Part II: Cyclopropenimine-Catalyzed Asymmetric Michael Reactions Zara Maxine Seibel Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 1 © 2016 Zara Maxine Seibel All Rights Reserved 2 ABSTRACT Part I: Carbonyl-Olefin Metathesis of Norbornene Part II: Cyclopropenimine-Catalyzed Asymmetric Michael Reactions Zara Maxine Seibel This thesis details progress towards the development of an organocatalytic carbonyl- olefin metathesis of norbornene. This transformation has not previously been done catalytically and has not been done in practical manner with stepwise or stoichiometric processes. Building on the previous work of the Lambert lab on the metathesis of cyclopropene and an aldehyde using a hydrazine catalyst, this work discusses efforts to expand to the less stained norbornene. Computational and experimental studies on the catalytic cycle are discussed, including detailed experimental work on how various factors affect the difficult cycloreversion step. The second portion of this thesis details the use of chiral cyclopropenimine bases as catalysts for asymmetric Michael reactions. The Lambert lab has previously developed chiral cyclopropenimine bases for glycine imine nucleophiles. The scope of these catalysts was expanded to include glycine imine derivatives in which the nitrogen atom was replaced with a carbon atom, and to include imines derived from other amino acids. i Table of Contents List of Abbreviations…………………………………………………………………………..iv Part I: Carbonyl-Olefin Metathesis…………………………………………………………… 1 Chapter 1 – Metathesis Reactions of Double Bonds………………………………………….. 1 Introduction………………………………………………………………………………. 1 Olefin Metathesis………………………………………………………………………… 2 Wittig Reaction…………………………………………………………………………... 6 Tebbe Olefination………………………………………………………………………... 9 Carbonyl-Olefin Metathesis……………………………………………………………. -
Brittain-DR-1965-Phd-Thesis.Pdf
POLYMETHYLENE PYRIDINES , A thesis submitted by David Robert Brittain in partial fulfilment of the requirements for the degree of DOCTOR OP PHILOSOPHY in the University of London Organic Chemistry Department, dune, 1965. Imperial College, LONDON, S.W.7. ABSTRACT This thesis describes a series of attempts to syn- thesise 2,5- and 1,4-polymethylene bridged pyridines. Nuclear magnetic resonance theory predicts that protons, which are held directly over an aromatic ring, will be abnormally shielded compared with protons in aliphatic straight-chain hydrocarbons. This prediction has been verified for the central methylene protons of paracyclo- phanes. The degree of shielding, expressed in terms of the distance from the aromatic ring, is a measure of the induced ring current and hence the aromaticity of the benzene ring. Similar measurements upon 2,5- or 1,4— polymethylene bridged pyridines would make it possible to determine the degree of aromaticity of the pyridine ring relative to benzene. A review of the subject of aromaticity is presented in which special reference has been made to its inter- pretation by nuclear magnetic resonance. The synthetic work has not been brougL.t to a truly satisfactory conclusion. However, the synthetic routes to 2,5-dialkylpyridines have been thoroughly investigated and a wide variety of such compounds prepared. The functional groups at the ends of the alkyl chains have been varied in an effort to produce a derivative which would cyclise to give a 2,5-bridged pyridine. The attempted intramolecular oxidative coupling of 2,5-dihex- 51 -ynylpyridine received much attention. In the attempts to obtain a 1,4-bridged pyridine, two tricyclic compounds, each containing two quaternised pyridine rings linked by polymethylene chains, were obtained. -
Title Crystallization of Stereospecific Olefin Copolymers (Special Issue on Physical Chemistry) Author(S) Sakaguchi, Fumio; Kita
Crystallization of Stereospecific Olefin Copolymers (Special Title Issue on Physical Chemistry) Author(s) Sakaguchi, Fumio; Kitamaru, Ryozo; Tsuji, Waichiro Bulletin of the Institute for Chemical Research, Kyoto Citation University (1966), 44(4): 295-315 Issue Date 1966-10-31 URL http://hdl.handle.net/2433/76134 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University Crystallization of Stereospecifie Olefin Copolymers Fumio SAKAGUCHI,Ryozo KITAMARU and Waichiro TSUJI* (Tsuji Laboratory) Received August 13, 1966 The stereoregularity of isotactic poly(4-methyl-1-pentene) was characterized and isomorphism phenomena were examined for the copolymeric systems of 4-methyl-1-pentene with several olefins in order to study the crystallization phenomena in these olefin copoly- mers polymerized with stereospecific catalysts. The structural heterogeneity or the fine crystalline structure of poly(4-methyl-1-pentene) could be correlated with its molecular structure by viewing this stereoregular homopolymer as if it were a copolymer. Cocrystallization or isomorphism phenomenon was recognized for the copolymeric systems of 4-methyl-1-pentene with butene-1, pentene-1, decene-1 and 3-methyl-1-butene, while no evidence of the phenomenon was obtained for the copolymeric systems with styrene and propylene. The degree of the isomorphism of those copolymers was discussed with the informations on the crystalline phases obtained from the X-ray study, on the constitution of the copolymeric chains in the amorphous phases obtained from the viscoelastic studies and on the other thermodynamical properties of these systems. INTRODUCTION Many works have been made with regard to the homopolymerization of olefins with stereospecific catalysts, i. e. complex catalysts composed of the combination of organometallic compound and transitional metallic compound. -
Part 1. Synthesis of N-15 Labeled (R)-Deuterioglycine
PART 1. SYNTHESIS OF N-15 LABELED (R)-DEUTERIOGLYCINE PART 2. SYNTHESES OF CARBON-LINKED ANALOGS OF RETINOID GLYCOSIDE CONJUGATES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Joel R. Walker * * * * * The Ohio State Univeristy 2003 Dissertation Committee: Approved by Robert W. Curley, Jr., Ph.D., Adviser Werner Tjarks, Ph.D. ________________________ Adviser Karl A. Werbovetz, Ph.D. College of Pharmacy ABSTRACT (R)-Glycine-d-15N has been used to permit assignments of the prochiral α-protons of glycine residues in the FK-506 binding protein. A key and low yielding step in the synthetic route to (R)-glycine-d-15N occurred in the ruthenium tetraoxide-mediated degradation of N-t-BOC-p-methoxybenzyl amine to the N-t-BOC-glycine after both 2H and 15N are incorporated. In order to improve this step, investigation of the oxidation reaction conditions along with various aromatic ring carboxylate precursors were undertaken. It was found that using ruthenium chloride, periodic acid as the stoichiometric re-oxidant, and N-(p-methoxyphenylmethylamine)-2,2,2-trichloroethyl carbamate were the optimal conditions and substrate. This improvement was paramount for the applicability of this route for large scale production of labeled glycine that could be used in other biological applications. The retinoic acid analog N-(4-hydroxyphenyl)retinamide (4-HPR) is an effective chemopreventative and chemotherapeutic for numerous types of cancer. In vivo, 4-HPR is metabolized to 4-HPR-O-glucuronide (4-HPROG), which has been shown to be more effective than the parent molecule in rat mammary tumor models. -
Organoboranes in Organic Syntheses Including Suzuki Coupling Reaction
HETEROCYCLES, Vol. 80, No. 1, 2010 15 HETEROCYCLES, Vol. 80, No. 1, 2010, pp. 15 - 43. © The Japan Institute of Heterocyclic Chemistry DOI: 10.3987/COM-09-S(S)Summary ORGANOBORANES IN ORGANIC SYNTHESES INCLUDING SUZUKI COUPLING REACTION Akira Suzuki In 1962 I had a lively interest in Wacker reaction [the oxidation of ethylene to acetaldehyde in the presence of palladium chloride and cupric chloride (Angew. Chem. 1959, 71, 176)] and began a literature survey. One Saturday afternoon during that time, I went a bookstore in Sapporo to look at new chemistry books and found a red and black two-tone colored book on the shelf that did not look like a chemistry book. The book was "Hydroboration" written by Professor Herbert C. Brown of Purdue University. It seemed to be an interesting book, so, I bought it. This book changed the course of my career, and my fascination with the chemistry of hydroboration reaction and organoboron compounds thus prepared by hydroboration began after reading the book. I immediately wrote to Professor Brown requesting to work as a postdoctoral research fellow. At that time Professor Brown was at Heidelberg in Germany as a visiting professor. He kindly wrote me a letter of acceptance, and I began a study of the stereochemistry of hydroboration reaction at Purdue (1963-65). Through this work I came to understand hydroboration and the interesting characteristics of organoboranes. My family (wife and two small girls) and I had a very good time there and made good friends. Of course I enjoyed chemistry. After a stay of about two years at Purdue, I returned to Japan with my family at the end of March 1965. -
View and Critique My Work
UNIVERSITY OF CINCINNATI Date:___________________ I, _________________________________________________________, hereby submit this work as part of the requirements for the degree of: in: It is entitled: This work and its defense approved by: Chair: _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ Biodegradation and Environmental Fate of Nonylphenol A thesis submitted to the Division of Graduate Studies and Research of the University of Cincinnati in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Chemical Engineering from the Department of Chemical and Materials Engineering of the College of Engineering August 2004 By Marcus A. Bertin B.S., (ChemE), University of Cincinnati Cincinnati, Ohio, 2001 Under the Advisement of Dr. Panagiotis G. Smirniotis Abstract Concern for the fate of nonylphenol (NP) has increased in recent years due to reports that it is an endocrine disrupting compound and that it is persistent in the environment. The biodegradation of NP was examined through the use of microcosms and respirometers. NP biodegradation was examined under aerobic, nitrate reducing, sulfate reducing, and methanogenic conditions. Through the use of gas chromatography- mass spectroscopy, the technical mixture of NP was differentiated into 23 isomers. Since no standards are available, a novel technique was used to quantify the isomers of NP. Under aerobic conditions, biodegradation rates for some isomers differed significantly, indicating that some isomers are more resistant to biodegradation. Comparisons between known isomer structures and biodegradation rates show that correlations exist between the branching of the alkyl chain and biodegradability. Under anoxic conditions, NP degradation using cultures obtained from the anaerobic digester of a local wastewater treatment plant did not occur. -
(12) United States Patent (10) Patent No.: US 7.494,962 B2 Kinet Al
USOO74949.62B2 (12) United States Patent (10) Patent No.: US 7.494,962 B2 Kinet al. (45) Date of Patent: Feb. 24, 2009 (54) SOLVENTS CONTAINING CYCLOAKYL (56) References Cited ALKYLETHERS AND PROCESS FOR PRODUCTION OF THE ETHERS U.S. PATENT DOCUMENTS 3496,223 A * 2/1970 Mitchell et al. ............... 562/22 (75) Inventors: Idan Kin, Ottawa (CA); Genichi Ohta, Tokyo (JP); Kazuo Teraishi, Tokyo (JP); Kiyoshi Watanabe, Tokyo (JP) (Continued) (73) Assignee: Zeon Corporation, Tokyo (JP) FOREIGN PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this EP 587434 A1 3, 1994 patent is extended or adjusted under 35 U.S.C. 154(b) by 349 days. (Continued) (21) Appl. No.: 10/481,340 OTHER PUBLICATIONS (22) PCT Filed: Jun. 27, 2002 Edited by Kagaku Daijiten Henshu Iinkai, “Kagaku Daijiten 9”. (86). PCT No.: PCT/UP02/06501 Kyoritsu Shuppan Co., Ltd., Aug. 25, 1962, p. 437, "Yozai'. (Continued) S371 (c)(1), (2), (4) Date: Sep. 24, 2004 Primary Examiner Gregory E Webb (74) Attorney, Agent, or Firm—Birch, Stewart, Kolasch & (87) PCT Pub. No.: WO03/002500 Birch, LLP PCT Pub. Date: Jan. 9, 2003 (57) ABSTRACT (65) Prior Publication Data The present inventions are (A) a solvent comprising at least US 2005/OO65060A1 Mar. 24, 2005 one cycloalkyl alkyl ether (1) represented by the general O O formula: R1-O R2 (wherein R1 is cyclopentyl or the like: (30) Foreign Application Priority Data and R2 is C1-10 alkyl or the like); (B) a method of prepara Jun. 28, 2001 (JP) ............................. 2001-196766 tions the ethers (1) characterized by reacting an alicyclic Oct. -
Effect of Red Fruit Oil on Ovarian Follicles Development in Rat Exposed to Cigarette Smoke
Biosaintifika 10 (2) (2018) 401-407 Biosaintifika Journal of Biology & Biology Education http://journal.unnes.ac.id/nju/index.php/biosaintifika Effect of Red Fruit Oil on Ovarian Follicles Development in Rat Exposed to Cigarette Smoke Isrotun Ngesti Utami, Enny Yusuf Wachidah Yuniwarti, Tyas Rini Saraswati DOI: http://dx.doi.org/10.15294/biosaintifika.v10i2.13236 Department of Biology, Faculty of Science and Mathematics, Universitas Diponegoro, Indonesia History Article Abstract Received 2 January 2018 Red fruit oil (Pandanus conoideus Lam) contains active substances in the form of Approved 12 June 2018 alpha-tocopherol, beta-carotene and unsaturated fatty acids that can potentially be Published 30 August 2018 antioxidants. This study aims to examine the effect of red fruit oil (Pandanus conoi- deus) on the development of ovarian follicles of rat exposed to cigarette smoke, (in Keywords increasing the number of primary follicles, secondary follicles, tertiary follicles and Development of ovarian ovarian weight). This study used Completely Randomized Design with 20 female follicles; Red fruit oil; To- bacco smoke; Ovarian weight rats (3 months old) divided into 4 treatment groups: P0 (Positive control), P1 (nega- tive control of exposure to cigarette smoke for 8 days), P2 (exposure to cigarette smoke for 8 days + 0.1 ml red fruit oil) and P3 (exposure of cigarette smoke for 8 days + 0.2 ml red fruit oil) with 5 time repetition and 28 days red fruit treatment for the research parameters were the number of primary follicles, secondary follicles, tertiary follicles and ovarian weight. The data obtained were analyzed using one- way ANOVA with 95% confidence level (P < 0.05). -
Chemistry 301-301A - Hour Examination #3, December 11, 2003
Chemistry 301-301A - Hour Examination #3, December 11, 2003 “.....as we know, there are known unknowns; there are things we know we know. We also know there are known unknowns; that is to say we know there are some things we do not know. But there are also unknown unknowns - the ones we don't know we don't know.” Donald Rumsfeld (winner of a British award given to the worst mangler of the English language in 2003) “I know, a proof is a proof. What kind of a proof is a proof? A proof is a proof and when you have a good proof it's because it's proven." Jean Chrétien (hon. mention for the same award) 1[18 points] (a) Acid-catalyzed addition of water to 3-methyl-1-butene (1) results in formation of large amounts of a rearranged alcohol (2), in addition to the expected alcohol (3). Explain, with excellent arrow formalisms. H2O + H O+ 3 OH OH 1 3 2 (b) On the other hand hydroboration of 1, followed by oxidation, does not lead to any rearranged product. Only alcohol 4 is formed. Explain. Detailed mechanisms are not needed here, but a drawing of the transition state for the hydroboration step is. 1. BH3 OH 2. HOOH/HO – 1 4 (c) But there are some strange things that happen in hydroboration. For example when 2-methyl-2-butene (5) is hydroborated at high temperature, then treated with HOOH/HO–, alcohol 4 is still one of the products. Explain mechanistcally. Hint: at high temperature hydroboration is reversible. -
Chemical Resistance: Deco-Trowel
CHEMICAL RESISTANCE DECO-TROWEL ® SERIES 223 Tnemec Company, Inc. 6800 Corporate Drive Kansas City, Missouri 64120-1372 +1 816-483-3400 www.tnemec.com © December 16, 2019 by Tnemec Company, Inc. Chem223 Page 1 of 19 CHEMICAL RESISTANCE DECO-TROWEL ® | SERIES 223 COMMON PROBLEM AREAS FOR COATINGS AND SOLUTIONS Problem: Coating Solution: Points of failure Carefully and due to thin spots fully coat in coating Problem: Rough Pinhole Solution: Uneven Undercut Grind smooth welds Problem: Gaps between Solution: plates, coating Continuous can not cover welds Problem: Gaps between Solution: plates, coating Continuous can not cover welds Problem: Coating Sharp surface Solution: contours create Round the thin spots in contours coating Problem: Skip welding Solution: creates gaps Continuous that coating welds can not cover Problem: Skip welding Solution: creates gaps Continuous that coating welds can not cover 2 channels back to back IMPORTANT: Definitions for the terms and acronyms used in this guide to describe the recommended exposures, along with other important information, can be found on the cover page of this guide or by contacting Tnemec Technical Service. Coatings should not be applied in a chemical exposure environment until the user has thoroughly read and understood the product information and full project details have been discussed with Tnemec Technical Service. Tnemec Company, Inc. 6800 Corporate Drive Kansas City, Missouri 64120-1372 +1 816-483-3400 www.tnemec.com © December 16, 2019 by Tnemec Company, Inc. Chem223 Page 2 of 19 CHEMICAL RESISTANCE DECO-TROWEL ® | SERIES 223 ¹ Product is NOT suitable for direct or indirect food contact. Intended Use and temperature information relates to product’s performance capabilities only. -
The Path of Carbon in Photosynthesis
Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title THE PATH OF CARBON IN PHOTOSYNTHESIS Permalink https://escholarship.org/uc/item/1sx1t7t0 Authors Bassham, J.A. Calvin, Melvin Publication Date 2008-05-21 eScholarship.org Powered by the California Digital Library University of California UCRL-9583 UNIVERSITY OF CALIFORNIA TWO-WEEK LOAN COPY This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Diuision, Ext. 5545 BERKELEY, CALIFORNIA UCRL-9583 Limited Distribution UNIVERSITY OF CALIFORNIA Lawrence Radiatio;n Laboratory Berkeley, California Contract No. W-7405-eng-48 THE PATH OF CARBON IN PHOTOSYNTHESIS J. A. Bassham and Melvin Calvin October 1960 ·1······.' 8 Oct. 1960 UCBL-95 3 Bj.ogenesis of Natural Subotances edited by Marshall Gates. To be published by Interscience Publishers Chapter 1 THE PNfH OIl' CARBON IN PHOI'OSYNTlillSrs J. A. Bassham and Melvin Calvin Department of Chemistry and Lawrence Radiation Laboratory* Univel'Si ty ot' California, Berkeley, California Contents :Page No. I Introduction 1 II Carbon Reduction Cycle of Photosynthesis :> III Evidence for tile Carbon Reduction Cycle 7 IV The Carbo~ylation Reaotions 14 V Balance among Synthetic Pathways 17 VI Photosynthesis va. Other forme of Biosynthesis 19 \. VII Amino Acid 'Synthesis 20 VIII Carboxylic Acids Malic and Fumaric Acids 27 GlYCOliC' Acid, Acetic Acid and Glyoxylic Acid 28 Acetate IX Carbohydrates Monosaccharides Dlsaccharidea and Polysaccharides 40 x Fata 42 Fatty Acids 45 Glycerol Phosphate 44 XI Aromatic Nuclei 47 XII Other BiosJluthetic Products 47 References 50 * The preparation of this chep't;er was sponsored by the U.S.