Technical and Regulatory Guidance Environmental Molecular Diagnostics

Total Page:16

File Type:pdf, Size:1020Kb

Technical and Regulatory Guidance Environmental Molecular Diagnostics Technical and Regulatory Guidance Environmental Molecular Diagnostics New Site Characterization and Remediation Enhancement Tools April 2013 Prepared by The Interstate Technology & Regulatory Council Environmental Molecular Diagnostics Team ABOUT ITRC The Interstate Technology and Regulatory Council (ITRC) is a public-private coalition working to reduce bar- riers to the use of innovative environmental technologies and approaches so that compliance costs are reduced and cleanup efficacy is maximized. ITRC produces documents and training that broaden and deepen technical knowledge and expedite quality regulatory decision making while protecting human health and the envir- onment. With private and public sector members from all 50 states and the District of Columbia, ITRC truly provides a national perspective. More information on ITRC is available at www.itrcweb.org. ITRC is a pro- gram of the Environmental Research Institute of the States (ERIS), a 501(c)(3) organization incorporated in the District of Columbia and managed by the Environmental Council of the States (ECOS). ECOS is the national, nonprofit, nonpartisan association representing the state and territorial environmental commissioners. Its mission is to serve as a champion for states; to provide a clearinghouse of information for state envir- onmental commissioners; to promote coordination in environmental management; and to articulate state pos- itions on environmental issues to Congress, federal agencies, and the public. DISCLAIMER This material was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any war- ranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or use- fulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opin- ions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof and no official endorsement should be inferred. The information provided in documents, training curricula, and other print or electronic materials created by the Interstate Technology and Regulatory Council (ITRC) (“ITRC Products”) is intended as a general reference to help regulators and others develop a consistent approach to their evaluation, regulatory approval, and deployment of environmental technologies. The information in ITRC Products was formulated to be reliable and accurate. However, the information is provided "as is" and use of this information is at the users’ own risk. ITRC Products do not necessarily address all applicable health and safety risks and precautions with respect to particular materials, conditions, or procedures in specific applications of any technology. Consequently, ITRC recommends consulting applicable standards, laws, regulations, suppliers of materials, and material safety data sheets for information concerning safety and health risks and precautions and compliance with then-applicable laws and regulations. ITRC, ERIS and ECOS shall not be liable in the event of any conflict between inform- ation in ITRC Products and such laws, regulations, and/or other ordinances. ITRC Product content may be revised or withdrawn at any time without prior notice. ITRC, ERIS, and ECOS make no representations or warranties, express or implied, with respect to information in its Products and specifically disclaim all war- ranties to the fullest extent permitted by law (including, but not limited to, merchantability or fitness for a par- ticular purpose). ITRC, ERIS, and ECOS will not accept liability for damages of any kind that result from acting upon or using this information. ITRC, ERIS, and ECOS do not endorse or recommend the use of spe- cific technology or technology provider through ITRC Products. Reference to technologies, products, or ser- vices offered by other parties does not constitute a guarantee by ITRC, ERIS, and ECOS of the quality or value of those technologies, products, or services. Information in ITRC Products is for general reference only; it should not be construed as definitive guidance for any specific site and is not a substitute for consultation with qualified professional advisors. EMD-2 Environmental Molecular Diagnostics New Site Characterization and Remediation Enhancement Tools April 2013 Prepared by The Interstate Technology & Regulatory Council Environmental Molecular Diagnostics Team Copyright 2013 Interstate Technology & Regulatory Council 50 F Street NW, Suite 350, Washington, DC 20001 Permission is granted to refer to or quote from this publication with the customary acknow- ledgment of the source. The suggested citation for this document is as follows: ITRC (Interstate Technology & Regulatory Council). 2013. Environmental Molecular Diagnostics, New Site Characterization and Remediation Enhancement Tools. EMD-2. Washington, D.C.: Interstate Technology & Regulatory Council, Environmental Molecular Diagnostics Team. www.itrcweb.org. All tables and figures from ITRC unless otherwise noted. ACKNOWLEDGEMENTS The members of the Interstate Technology and Regulatory Council (ITRC) Environmental Molecu- lar Diagnostics (EMD) Team wish to acknowledge the individuals, organizations, and agencies that contributed to this Technical and Regulatory Guidance Document. The team recognizes the great value of teamwork and thanks everyone who participated—named and unnamed, ITRC staff, ITRC Point of Contact, or team member—for their outstanding effort on this project. The EMD team appreciates the ongoing support from several agencies and organizations. As part of the broader ITRC effort, the EMD Team effort is funded primarily by the U.S. Department of Energy. Additional funding and support have been provided by the U.S. Department of Defense and the U.S. Environmental Protection Agency. ITRC operates as a committee of the Envir- onmental Research Institute of the States (ERIS), a Section 501(c)(3) public charity that supports the Environmental Council of the States (ECOS) through its educational and research activities. The goal of these activities is to improve the environment in the United States and to provide a forum for state environmental policy makers. The EMD Team thanks the ITRC external reviewers and the peer reviewers who contributed com- ments and suggestions that were of great help to the team in finalizing this guidance. The EMD Team also wishes to thank the reviewers and contributors of the case studies. The EMD Team recognizes the efforts and important contributions of the following state envir- onmental personnel: l Robert Mueller, New Jersey Department of Environmental Protection, EMD Team Leader l James Fish, Alaska Department of Environmental Conservation l Christine Brown, Sara Michael, and Claudio Sorrentino; California Department of Toxic Substance Control l Cleet Carlton, California Regional Water Quality Control Board l Undine Johnson, Georgia Environmental Protection Division l Richard Aho, Michigan MCSWMA l Ramesh Belani, Pennsylvania Department of Environmental Protection l Kimberly Wilson, South Carolina Department of Health and Environmental Control The EMD Team recognizes the efforts and valuable contributions of the following stakeholder and academic representatives: l Peter Strauss, PM Strauss & Associates l Michael Hyman, North Carolina State University l Paul Philp, University of Oklahoma l Frank Löffler and Elizabeth Padilla-Crespo, University of Tennessee l Kerry Sublette, University of Tulsa l Jennifer Weidhaas, West Virginia University The EMD Team recognizes the efforts and valuable contributions of the following federal per- sonnel: i l Adria Bodour, AFCEE l Ann Miracle and M. Hope Lee, DOE, Pacific Northwest National Laboratory l Hans Stroo and Paul Hatzinger, SERDP/ESTCP l Cheryl A. Hawkins, USEPA l David Lattier, USEPA l Carmen Lebrón, U.S. Navy Finally, the EMD Team recognizes the efforts and valuable contributions of the following con- sultants and industry representatives: l Jun Lu, Rebecca Mora, Chad Roper, and Harvinder Singh; AECOM Environment l Jessica Goin, Anchor QEA l Caitlin Bell, ARCADIS l Ramona Darlington, Battelle Memorial Institute l Stephanie Fiorenza and David Tsao, BP l Stephen Koenigsberg, Brown and Caldwell l Tamzen Macbeth and Ryan Wymore, CDM Smith l David Duncklee, Duncklee and Dunham l William Berti, DuPont l Ioana Petrisor, Cardno Entrix l Eric Raes, Engineering and Land Planning Associates, Inc. l Devon Rowe, ENVIRON l Erik Petrovskis and Tasha Kamegai-Karadi, Geosyntec Consultants l Aaron Peacock, Haley & Aldrich, Inc. l Sophia Drugan, Kleinfelder, Inc. l Brett Baldwin and Dora Ogles, Microbial Insights, Inc. l Pat McLoughlin, Microseeps, Inc. l Lesley Hay Wilson, Sage Risk Solutions, LLC l Christopher Glenn, Treadwell Rollo l Yi Wang, Zymax l Greg Davis ii EXECUTIVE SUMMARY Environmental molecular diagnostics (EMDs) is a collective term that describes a group of advanced and emerging techniques used to analyze the biological and chemical characteristics of environmental samples. Over the last decade, great advances have been made in adapting and applying EMDs
Recommended publications
  • Investigation of Base-Free Copper-Catalysed Azide–Alkyne Click Cycloadditions (Cuaac) in Natural Deep Eutectic Solvents As Green and Catalytic Reaction Media
    Investigation of Base-free Copper-Catalysed Azide–Alkyne Click Cycloadditions (CuAAc) in Natural Deep Eutectic Solvents as Green and Catalytic Reaction Media Salvatore V. Giofrè,1* Matteo Tiecco,2* Angelo Ferlazzo,3 Roberto Romeo,1 Gianluca Ciancaleoni,4 Raimondo Germani2 and Daniela Iannazzo3 1. Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale Annunziata, I-98168 Messina, Italy. 2. Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, via Elce di Sotto 8, I- 06123 Perugia, Italy. 3. Dipartimento di Ingegneria, Università of Messina, Contrada Di Dio, I-98166 Messina, Italy 4. Dipartimento di Chimica e Chimica Industriale (DCCI), Università di Pisa, Via Giuseppe Moruzzi, 13, I-56124 Pisa, Italy. * Corresponding authors Email addresses: [email protected] (Salvatore V. Giofrè); [email protected] (Matteo Tiecco). ABSTRACT The click cycloaddition reaction of azides and alkynes affording 1,2,3-triazoles is a transformation widely used to obtain relevant products in chemical biology, medicinal chemistry, materials science and other fields. In this work, a set of Natural Deep Eutectic Solvents (NADESs) as “active” reaction media has been investigated in the copper-catalysed azide–alkyne cycloaddition reactions (CuAAc). The use of these green liquids as green and catalytic solvents has shown to improve the reaction effectiveness, giving excellent yields. The NADESs proved to be “active” in this transformation for the absence of added bases in all the performed reactions and in several cases for their reducing capabilities. The results were rationalized by DFT calculations which demonstrated the involvement of H-bonds between DESs and alkynes as well as a stabilization of copper catalytic intermediates.
    [Show full text]
  • Chlorine Stable Isotopes in Sedimentary Systems: Does Size Matter?
    Chlorine stable isotopes in sedimentary systems: does size matter? Max Coleman Jet Propulsion Laboratory, Caltech, Pasadena, California, USA ABSTRACT: Stable isotope abundances vary because of size (atomic mass) differences. The chlorine stable isotope system was one of the first described theoretically, but had a slow, disappointment-strewn develop- ment, relative to other elements. Method improvement gave only small, but significant, differences (-1 %.) in compositions of geological materials. Eventually, brines and groundwater chlorides gave larger differences (-5%0). Physical processes like diffusion and adsorption, probably are the main controls of groundwater com- positions. In contrast, the processes producing brine compositions are still enigmatic and need further work for full understanding. Recent work on anthropogenic groundwater contaminants (chlorinated aliphatic hy- drocarbons and perchlorate) shows variations resulting from manufacturing processes; implying possibilities of tracing sources. However, they are subject to microbial degradation, producing much larger fractionations (115%0),but therefore offering better possibility of monitoring natural attenuation. So atomic size is important to give isotopic fractionation and the size of fractionation matters, allowing observation of otherwise unde- tectable processes. lecular and atomic weights by weighing the gases and relating them to the weight of hydrogen. All 1 INTRODUCTION atomic weights were integer multiples the weight of This paper aims to give a short and selective
    [Show full text]
  • Chapter 8 - Alkynes: an Introduction to Organic Synthesis
    Chapter 8 - Alkynes: An Introduction to Organic Synthesis Draw structures corresponding to each of the following names. 1. ethynylcyclopropane Answer: CCH 2. 3,10-dimethyl-6-sec-butylcyclodecyne Answer: 3. 4-bromo-3,3-dimethyl-1-hexen-5-yne CH3 Br Answer: H 2C CH C CH C C H CH3 4. acetylene Answer: H CCH Provide names for each compound below. CH3 5. CH3C CCHCH2CH2CH3 Answer: 4-methyl-2-heptyne CH 3 6. CCH Answer: 1-ethynyl-2-methylcyclopentane Test Items for McMurry’s Organic Chemistry, Seventh Edition 59 The compound below has been isolated from the safflower plant. Consider its structure to answer the following questions. H H CCCCCCCC H H3C C C C H H C H H 7. What is the molecular formula for this natural product? Answer: C13H10 8. What is the degree of unsaturation for this compound? Answer: We can arrive at the degree of unsaturation for a structure in two ways. Since we know that the degree of unsaturation is the number of rings and/or multiple bonds in a compound, we can simply count them. There are three double bonds (3 degrees) and three triple bonds (six degrees), so the degree of unsaturation is 9. We can verify this by using the molecular formula, C13H10, to calculate a degree of unsaturation. The saturated 13-carbon compound should have the base formula C13H28, so (28 - 10) ÷ 2 = 18 ÷ 2 = 9. 9. Assign E or Z configuration to each of the double bonds in the compound. Answer: H H E CCCCCCCCE H H3C C C C H H C H H 10.
    [Show full text]
  • Strategies for the Synthesis of Ynamides
    I. SYNTHESIS OF INDOLINES AND INDOLES VIA INTRAMOLECULAR [4 + 2] CYCLOADDITION OF YNAMIDES AND CONJUGATED ENYNES II. SYNTHESIS OF NITROGEN HETEROCYCLES IN SUPERCRITICAL CARBON DIOXIDE by Joshua Ross Dunetz B. A., Chemistry Haverford College, 2000 SUBMITTED TO THE DEPARTMENT OF CHEMISTRY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 2005 © Massachusetts Institute of Technology, 2005 All rights reserved Signature of Author .................... ·Department of Chemistry September 1, 2005 a( / Certified by ................................... ................................ Rick L. Danheiser Arthur C. Cope Professor of Chemistry, Thesis Supervisor Acceptedby......................... ............................................ I.... 7 Robert W. Field MASSACHUSETSINSTn '.vE I F TrwfhNl erv-v I Chairman, Department Committee on Graduate Students OCT 1 2005 d }cl/CF , LIBRARIES ~ This doctoral thesis has been examined by a committee in the Department of Chemistry as follows: Professor Timothy F. Jamison . ... Chairman Professor Rick L. Danheiser ........... ... ............................ Thesis Supervisor Professor Barbara Imperiali. ...... ................................................ 2 ACKNOWLEDGMENTS All acknowledgments must begin with my thesis advisor, Rick Danheiser. I first remember meeting him at the Cambridge Brewing Company during recruiting weekend five years ago, and we sat for hours in the restaurant discussing the merits of the 2000 New York Mets and whether one of our favorite baseball teams had a chance to make the playoffs that year. Ultimately, I decided to attend MIT with the hope of joining his group, and during my time in his laboratory Rick has been an excellent mentor and chemistry role model. I continue to be amazed not only by the extent of his knowledge, but also by his ability to articulate chemical principles in an easy and straightforward manner.
    [Show full text]
  • WHO Guidelines for Indoor Air Quality : Selected Pollutants
    WHO GUIDELINES FOR INDOOR AIR QUALITY WHO GUIDELINES FOR INDOOR AIR QUALITY: WHO GUIDELINES FOR INDOOR AIR QUALITY: This book presents WHO guidelines for the protection of pub- lic health from risks due to a number of chemicals commonly present in indoor air. The substances considered in this review, i.e. benzene, carbon monoxide, formaldehyde, naphthalene, nitrogen dioxide, polycyclic aromatic hydrocarbons (especially benzo[a]pyrene), radon, trichloroethylene and tetrachloroethyl- ene, have indoor sources, are known in respect of their hazard- ousness to health and are often found indoors in concentrations of health concern. The guidelines are targeted at public health professionals involved in preventing health risks of environmen- SELECTED CHEMICALS SELECTED tal exposures, as well as specialists and authorities involved in the design and use of buildings, indoor materials and products. POLLUTANTS They provide a scientific basis for legally enforceable standards. World Health Organization Regional Offi ce for Europe Scherfi gsvej 8, DK-2100 Copenhagen Ø, Denmark Tel.: +45 39 17 17 17. Fax: +45 39 17 18 18 E-mail: [email protected] Web site: www.euro.who.int WHO guidelines for indoor air quality: selected pollutants The WHO European Centre for Environment and Health, Bonn Office, WHO Regional Office for Europe coordinated the development of these WHO guidelines. Keywords AIR POLLUTION, INDOOR - prevention and control AIR POLLUTANTS - adverse effects ORGANIC CHEMICALS ENVIRONMENTAL EXPOSURE - adverse effects GUIDELINES ISBN 978 92 890 0213 4 Address requests for publications of the WHO Regional Office for Europe to: Publications WHO Regional Office for Europe Scherfigsvej 8 DK-2100 Copenhagen Ø, Denmark Alternatively, complete an online request form for documentation, health information, or for per- mission to quote or translate, on the Regional Office web site (http://www.euro.who.int/pubrequest).
    [Show full text]
  • 1-Iodo-1-Pentyne
    MIAMI UNIVERSITY-THE GRADUATE SCHOOL CERTIFICATE FOR APPROVING THE DISSERTATION We hereby approve the Dissertation of Lizhi Zhu Candidate for the Degree: Doctor of Philosophy ________________________________ Robert E. Minto, Director ________________________________ John R. Grunwell, Reader ________________________________ John F. Sebastian, Reader ________________________________ Ann E. Hagerman, Reader ________________________________ Richard E. Lee, Graduate School Representative ABSTRACT INVESTIGATING THE BIOSYNTHESIS OF POLYACETYLENES: SYNTHESIS OF DEUTERATED LINOLEIC ACIDS & MECHANISM STUDIES OF DMDS ADDITION TO 1,4-ENYNES By Lizhi Zhu A wide range of polyacetylenic natural products possess antimicrobial, antitumor, and insecticidal properties. The biosyntheses of these natural products are widely distributed among fungi, algae, marine sponges, and higher plants. As details of the biosyntheses of these intriguing compounds remains scarce, it remains important to develop molecular probes and analytical methods to study polyacetylene secondary metabolism. An effective pathway to prepare selectively deuterium-labeled linoleic acids was developed. By this Pd-catalyzed method, deuterium can be easily introduced into the vinyl position providing deuterolinoleates with very high isotopic purity. This method also provides a general route for the construction of 1,4-diene derivatives with different chain lengths and 1,4-diene locations. Linoleic acid derivatives (12-d, 13-d and 16,16,17,17,18,18,18-d7) were synthesized according to this method. A stereoselective synthesis of methyl (14Z)- and (14E)-dehydrocrepenynate was achieved in five to six steps that employed Pd-catalyzed cross-coupling reactions to construct the double bonds between C14 and C15. Compared with earlier methods, the improved syntheses are more convenient (no spinning band distillations or GLC separation of diastereomers were necessary) and higher Z/E ratios were obtained.
    [Show full text]
  • 12 Natural Isotopes of Elements Other Than H, C, O
    12 NATURAL ISOTOPES OF ELEMENTS OTHER THAN H, C, O In this chapter we are dealing with the less common applications of natural isotopes. Our discussions will be restricted to their origin and isotopic abundances and the main characteristics. Only brief indications are given about possible applications. More details are presented in the other volumes of this series. A few isotopes are mentioned only briefly, as they are of little relevance to water studies. Based on their half-life, the isotopes concerned can be subdivided: 1) stable isotopes of some elements (He, Li, B, N, S, Cl), of which the abundance variations point to certain geochemical and hydrogeological processes, and which can be applied as tracers in the hydrological systems, 2) radioactive isotopes with half-lives exceeding the age of the universe (232Th, 235U, 238U), 3) radioactive isotopes with shorter half-lives, mainly daughter nuclides of the previous catagory of isotopes, 4) radioactive isotopes with shorter half-lives that are of cosmogenic origin, i.e. that are being produced in the atmosphere by interactions of cosmic radiation particles with atmospheric molecules (7Be, 10Be, 26Al, 32Si, 36Cl, 36Ar, 39Ar, 81Kr, 85Kr, 129I) (Lal and Peters, 1967). The isotopes can also be distinguished by their chemical characteristics: 1) the isotopes of noble gases (He, Ar, Kr) play an important role, because of their solubility in water and because of their chemically inert and thus conservative character. Table 12.1 gives the solubility values in water (data from Benson and Krause, 1976); the table also contains the atmospheric concentrations (Andrews, 1992: error in his Eq.4, where Ti/(T1) should read (Ti/T)1); 2) another category consists of the isotopes of elements that are only slightly soluble and have very low concentrations in water under moderate conditions (Be, Al).
    [Show full text]
  • Dehalobacter Restrictus PER-K23T
    Standards in Genomic Sciences (2013) 8:375-388 DOI:10.4056/sigs.3787426 Complete genome sequence of Dehalobacter restrictus T PER-K23 Thomas Kruse1*, Julien Maillard2, Lynne Goodwin3,4, Tanja Woyke3, Hazuki Teshima3,4, David Bruce3,4, Chris Detter3,4, Roxanne Tapia3,4, Cliff Han3,4, Marcel Huntemann3, Chia-Lin Wei3, James Han3, Amy Chen3, Nikos Kyrpides3, Ernest Szeto3, Victor Markowitz3, Natalia Ivanova3, Ioanna Pagani3, Amrita Pati3, Sam Pitluck3, Matt Nolan3, Christof Holliger2, and Hauke Smidt1 1 Wageningen University, Agrotechnology and Food Sciences, Laboratory of Microbiology, Dreijenplein 10, NL-6703 HB Wageningen, The Netherlands. 2 Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering, Laboratory for Environmental Biotechnology, Station 6, CH- 1015 Lausanne, Switzerland. 3 DOE Joint Genome Institute, Walnut Creek, California, USA 4 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA *Corresponding author: Thomas Kruse ([email protected]) Keywords: Dehalobacter restrictus type strain, anaerobe, organohalide respiration, PCE, TCE, reductive dehalogenases Dehalobacter restrictus strain PER-K23 (DSM 9455) is the type strain of the species Dehalobacter restrictus. D. restrictus strain PER-K23 grows by organohalide respiration, cou- pling the oxidation of H2 to the reductive dechlorination of tetra- or trichloroethene. Growth has not been observed with any other electron donor or acceptor, nor has fermentative growth been shown. Here we introduce the first full genome of a pure culture within the ge- nus Dehalobacter. The 2,943,336 bp long genome contains 2,826 protein coding and 82 RNA genes, including 5 16S rRNA genes. Interestingly, the genome contains 25 predicted re- ductive dehalogenase genes, the majority of which appear to be full length.
    [Show full text]
  • PALLADIUM CATALYSED OLIGOMERIZATION of 1-ALKYNES by Ann Beal Hunt
    RICE UNIVERSITY PALLADIUM CATALYSED OLIGOMERIZATION OP 1-ALKYNES by Ann Beal Hunt A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS Thesis Director’s Signature: Houston, Texas August 197^ ABSTRACT PALLADIUM CATALYSED OLIGOMERIZATION OF 1-ALKYNES by Ann Beal Hunt The oligomerization of 1-pentyne using palladium acetyl acetonate catalyst with various solvents and ligands was in¬ vestigated. An equimolar mixture of HOAc and Et N proved 3 to be a superior solvent. The major product observed in most cases was the dimer, 6-methylene-nona-^-yne, although both cis and trans-dec-^t-ene-6-yne were observed in most cases. Trimers were formed when phosphines were replaced with bldentate amines or phosphite ligands. A one to one mixture of PPh and (CH 0) P gave the highest yield of 3 3 3 oligomers with 6-methylene-nona-4-yne as the major product. No aromatics were formed with any of the reaction systems studied. 19 The general mechanism proposed, by Meriwether and 15 elaborated by Maitlis is in agreement with these results. ACKNOWLEDGEMENTS I wish to thank Rice University and the Robert A. Welch Foundation for their financial support. to Jerry and my parents TABLE OF CONTENTS Introduction 1 Results and Discussion 15 Experimental 3H Bibliography Ml Appendix: spectra M3 1 INTRODUCTION There has been considerable interest in the metal catalyzed oligomerization of acetylenes since Reppe's initial discovery in 19^8 that nickel catalysed the tetra- 21 merization of acetylene to cyclooctatetraene. 20 Odaira in 1966 observed the formation of conjugated trans-polyacetylene upon addition of PdCl to acetylene in 2 acetic acid.
    [Show full text]
  • Gfsorganics & Fragrances
    Chemicals for Flavors GFSOrganics & Fragrances GFS offers a broad range of specialty organic chemicals Specialized chemistries we as building blocks and intermediates for the manufacture of offer include: flavors and fragrances. • Alkynes Over 5,500 materials, including 1,400 chemicals from natural sources, are used for flavor • Alkynols enhancements and aroma profiles. These aroma chemicals are integral components of • Olefins the continued growth within consumer products and packaged foods. The diversity of products can be attributed to the broad spectrum of organic compounds derived from • Unsaturated Acids esters, aldehydes, lactones, alcohols and several other functional groups. • Unsaturated Esters • DIPPN and other Products GFS Chemicals manufactures a wide range of organic intermediates that have been utilized in a multitude of personal care applications. For example, we support Why GFS? several market leading companies in the manufacture and supply of alkyne based aroma chemicals. • Specialized Chemistries • Tailored Specifications As such, we understand the demanding nature of this fast changing market and are fully • From Grams to Metric Tons equipped to overcome process challenges and manufacture the novel chemical products • Responsive Technical Staff that you need, when you need them. We offer flexible custom manufacturing services to produce high purity products with the assurance of quality and full confidentiality. • Uncompromised Product Quality Our state-of-the-art manufacturing facility, located in Columbus, OH is ISO 9001:2008 certified. As a U.S. based manufacturer we have a proven record of helping you take products from development to commercialization. Our technical sales experts are readily accessible to discuss your project needs and unique product specifications.
    [Show full text]
  • Accelerator Mass Spectrometry of 36Cl and 129I Analytical Aspects and Applications
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1 Accelerator Mass Spectrometry of 36Cl and 129I Analytical Aspects and Applications BY VASILY ALFIMOV ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 UPPSALA ISBN 91-554-6124-7 2005 urn:nbn:se:uu:diva-4725 Dissertation presented at Uppsala University to be publicly examined in Häggsalen, The Ång- ström Laboratory, Uppsala, Friday, January 21, 2005 at 10:15 for the Degree of Doctor of Philosophy. The examination will be conducted in English. Abstract Alfimov, V. 2005. Accelerator Mass Spectrometry of 36Cl and 129I: Analytical Aspects and Applications. Acta Universitatis Upsaliensis. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1. 81 pp. Uppsala. ISBN 91-554-6124-7 36 129 Two long-lived halogen radionuclides ( Cl, T1/2 = 301 kyr, and I, T1/2 = 15.7 Myr) have been studied by means of Accelerator Mass Spectrometry (AMS) at the Uppsala Tandem Labo- ratory. The 36Cl measurements in natural samples using a medium-sized tandem accelerator (∼1 MeV/amu) have been considered. A gas-filled magnetic spectrometer (GFM) was proposed for the separation of 36Cl from its isobar, 36S. Semi-empirical Monte-Carlo ion optical calculations were conducted to define optimal conditions for separating 36Cl and 36S. A 180° GFM was constructed and installed at the dedicated AMS beam line. 129I has been measured in waters from the Arctic and North Atlantic Oceans. Most of the 129I currently present in the Earth’s surface environment can be traced back to liquid and gaseous releases from the nuclear reprocessing facilities at Sellafield (UK) and La Hague (France).
    [Show full text]
  • Posted 01/14
    FINAL REPORT BioReD: Biomarkers and Tools for Reductive Dechlorination Site Assessment, Monitoring and Management SERDP Project ER-1586 November 2013 Frank Löffler Kirsti Ritalahti University of Tennessee Elizabeth Edwards University of Toronto Carmen Lebrón NAVFAC ESC Distribution Statement A This report was prepared under contract to the Department of Defense Strategic Environmental Research and Development Program (SERDP). The publication of this report does not indicate endorsement by the Department of Defense, nor should the contents be construed as reflecting the official policy or position of the Department of Defense. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Department of Defense. Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202- 4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
    [Show full text]