Hemisynthesis and Biological Evaluation of Cinnamylated, Benzylated, and Prenylated Dihydrochalcones from a Common Bio-Sourced Precursor

Total Page:16

File Type:pdf, Size:1020Kb

Hemisynthesis and Biological Evaluation of Cinnamylated, Benzylated, and Prenylated Dihydrochalcones from a Common Bio-Sourced Precursor antibiotics Article Hemisynthesis and Biological Evaluation of Cinnamylated, Benzylated, and Prenylated Dihydrochalcones from a Common Bio-Sourced Precursor Anne Ardaillou, Jérôme Alsarraf * , Jean Legault, François Simard and André Pichette * Centre de Recherche sur la Boréalie (CREB), Laboratoire d’Analyse et de Séparation des Essences Végétales (LASEVE), Université du Québec à Chicoutimi, 555 Boulevard de l’Université, Chicoutimi, QC G7H 2B1, Canada; [email protected] (A.A.); [email protected] (J.L.); [email protected] (F.S.) * Correspondence: [email protected] (J.A.); [email protected] (A.P.); Tel.: +1-418-545-5011 (ext. 2273) (J.A.); +1-418-545-5011 (ext. 5081) (A.P.) Abstract: Several families of naturally occurring C-alkylated dihydrochalcones display a broad range of biological activities, including antimicrobial and cytotoxic properties, depending on their alkylation sidechain. The catalytic Friedel–Crafts alkylation of the readily available aglycon moiety of neohesperidin dihydrochalcone was performed using cinnamyl, benzyl, and isoprenyl alcohols. This procedure provided a straightforward access to a series of derivatives that were structurally related to natural balsacones, uvaretin, and erioschalcones, respectively. The antibacterial and cytotoxic potential of these novel analogs was evaluated in vitro and highlighted some relations between the structure and the pharmacological properties of alkylated dihydrochalcones. Citation: Ardaillou, A.; Alsarraf, J.; Legault, J.; Simard, F.; Pichette, A. Keywords: antibacterial; Brønsted acid catalysis; dihydrochalcone; Friedel–Crafts alkylation; hemisyn- Hemisynthesis and Biological thesis; natural products; Staphylococcus aureus Evaluation of Cinnamylated, Benzylated, and Prenylated Dihydrochalcones from a Common Bio-Sourced Precursor. Antibiotics 1. Introduction 2021, 10, 620. https://doi.org/ Dihydrochalcones (DHCs) are a class of natural phenylpropanoids derived from 10.3390/antibiotics10060620 the biosynthetic pathway of shikimic acid [1]. They are the acyclic counterparts of fla- vanones and are found in several botanical families [2]. Their scaffold can feature various Academic Editor: Carlos M. Franco sidechains [3] resulting from C-glycosylation [4], C-cinnamylation [5–8], C-benzylation [9–11], or C-prenylation [12] (Figure1). The structural diversity of DHCs translates into a broad Received: 4 May 2021 range of biological activities such as antibacterial, antiviral, antidiabetic, antioxidant, anti- Accepted: 19 May 2021 Published: 22 May 2021 inflammatory, and cytotoxic properties [13]. Interestingly, DHCs may display different pharmacological properties compared to the corresponding chalcones. For instance, some S. aureus Publisher’s Note: MDPI stays neutral recently described 4’-methyl DHCs were more active against and less potent with regard to jurisdictional claims in against E. coli than the corresponding chalcones [14]. While functionalized DHCs are published maps and institutional affil- commonly isolated in low yields, simpler derivatives can be found in high concentrations iations. in plants. One of the most abundant natural DHCs is phloridzin, a DHC O-glucoside representing up to 14% of dry weight in apple tree leaves [15]. Some DHCs are also readily accessible by reduction of the corresponding chalcone or flavanone. This is for example the case of neohesperidin dihydrochalcone, a sweetener widely used in the food industry which is obtained by hydrogenation of the citrus metabolite neohesperidin [16]. We re- Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. cently demonstrated that abundant DHCs can serve as precursors in the hemisynthesis of This article is an open access article balsacones [17], a class of cinnamylated antibacterial and anti-psoriatic [18] DHCs from the distributed under the terms and bud of Populus balsamifera that are active against resistant strains of S. aureus (MRSA) and conditions of the Creative Commons did not induce resistance in treated MRSA [19]. In this context, the use of natural DHCs Attribution (CC BY) license (https:// advantageously saved the steps which would have been necessary for the construction creativecommons.org/licenses/by/ of a DHC scaffold from petrochemicals. Their conversion into balsacones was performed 4.0/). in a single-step, following a metal-free and protective group-free Brønsted acid-catalyzed Antibiotics 2021, 10, 620. https://doi.org/10.3390/antibiotics10060620 https://www.mdpi.com/journal/antibiotics Antibiotics 2021, 10, x FOR PEER REVIEW 2 of 14 Antibiotics 2021, 10, 620 2 of 14 was performed in a single-step, following a metal-free and protective group-free Brønsted Friedel–Craftsacid-catalyzed alkylation Friedel–Crafts protocol alkylation [20]. Bio-sourced protocol [20 cinnamyl]. Bio-sourced alcohols cinnamyl were privileged alcohols as thewere alkylation privileged reagents as the alkylation as their utilization reagents as saved their autilization harmful halogenationsaved a harmful step, halogena- and their conversiontion step, and generated their conversion water as thegenerated lone byproduct water as the making lone byproduct the process making overall the green process [21,22 ]. Theoverall use ofgreen natural [21,22 precursors]. The use of was natural also profitableprecursors from was also a drug profitable discovery from perspective, a drug dis- as thesecovery renewable perspective polyfunctional, as these renewable templates polyfunctional constitute a valuable templates source constitute of structural a valuable diver- sitysource [23]. of On structural the other diversity hand, the[23] scope. On the of other sidechains hand, the which scope could of sidechains readily be which incorporated could ontoreadily the frameworkbe incorporated of natural onto the DHCs framework remains of to natural be explored DHCs to remains access theto be wider explored sidechain to varietyaccess foundthe wider in DHCs. sidechain variety found in DHCs. FigureFigure 1. 1.Structure Structure ofof various dihydrochalcones, dihydrochalcones, including including the the aglycone aglycone moiety moiety of neohesperidin of neohesperidin dihydrochalconedihydrochalcone ( 1(1).). Among Among these these structures, structures,C -benzylatedC-benzylated DHCs DHCs have have been been found found in in the the Annonaceae Annonaceae fam- ily,family, in particular in particular in Uvaria in Uvariaspecies species [9,10 ,[249,10,2–26].4– Uvaretin26]. Uvaretin showed showed a considerable a considerable cytotoxicity cyto- toxicity against various human cancer cell lines with IC50 values in the low micromolar against various human cancer cell lines with IC50 values in the low micromolar range [27]. Otherrange 2-hydroxybenzyl-bearing [27]. Other 2-hydroxybenzyl flavonoids-bearing haveflavonoids also been have found also been in nature found such in nature as the C- benzylatedsuch as the flavanone C-benzylated dichamanetin flavanone fromdichamanetinPiper sarmentosum from Piper. Furthermore, sarmentosum. CFurthermore,-prenylation is aC relatively-prenylation common is a relatively modification common in naturalmodification flavonoids in natural that flavonoids is considered that tois enhanceconsidered their bioactivityto enhance by their increasing bioactivity lipophilicity by increasing [28,29]. lipophilicityC-prenylated [28,29 and C].-geranylated C-prenylated DHCs and C were- geranylated DHCs were notably found in the genus Piper. Recently, two prenylated notably found in the genus Piper. Recently, two prenylated DHCs, named erioschalcone A DHCs, named erioschalcone A and B, were isolated in Eriosema glomerata and showed at- and B, were isolated in Eriosema glomerata and showed attractive antimicrobial properties tractive antimicrobial properties against the pathogenic Gram-negative strains Escherichia against the pathogenic Gram-negative strains Escherichia coli and Klebsiella pneumoniae [12]. coli and Klebsiella pneumoniae [12]. It is worthy of note that erioschalcones were inactive It is worthy of note that erioschalcones were inactive against S. aureus, unlike balsacones, against S. aureus, unlike balsacones, which stressed the role of the alkylation fragment of which stressed the role of the alkylation fragment of DHCs on their antimicrobial prop- DHCs on their antimicrobial properties. Herein, we devise the catalytic single-step C-cin- erties. Herein, we devise the catalytic single-step C-cinnamylation, C-benzylation, and namylation, C-benzylation, and C-prenylation of the readily accessible neohesperidin di- C-prenylationhydrochalcone of theaglycon readily 1 as accessible a useful neohesperidinmethod to access dihydrochalcone derivatives that aglycon are structurally1 as a useful methodrelated toto accessnaturally derivatives occurring that balsacones, are structurally uvaretins, related and erioschalcones, to naturally occurring respectively. balsacones, The uvaretins,antibacterial and and erioschalcones, cytotoxic activity respectively. of the synthesized The antibacterial compound and is cytotoxicalso discussed. activity of the synthesized compound is also discussed. Antibiotics 2021, 10, 620 3 of 14 Antibiotics 2021, 10, x FOR PEER REVIEW 3 of 14 2.2. Results Results and and Discussion Discussion 2.1. Chemical Synthesis 2.1. Chemical Synthesis 2.1.1. Cinnamylation of DHC 1 2.1.1. Cinnamylation of DHC 1 Our first objective was to transpose the method developed for the hemisynthesis of balsaconesOur first to DHC objective1 (Table was1 ).to Briefly, transpose the the
Recommended publications
  • Protective Properties of Rooibos (Aspalathus Linearis) Flavonoids on the Prevention of Skin Cancer
    Protective properties of rooibos (Aspalathus linearis) flavonoids on the prevention of skin cancer by Asanda Gwashu Thesis presented in fulfilment of the requirements for the degreeof Master of Science in the Faculty of Science at Stellenbosch University Supervisor: Prof W.C.A. Gelderblom Co-supervisor: Prof A. Louw March 2016 Stellenbosch University https://scholar.sun.ac.za DECLARATION By submitting this dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise state), that reproduction and publication thereof by Stellenbosch university will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Signature Date Copyright © 2016 Stellenbosch University All rights reserved i Stellenbosch University https://scholar.sun.ac.za Abstract Ultraviolet-B (UV-B) radiation is a major cause of skin cancer resulting in an array of events including oxidative damage, DNA damage and inflammation. The keratinocytes and skin macrophages play a pivotal role in inflammation and are known to release a wide range of cytokines in response to UV-B and/or other toxicants such as lipopolysaccharide (LPS). The chronic release of the cytokines, if not controlled, may be detrimental leading to a variety of skin diseases including cancer. Rooibos is well known for its health benefits which include anti-inflammatory effects that are attributed to the anti-oxidant properties of the flavonoids. In the current study the aqueous and methanol extracts of unfermented and fermented rooibos were compared in terms of their polyphenol and flavanol content, while their antioxidant properties were assessed in the FRAP and ABTS assays.
    [Show full text]
  • Skeletal Muscle As a Therapeutic Target for Natural Products to Reverse Metabolic Syndrome
    Chapter 10 Skeletal Muscle as a Therapeutic Target for Natural Products to Reverse Metabolic Syndrome Sithandiwe Eunice Mazibuko-Mbeje, Phiwayinkosi V. Dludla, Bongani B. Nkambule, Nnini Obonye and Johan Louw Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.78687 Abstract Natural compounds, especially polyphenols have become a popular area of research mainly due to their apparent health benefits. Increasing the phenolic content of a diet, apart from its antioxidant benefit, has a beneficial effect on signaling molecules involved in carbohydrate and lipid metabolism. These effects could potentially protect against metabolic syndrome, a cluster of metabolic complications such as obesity, insulin resistance and type 2 diabetes that is characterized by a dysregulated carbohydrate, and lipid metabolism. Research continues to investigate various natural compounds for their amelioration of impaired signaling mech- anisms that may lead to dysregulated metabolism to find means to improve the life expec- tancy of patients with metabolic syndrome. In this chapter, a systematic search through major databases such as MEDLINE/PubMed, EMBASE, and Google Scholar of literature reporting on the ameliorative potential of commonly investigated natural products that target skeletal muscle to ameliorate metabolic syndrome associated complications was conducted. The selected natural products that are discussed include apigenin, aspalathin, berberine, curcumin, epigallocatechin gallate, hesperidin, luteolin, naringenin, quercetin, resveratrol, rutin, and sulforaphane. Keywords: skeletal muscle, metabolic syndrome, insulin resistance, type 2 diabetes, natural products 1. Introduction A considerable amount of interest has been placed on the discovery of novel naturally occur- ring plant-derived compounds for the treatment and prevention of various diseases.
    [Show full text]
  • Metabolic Engineering of Saccharomyces Cerevisiae for De Novo Production of Dihydrochalcones with Known Antioxidant, Antidiabetic, and Sweet Tasting Properties
    Metabolic Engineering xx (xxxx) xxxx–xxxx Contents lists available at ScienceDirect Metabolic Engineering journal homepage: www.elsevier.com/locate/ymben Original Research Article Metabolic engineering of Saccharomyces cerevisiae for de novo production of dihydrochalcones with known antioxidant, antidiabetic, and sweet tasting properties Michael Eichenbergera,b, Beata Joanna Lehkac,d, Christophe Follya, David Fischera, ⁎ Stefan Martense, Ernesto Simóna, Michael Naesbya, a Evolva SA, Duggingerstrasse 23, 4153 Reinach, Switzerland b Department of Biology, Technical University Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany c Evolva Biotech A/S, Lersø Parkallé 42, 2100 Copenhagen, Denmark d Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark e Department of Food Quality and Nutrition, Fondazione Edmund Mach, Centro Ricerca e Innovazione, Via E. Mach 1, 38010 San Michele all’Adige (TN), Italy ARTICLE INFO ABSTRACT Chemical compounds studied in this article: Dihydrochalcones are plant secondary metabolites comprising molecules of significant commercial interest as Phloretin (PubChem CID: 4788) antioxidants, antidiabetics, or sweeteners. To date, their heterologous biosynthesis in microorganisms has been Naringenin (PubChem CID: 932) achieved only by precursor feeding or as minor by-products in strains engineered for flavonoid production. Pinocembrin (PubChem CID: 68071) Here, the native ScTSC13 was overexpressed in Saccharomyces cerevisiae to increase its side activity in Phlorizin (PubChem CID: 6072) reducing p-coumaroyl-CoA to p-dihydrocoumaroyl-CoA. De novo production of phloretin, the first committed Nothofagin (PubChem CID: 42607691) dihydrochalcone, was achieved by co-expression of additional relevant pathway enzymes. Naringenin, a major Trilobatin (PubChem CID: 6451798) Naringin dihydrochalcone (PubChem CID: by-product of the initial pathway, was practically eliminated by using a chalcone synthase from barley with 9894584) unexpected substrate specificity.
    [Show full text]
  • BIOLOGICAL PROPERTIES of SELECTED FLAVONOIDS of ROOIBOS (Aspalathus Linearis)
    BIOLOGICAL PROPERTIES OF SELECTED FLAVONOIDS OF ROOIBOS (Aspalathus linearis) Petra W Snijman Thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Chemistry at the University of the Western Cape Study Leader: Prof IR Green Co-study Leaders: Prof E Joubert Prof WCA Gelderblom June 2007 ii DECLARATION I, the undersigned, hereby declare that the work contained in this thesis is my own original work and that I have not previously in its entirety or in part submitted it at any university for a degree. _______________________________ ____________ Petra Wilhelmina Snijman Date Copyright © 2007 University of the Western Cape All rights reserved iii ABSTRACT Bioactivity-guided fractionation was used to identify the most potent antioxidant and antimutagenic fractions contained in the methanol extract of unfermented rooibos (Aspalathus linearis), as well as the bioactive principles for the most potent antioxidant fractions. The different extracts and fractions were screened using Salmonella typhimurium tester strain TA98 and metabolically activated 2- acetoaminofluorene (2-AAF) to evaluate antimutagenic potential, while the antioxidant potency was assessed by two different in vitro assays, i.e. the inhibition of Fe(II) induced microsomal lipid peroxidation and the scavenging of the 2,2'- azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation. The most polar XAD fraction displayed the most protection against 2-AAF induced mutagenesis in TA98. Successive fractionation of the two XAD fractions
    [Show full text]
  • Metabolic Engineering of Saccharomyces Cerevisiae for De Novo Production of Dihydrochalcones with Known Antioxidant, Antidiabetic, and Sweet Tasting Properties
    Roskilde University Metabolic engineering of Saccharomyces cerevisiae for de novo production of dihydrochalcones with known antioxidant, antidiabetic, and sweet tasting properties Eichenberger, Michael; Lehka, Beata Joanna; Folly, Christophe; Fischer, David; Martens, Stefan; Simon, Ernesto; Naesby, Michael Published in: Metabolic Engineering DOI: 10.1016/j.ymben.2016.10.019 Publication date: 2017 Document Version Publisher's PDF, also known as Version of record Citation for published version (APA): Eichenberger, M., Lehka, B. J., Folly, C., Fischer, D., Martens, S., Simon, E., & Naesby, M. (2017). Metabolic engineering of Saccharomyces cerevisiae for de novo production of dihydrochalcones with known antioxidant, antidiabetic, and sweet tasting properties. Metabolic Engineering, 39, 80-89. https://doi.org/10.1016/j.ymben.2016.10.019 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain. • You may freely distribute the URL identifying the publication in the public portal. Take down policy If you believe that this document breaches copyright please contact [email protected] providing
    [Show full text]
  • Antioxidant, Cytotoxic, and Antimicrobial Activities of Glycyrrhiza Glabra L., Paeonia Lactiflora Pall., and Eriobotrya Japonica (Thunb.) Lindl
    Medicines 2019, 6, 43; doi:10.3390/medicines6020043 S1 of S35 Supplementary Materials: Antioxidant, Cytotoxic, and Antimicrobial Activities of Glycyrrhiza glabra L., Paeonia lactiflora Pall., and Eriobotrya japonica (Thunb.) Lindl. Extracts Jun-Xian Zhou, Markus Santhosh Braun, Pille Wetterauer, Bernhard Wetterauer and Michael Wink T r o lo x G a llic a c id F e S O 0 .6 4 1 .5 2 .0 e e c c 0 .4 1 .5 1 .0 e n n c a a n b b a r r b o o r 1 .0 s s o b b 0 .2 s 0 .5 b A A A 0 .5 0 .0 0 .0 0 .0 0 5 1 0 1 5 2 0 2 5 0 5 0 1 0 0 1 5 0 2 0 0 0 1 0 2 0 3 0 4 0 5 0 C o n c e n tr a tio n ( M ) C o n c e n tr a tio n ( M ) C o n c e n tr a tio n ( g /m l) Figure S1. The standard curves in the TEAC, FRAP and Folin-Ciocateu assays shown as absorption vs. concentration. Results are expressed as the mean ± SD from at least three independent experiments. Table S1. Secondary metabolites in Glycyrrhiza glabra. Part Class Plant Secondary Metabolites References Root Glycyrrhizic acid 1-6 Glabric acid 7 Liquoric acid 8 Betulinic acid 9 18α-Glycyrrhetinic acid 2,3,5,10-12 Triterpenes 18β-Glycyrrhetinic acid Ammonium glycyrrhinate 10 Isoglabrolide 13 21α-Hydroxyisoglabrolide 13 Glabrolide 13 11-Deoxyglabrolide 13 Deoxyglabrolide 13 Glycyrrhetol 13 24-Hydroxyliquiritic acid 13 Liquiridiolic acid 13 28-Hydroxygiycyrrhetinic acid 13 18α-Hydroxyglycyrrhetinic acid 13 Olean-11,13(18)-dien-3β-ol-30-oic acid and 3β-acetoxy-30-methyl ester 13 Liquiritic acid 13 Olean-12-en-3β-ol-30-oic acid 13 24-Hydroxyglycyrrhetinic acid 13 11-Deoxyglycyrrhetinic acid 5,13 24-Hydroxy-11-deoxyglycyirhetinic
    [Show full text]
  • Impact of Cold Versus Hot Brewing on the Phenolic Profile and Antioxidant
    antioxidants Article Impact of Cold versus Hot Brewing on the Phenolic Profile and Antioxidant Capacity of Rooibos (Aspalathus linearis) Herbal Tea 1, 2, 3, 3 Elisabetta Damiani y, Patricia Carloni y , Gabriele Rocchetti * , Biancamaria Senizza , Luca Tiano 1 , Elizabeth Joubert 4,5 , Dalene de Beer 4,5 and Luigi Lucini 3 1 Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy; [email protected] (E.D.); [email protected] (L.T.) 2 Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy; [email protected] 3 Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; [email protected] (B.S.); [email protected] (L.L.) 4 Plant Bioactives Group, Post-Harvest & Agro-Processing Technologies, Agricultural Research Council, Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa; [email protected] (E.J.); [email protected] (D.d.B.) 5 Department of Food Science, Stellenbosch University, Private Bag X1, Matieland (Stellenbosch) 7602, South Africa * Correspondence: [email protected] These authors contributed equally to this work and are the first co-authors. y Received: 25 September 2019; Accepted: 20 October 2019; Published: 21 October 2019 Abstract: Consumption of rooibos (Aspalathus linearis) as herbal tea is growing in popularity worldwide and its health-promoting attributes are mainly ascribed to its phenolic composition, which may be affected by the brewing conditions used. An aspect so far overlooked is the impact of cold brewing vs regular brewing and microwave boiling on the (poly) phenolic profile and in vitro antioxidant capacity of infusions prepared from red (‘fermented’, oxidized) and green (‘unfermented’, unoxidized) rooibos, the purpose of the present study.
    [Show full text]
  • Induced Oxidative Damage by Up-Regulating Nrf2 Expression
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 November 2016 doi:10.20944/preprints201611.0093.v1 Peer-reviewed version available at Molecules 2017, 22, 129; doi:10.3390/molecules22010129 Article Aspalathin Protects the Heart against Hyperglycemia- Induced Oxidative Damage by Up-regulating Nrf2 Expression Phiwayinkosi V. Dludla 1,2, Christo J.F. Muller 1, Elizabeth Joubert3,4, Johan Louw1, M. Faadiel Essop5, Kwazi B. Gabuza1, Samira Ghoor1, Barbara Huisamen1,2 and Rabia Johnson 1,2,* 1 Biomedical Research and Innovation Platform (BRIP), Medical Research Council (MRC), Tygerberg, South Africa ; [email protected]; [email protected]; [email protected]; [email protected]; [email protected]; [email protected] 2 Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa 3 Post-Harvest and Wine Technology Division, Agricultural Research Council (ARC) Infruitec- Nietvoorbij, Stellenbosch, South Africa ; [email protected] 4 Department of Food Science, Stellenbosch University, Stellenbosch, South Africa 5 Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa; [email protected] * Correspondence: [email protected]; Tel.: +27 219380866 Abstract: Aspalathin (ASP) can protect H9c2 cardiomyocytes against high glucose (HG)-induced shifts in myocardial substrate preference, oxidative stress and apoptosis. While the protective mechanism of aspalathin remains unknown, nuclear factor (erythroid-derived 2)-like 2 (Nrf2) has emerged as a key factor for intracellular responses against oxidative stress. Therefore, we hypothesized that aspalathin protects the myocardium against hyperglycemia-induced oxidative damage by up-regulating Nrf2 expression in H9c2 cardiomyocytes and diabetic (db/db) mice.
    [Show full text]
  • Dihydrochalcones in Malus Mill. Germplasm and Hybrid
    DIHYDROCHALCONES IN MALUS MILL. GERMPLASM AND HYBRID POPULATIONS A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Benjamin Leo Gutierrez December 2017 © 2017 Benjamin Leo Gutierrez DIHYDROCHALCONES IN MALUS MILL. GERMPLASM AND HYBRID POPULATIONS Benjamin Leo Gutierrez, Ph.D. Cornell University 2017 Dihydrochalcones are abundant in Malus Mill. species, including the cultivated apple (M. ×domestica Borkh.). Phloridzin, the primary dihydrochalcone in Malus species, has beneficial nutritional qualities, including antioxidant, anti-cancer, and anti-diabetic properties. As such, phloridzin could be a target for improvement of nutritional quality in new apple cultivars. In addition to phloridzin, a few rare Malus species produce trilobatin or sieboldin in place of phloridzin and hybridization can lead to combinations of phloridzin, trilobatin, or sieboldin in interspecific apple progenies. Trilobatin and sieboldin also have unique chemical properties that make them desirable targets for apple breeding, including high antioxidant activity, anti- inflammatory, anti-diabetic properties, and a high sweetness intensity. We studied the variation of phloridzin, sieboldin, and trilobatin content in leaves of 377 accessions from the USDA National Plant Germplasm System (NPGS) Malus collection in Geneva, NY over three seasons and identified valuable genetic resources for breeding and researching dihydrochalcones. From these resources, five apple hybrid populations were developed to determine the genetic basis of dihydrochalcone variation. Phloridzin, sieboldin, and trilobatin appear to follow segregation patterns for three independent genes and significant trait-marker associations were identified using genetic data from genotyping-by-sequencing. Dihydrochalcones are at much lower quantities in mature apple fruit compared with vegetative tissues.
    [Show full text]
  • Highly Effective, Regiospecific Hydrogenation of Methoxychalcone
    catalysts Article Highly Effective, Regiospecific Hydrogenation of Methoxychalcone by Yarrowia lipolytica Enables Production of Food Sweeteners Mateusz Łu˙zny* , Ewa Kozłowska , Edyta Kostrzewa-Susłow and Tomasz Janeczko * Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; [email protected] (E.K.); [email protected] (E.K.-S.) * Correspondence: [email protected] (M.Ł.); [email protected] (T.J.); Tel.: +48-713-205-195 (T.J.) Received: 11 September 2020; Accepted: 28 September 2020; Published: 1 October 2020 Abstract: We describe the impact of the number and location of methoxy groups in the structure of chalcones on the speed and efficiency of their transformation by unconventional yeast strains. The effect of substrate concentration on the conversion efficiency in the culture of the Yarrowia lipolytica KCh 71 strain was tested. In the culture of this strain, monomethoxychalcones (20-hydroxy-200-, 300- and 400-methoxychalcone) were effectively hydrogenated at over 40% to the specific dihydrochalcones at a concentration of 0.5 g/L of medium after just 1 h of incubation. A conversion rate of over 40% was also observed for concentrations of these compounds of 1 g/L of medium after three hours of transformation. As the number of methoxy substituents increases in the chalcone substrate, the rate and efficiency of transformation to dihydrochalcones decreased. The only exception was 20-hydroxy-200,500-dimethoxychalcone, which was transformed into dihydrochalcone by strain KCh71 with a yield comparable to that of chalcone containing a single methoxy group. Keywords: biotransformations; sweeteners; methoxychalcones; dihydrochalcones; yeast 1.
    [Show full text]
  • WO 2018/002916 Al O
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/002916 Al 04 January 2018 (04.01.2018) W !P O PCT (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C08F2/32 (2006.01) C08J 9/00 (2006.01) kind of national protection available): AE, AG, AL, AM, C08G 18/08 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, PCT/IL20 17/050706 HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, (22) International Filing Date: KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, 26 June 2017 (26.06.2017) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (25) Filing Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 246468 26 June 2016 (26.06.2016) IL kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (71) Applicant: TECHNION RESEARCH & DEVEL¬ UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, OPMENT FOUNDATION LIMITED [IL/IL]; Senate TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, House, Technion City, 3200004 Haifa (IL).
    [Show full text]
  • WO 2017/117099 Al 6 July 2017 (06.07.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/117099 Al 6 July 2017 (06.07.2017) P O P C T (51) International Patent Classification: (US). GENESKY, Geoffery [FR/FR]; 14 Rue Royale, Λ 61Κ 8/04 (2006.01) A61K 8/97 (201 7.01) 75008 Paris (FR). A61K 8/06 (2006.01) A61K 31/70 (2006.01) (74) Agent: BALLS, R., James; Polsinelli PC, 1401 Eye A61K 8/34 (2006.01) A61K 31/351 (2006.01) Street, N.W., Suite 800, Washington, DC 20005 (US). A61K 8/60 (2006.01) A61K 31/355 (2006.01) A61K 5/67 (2006.01) A61K 31/7048 (2006.01) (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (21) International Application Number: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, PCT/US20 16/068662 BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, (22) International Filing Date: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 27 December 2016 (27. 12.2016) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, (25) Filing Language: English MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, (26) Publication Language: English NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, (30) Priority Data: TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, 62/272,326 29 December 201 5 (29.
    [Show full text]