Disertaciones Astronómicas Boletín Número 64 De Efemérides Astronómicas 11 De Febrero De 2021

Total Page:16

File Type:pdf, Size:1020Kb

Disertaciones Astronómicas Boletín Número 64 De Efemérides Astronómicas 11 De Febrero De 2021 Disertaciones astronómicas Boletín Número 64 de efemérides astronómicas 11 de febrero de 2021 Realiza Luis Fernando Ocampo O. ([email protected]). Noticias de la semana. Histórico de las Misiones a Marte. Imagen 1: Vista del planeta Marte, compuesta por más de 100 imágenes del orbitador Viking. Imagen: NASA La Era Espacial comenzó el 4 de octubre de 1957. En esa fecha, la Unión Soviética utilizó un cohete originalmente destinado a ser utilizado con misiles balísticos, para lanzar el Sputnik 1, una pequeña esfera de metal pulido que pesaba 84 kg. Al llegar a su órbita, se convirtió en el primer satélite artificial de la Tierra. Viajando a cinco millas por segundo, con una altitud que oscilaba entre unas 140 millas en su punto más bajo y 600 millas en su punto más alto, orbitaba la Tierra una vez cada 98 minutos. Fue casi un fracaso. La telemetría después del hecho indicó que un desequilibrio de refuerzo inicial se produjo un segundo después de hacer que el cohete se inclinara tan bajo que se hubiera desviado hacia abajo, provocando que se estrellara cerca del sitio de lanzamiento. En noviembre, los soviéticos siguieron ese lanzamiento exitoso con Sputnik 2, que albergaba a un perro, la primera víctima con vida de la nueva carrera espacial. Imagen 2: Wernher von Braun. Imagen: Wikipedia. Von Braun trabajó en el programa de desarrollo de cohetes de la Alemania Nazi. Ayudó a diseñar y desarrollar el cohete V-2 en Peenemünde durante la Segunda Guerra Mundial. Después de la guerra, fue trasladado en secreto a Estados Unidos, junto con otros 1.600 científicos, ingenieros y técnicos alemanes, como parte de la Operación Paperclip. Trabajó para el Ejército de los Estados Unidos en un programa de misiles balísticos de alcance intermedio y desarrolló los cohetes que lanzaron el primer satélite espacial Explorer 1 de los Estados Unidos Imagen 3: Explorer 1 de Estados Unidos, fue parte de la participación estadounidense en el Año Geofísico Internacional. Imagen NASA. Explorer 1 fue el primer satélite lanzado por Estados Unidos y fue parte de la participación estadounidense en el Año Geofísico Internacional. La misión siguió a los dos primeros satélites el año anterior; Sputnik 1 y 2 de la Unión Soviética, comenzando la Carrera Espacial de la Guerra Fría entre las dos naciones. Desde el primer sobrevuelo exitoso en 1965, cuatro agencias espaciales han logrado llegar a Marte: la NASA, el programa espacial de la antigua Unión Soviética, la Agencia Espacial Europea, la Organización de Investigación Espacial de la India, y ahora los Emiratos Árabes Unidos con la misión HOPE. El último lote de misiones con destino a Marte en febrero de 2021 fueron el rover Perseverance y el helicóptero Ingenuity de la NASA, el orbitador Hope de los Emiratos Árabes Unidos (el primero en ese país) y la misión orbital y aterrizador- rover Tianwen-1 de China (otro intento para China para llegar a Marte). Más adelante, en esta década, diferentes agencias espaciales planean una misión de retorno de muestras desde la luna Fobos y una misión de retorno de muestras desde el mismo Marte. Los primeros intentos de llegar a Marte ocurrieron cerca de los albores de la exploración espacial. Teniendo en cuenta que el primer satélite, el Sputnik de la Unión Soviética, lanzado en 1957, es extraordinario que solo tres años después, el programa espacial de la Unión Soviética buscara extender su alcance a Marte. Más formalmente conocida como la Unión de Repúblicas Socialistas Soviéticas (URSS) en ese momento, la Unión Soviética hizo múltiples intentos en la década de 1960 para llegar al Planeta Rojo, y la NASA pronto la siguió con su nave espacial Mariner 3. Estas primeras misiones no lograron llegar ni siquiera cerca de Marte. La línea de tiempo fue la siguiente: 10 de octubre de 1960: Marsnik 1 / Mars 1M No.1 (URSS) lanzado para un sobrevuelo previsto a Marte. La nave espacial fue destruida durante el lanzamiento y no pudo alcanzar la órbita terrestre. 14 de octubre de 1960: Lanzamiento del Marsnik 2 / Mars 1M No. 2 (URSS), también para un sobrevuelo previsto en Marte. Pero de manera similar a Mars 1M No. 1, la nave espacial explotó durante el lanzamiento y no alcanzó la órbita terrestre. 24 de octubre de 1962: Lanzamiento del Sputnik 22 (URSS) para un sobrevuelo previsto a Marte. El cohete que lanzó la nave espacial tuvo un problema fatal y la nave espacial fue destruida poco después de alcanzar la órbita terrestre. Imagen 4: Misión Mars 1, URSS; año 1962. Imagen: Wikipedia. 1 de noviembre de 1962: Mars 1 (URSS) se lanza para un sobrevuelo planeado a Marte. La nave espacial llegó a la órbita terrestre y más allá. Pero casi cinco meses después, el 21 de marzo de 1963, la nave espacial estaba a 106 millones de kilómetros de la Tierra cuando su radio falló y la comunicación con la nave cesó permanentemente. 4 de noviembre de 1962: Lanzamiento del Sputnik 24 (URSS) para un sobrevuelo previsto a Marte. La nave espacial alcanzó la órbita terrestre, pero tuvo un problema fatal cuando cambió su trayectoria hacia Marte y finalmente volvió a caer a la Tierra, en pedazos. 5 de noviembre de 1964: el Mariner 3 (EE. UU.) Se lanza para un sobrevuelo previsto a Marte. Una hora después del lanzamiento, hubo un problema con los paneles solares. Los equipos de tierra no pudieron solucionar el problema antes de que las baterías de la nave espacial se agotaran y la misión fallara. Si bien esas primeras misiones no alcanzaron su objetivo, el Mariner 4 de la NASA finalmente lo hizo. La nave espacial se lanzó el 28 de noviembre de 1964 y fue la primera en volar por Marte el 14 de julio de 1965. Envió 21 fotos del Planeta Rojo a la Tierra. Dos días después del lanzamiento del Mariner 4, la Unión Soviética volvió a intentarlo con Zond 2. La nave pasó por Marte pero la radio falló y no devolvió ningún dato planetario. Imagen 5: Misión Mariner 7 -7. Imagen: NASA Mariner 6 y 7 fueron el segundo par de misiones a Marte en la serie Mariner de exploración del sistema solar de la NASA en la década de 1960 y principios de la de 1970. Al igual que con los otros Marineros, cada uno se lanzó en un cohete Atlas con un propulsor de etapa superior Agena o Centaur y pesaba menos de media tonelada (sin propulsor de cohete a bordo). En 1969, Mariner 6 y Mariner 7 completaron la primera misión dual a Marte, sobrevolando el ecuador y las regiones polares del sur y analizando la atmósfera y la superficie marcianas con sensores remotos, además de grabar y transmitir cientos de imágenes. Por casualidad, ambos volaron sobre regiones llenas de cráteres y se perdieron tanto los volcanes gigantes del norte como el gran cañón ecuatorial que se descubrió más tarde. Sin embargo, sus imágenes de aproximación mostraron que las características oscuras de la superficie vistas desde la Tierra durante mucho tiempo no eran canales, como se interpretó una vez en el siglo XIX. 27 de marzo de 1969: Lanzamiento de Mars 1969A (URSS), pero fue destruido antes de alcanzar la órbita terrestre. 2 de abril de 1969: Mars 1969B (URSS) falló durante su intento de lanzamiento. 8 de mayo de 1971: el Mariner 8 (EE. UU.) También falló durante su intento de lanzamiento. Imagen 6: Misión Mariner 9. Imagen: NASA La imagen de Marte cambió con la llegada del Mariner 9 de la NASA en noviembre de 1971. La nave espacial, que se lanzó el 30 de mayo de 1971, llegó a Marte cuando todo el planeta se vio envuelto en una tormenta de polvo. Es más, algo misterioso asomaba por encima de las columnas de polvo. Cuando los escombros se asentaron en la superficie, los científicos descubrieron que esas características inusuales eran las cimas de volcanes inactivos. Mariner 9 también descubrió una enorme grieta en la superficie de Marte, más tarde llamada Valles Marineris, en honor a la nave espacial que lo descubrió. Mariner 9 pasó casi un año orbitando el Planeta Rojo y devolvió 7.329 fotos. De las más de 7.000 imágenes que transmitió, algunas de las más significativas fueron las primeras vistas detalladas del volcán más grande del sistema solar (Olympus), un sistema de cañones que empequeñece el Gran Cañón (Valles Marineris), y las lunas marcianas Fobos y Deimos. Imagen 7: Mariner H / I (8 – 9). Imagen: NASA. 21 de julio de 1973: Mars 4 (URSS) se lanzó y luego voló sobre Marte el 10 de febrero de 1974, pero ese no era el plan; estaba destinado a orbitar el planeta, no a seguir. Mars 4 (en ruso: Марс-4), también conocido como 3MS No.52S era una nave espacial soviética destinada a explorar Marte. Una nave espacial 3MS lanzada como parte del programa de Marte, estaba destinada a entrar en órbita alrededor de Marte en 1974. Sin embargo, problemas informáticos impidieron que ocurriera la inserción orbital. 25 de julio de 1973: Mars 5 (URSS) se lanzó y se colocó en órbita alrededor de Marte el 12 de febrero de 1974, pero duró solo unos pocos días. 5 de agosto de 1973: Mars 6 (URSS) se lanzó con un módulo de sobrevuelo y un módulo de aterrizaje que llegó al Planeta Rojo el 3 de marzo de 1974, pero el módulo de aterrizaje fue destruido por el impacto. 9 de agosto de 1973: Mars 7 (URSS) se lanzó de nuevo con un módulo de sobrevuelo y un módulo de aterrizaje, y llegó al Planeta Rojo el 3 de marzo de 1974, pero el módulo de aterrizaje no alcanzó el planeta.
Recommended publications
  • Ice& Stone 2020
    Ice & Stone 2020 WEEK 34: AUGUST 16-22 Presented by The Earthrise Institute # 34 Authored by Alan Hale This week in history AUGUST 16 17 18 19 20 21 22 AUGUST 16, 1898: DeLisle Stewart at Harvard College Observatory’s Boyden Station in Arequipa, Peru, takes photographs on which Saturn’s outer moon Phoebe is discovered, although the images of Phoebe were not noticed until the following March by William Pickering. Phoebe was the first planetary moon to be discovered via photography, and it and other small planetary moons are discussed in last week’s “Special Topics” presentation. AUGUST 16, 2009: A team of scientists led by Jamie Elsila of the Goddard Space Flight Center in Maryland announces that they have detected the presence of the amino acid glycine in coma samples of Comet 81P/ Wild 2 that were returned to Earth by the Stardust mission 3½ years earlier. Glycine is utilized by life here on Earth, and the presence of it and other organic substances in the solar system’s “small bodies” is discussed in this week’s “Special Topics” presentation. AUGUST 16 17 18 19 20 21 22 AUGUST 17, 1877: Asaph Hall at the U.S. Naval Observatory in Washington, D.C. discovers Mars’ larger, inner moon, Phobos. Mars’ two moons, and the various small moons of the outer planets, are the subject of last week’s “Special Topics” presentation. AUGUST 17, 1989: In its monthly batch of Minor Planet Circulars (MPCs), the IAU’s Minor Planet Center issues MPC 14938, which formally numbers asteroid (4151), later named “Alanhale.” I have used this asteroid as an illustrative example throughout “Ice and Stone 2020” “Special Topics” presentations.
    [Show full text]
  • China's Touch on the Moon
    commentary China’s touch on the Moon Long Xiao As well as being a milestone in technology, the Chang’e lunar exploration programme establishes China as a contributor to space science. With much still to learn about the Moon, fieldwork beyond Earth’s orbit must be an international effort. hen China’s Chang’e 3 spacecraft geological history of the landing site. touched down on the lunar High-resolution images have shown rocky Wsurface on 14 December 2013, terrain with outcrops of porphyritic basalt, it was the first soft landing on the Moon such as Loong Rock (Fig. 2). Analysis since the Soviet Union’s Luna 24 mission of data collected by the penetrating in 1976. Following on from the decades- Chang’e 3 radar should lead to identification of the old triumphs of the Luna missions and underlying layers of regolith, impact breccia NASA’s Apollo programme, the Chang’e and basalt. lunar exploration programme is leading the China’s robotic field geologist Yutu has charge of a new generation of exploration Basalt outcrop Yutu rover stalled in its traverse of the lunar surface, on the lunar surface. Much like the earlier but plans for the Chang’e 5 sample-return space programmes, the China National mission are moving forward. The primary Space Administration (CNSA) has been objective of the mission will be to return developing its capabilities and technologies 100 m 2 kg of samples from the surface and depths step by step in a series of Chang’e missions UNIVERSITY STATE © NASA/GSFC/ARIZONA of up to 2 m, probably also in the relatively of increasing ambition: orbiting and Figure 1 | The Chinese Chang’e 3 spacecraft and smooth northern Mare Imbrium.
    [Show full text]
  • Why Do We Explore?
    Why Do We Explore? Lesson Six Why Do We Explore? About This Lesson Students will work in small teams, each of which will be given a different reason why humans explore. Each team will become the expert on their one reason and will add a letter and summary sentence to an EXPLORE poster using their reason for exploration. With all the reasons on the poster, the word EXPLORE will be complete. Students will be using the skills of working in cooperative learning teams, reading, summarizing, paraphrasing, and creating a sentence that will best represent their reason for exploration. Students will also be illustrating and copying other teams sentences so that each student will have a small copy of the large class- room poster for reference or extension purposes. The teacher will lead a discussion that relates the reasons humans explore to the planned and possible future missions to Mars. Objectives Students will: v review the seven traditional reasons why people explore v write a summary of their reason why humans explore v illustrate their exploration summaries v relate the reasons for exploration to the missions to Mars Background Students do not always realize that the steps in future exploration are built on a tradition of Why Do We Explore? exploration that is as old as humans. This lesson is intended to introduce the concept of exploration through the seven traditional reasons that express why humans have always been explorers. Social scientists know that everyone, no matter how young or old, is constantly exploring the world and how it works. Space exploration, including the possible missions to Mars, has opened up a whole new world for us to explore.
    [Show full text]
  • Mars Exploration: an Overview of Indian and International Mars Missions Nayamavalsa Scariah1, Dr
    Taurian Innovative Journal/Volume 1/ Issue 1 Mars exploration: An overview of Indian and International Mars Missions NayamaValsa Scariah1, Dr. Mili Ghosh2, Dr.A.P.Krishna3 Birla Institute of Technology, Mesra, Ranchi Abstract- Mars is the fourth planet from the sun. It is 1. Introduction also known as red planet because of its iron oxide content. There are lots of missions have been launched to Mars is also known as red planet, because of the mars for better understanding of our neighboring planet. reddish iron oxide prevalent on its surface gives it a There are lots of unmanned spacecraft including reddish appearance. It is the fourth planet from sun. orbiters, landers and rovers have been launched into mars since early 1960. Sputnik was the first satellite The term sol is used to define duration of solar day on launched in 1957 by Soviet Union. After seven failure Mars. A mean Martian solar day or sol is 24 hours 39 missions to Mars, Mariner 4 was the first satellite which minutes and 34.244 seconds. Many space missions to reached the Martian orbiter successfully. The Viking 1 Mars have been planned and launched for Mars was the first lander reached on Mars on 1975. India exploration (Table:1) but most of them failed without successfully launched a spacecraft, Mangalyan (Mars completing the task specially in early attempts th Orbiter Mission) on 5 November, 2013, with five whereas some NASA missions were very payloads to Mars. India was the first nation to successful(such as the twin Mars Exploration Rovers, successfully reach Mars on its first attempt.
    [Show full text]
  • Appendix 1: Venus Missions
    Appendix 1: Venus Missions Sputnik 7 (USSR) Launch 02/04/1961 First attempted Venus atmosphere craft; upper stage failed to leave Earth orbit Venera 1 (USSR) Launch 02/12/1961 First attempted flyby; contact lost en route Mariner 1 (US) Launch 07/22/1961 Attempted flyby; launch failure Sputnik 19 (USSR) Launch 08/25/1962 Attempted flyby, stranded in Earth orbit Mariner 2 (US) Launch 08/27/1962 First successful Venus flyby Sputnik 20 (USSR) Launch 09/01/1962 Attempted flyby, upper stage failure Sputnik 21 (USSR) Launch 09/12/1962 Attempted flyby, upper stage failure Cosmos 21 (USSR) Launch 11/11/1963 Possible Venera engineering test flight or attempted flyby Venera 1964A (USSR) Launch 02/19/1964 Attempted flyby, launch failure Venera 1964B (USSR) Launch 03/01/1964 Attempted flyby, launch failure Cosmos 27 (USSR) Launch 03/27/1964 Attempted flyby, upper stage failure Zond 1 (USSR) Launch 04/02/1964 Venus flyby, contact lost May 14; flyby July 14 Venera 2 (USSR) Launch 11/12/1965 Venus flyby, contact lost en route Venera 3 (USSR) Launch 11/16/1965 Venus lander, contact lost en route, first Venus impact March 1, 1966 Cosmos 96 (USSR) Launch 11/23/1965 Possible attempted landing, craft fragmented in Earth orbit Venera 1965A (USSR) Launch 11/23/1965 Flyby attempt (launch failure) Venera 4 (USSR) Launch 06/12/1967 Successful atmospheric probe, arrived at Venus 10/18/1967 Mariner 5 (US) Launch 06/14/1967 Successful flyby 10/19/1967 Cosmos 167 (USSR) Launch 06/17/1967 Attempted atmospheric probe, stranded in Earth orbit Venera 5 (USSR) Launch 01/05/1969 Returned atmospheric data for 53 min on 05/16/1969 M.
    [Show full text]
  • Exploration of the Moon
    Exploration of the Moon The physical exploration of the Moon began when Luna 2, a space probe launched by the Soviet Union, made an impact on the surface of the Moon on September 14, 1959. Prior to that the only available means of exploration had been observation from Earth. The invention of the optical telescope brought about the first leap in the quality of lunar observations. Galileo Galilei is generally credited as the first person to use a telescope for astronomical purposes; having made his own telescope in 1609, the mountains and craters on the lunar surface were among his first observations using it. NASA's Apollo program was the first, and to date only, mission to successfully land humans on the Moon, which it did six times. The first landing took place in 1969, when astronauts placed scientific instruments and returnedlunar samples to Earth. Apollo 12 Lunar Module Intrepid prepares to descend towards the surface of the Moon. NASA photo. Contents Early history Space race Recent exploration Plans Past and future lunar missions See also References External links Early history The ancient Greek philosopher Anaxagoras (d. 428 BC) reasoned that the Sun and Moon were both giant spherical rocks, and that the latter reflected the light of the former. His non-religious view of the heavens was one cause for his imprisonment and eventual exile.[1] In his little book On the Face in the Moon's Orb, Plutarch suggested that the Moon had deep recesses in which the light of the Sun did not reach and that the spots are nothing but the shadows of rivers or deep chasms.
    [Show full text]
  • Contributions of a Lunar Geoscience Observer (Lgo) Mission to Fundamental Questions in Lunar Science
    CONTRIBUTIONS OF A LUNAR GEOSCIENCE OBSERVER (LGO) MISSION TO FUNDAMENTAL QUESTIONS IN LUNAR SCIENCE by LGO SCIENCE WORKSHOP MEMBERS Contributions Lunar Geoscience Observer Mission Frontispiece: Earth-rise over the lunar highlands. Contributions of a Lunar Geoscience Observer Mission to Fundaments Questions in Lunar Science LGO Science Workshop Members March LGO Science Workshop Members Roger Phillips (Chair), Southern Methodist University Merton Davies, Rand Coworation Michael Drake, University of Arizona Michael Duke, Johnson Space Center Larry Haskin. Washington University James Head, Brown University Eon Mood, University of Arizona Robert Lin, University of California, Berkeley Duane Muhleman, California Institute of Technology Doug Nash (Study Scientist), Jet Propulsion Laboratory Carle Pieters, Brown University Bill Sjogren, Jet Propulsion Laboratory Paul Spudis, U .S. Geological Survey Jeff Taylor, University of New Mexico Jacob Trombka, Goddard Space Flight Center This report was compiled and prepared in the Department of Geological Sciences and the AnthroGraphics Laboratory of Southern Methodist University. Material in this document may be copied without restraint for library, abstract service, educational or personal research purposes. Republication of any portion should be accompanied by the appropriate acknowledgment of this document. For further information, contact: Dr. Roger Phillips Department of Geological Sciences Southern Methodist University Dallas, TX 75275 Executive Summary THE IMPORTANCE OF LUNAR SCIENCE STATUS OF LUNAR SCIENCE DATA AND THEORY The Moon is the keystone in the interlinked knowledge that forms the foundation of our understanding of the silicate Unlike other solar system bodies beyond Earth, the Moon bodies of the solar system. The Moon is remarkable in that it has been intensely studied by telescope, unmanned space- remains the only other planet for which we have samples of crafi and manned missions.
    [Show full text]
  • Mariner to Mercury, Venus and Mars
    NASA Facts National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109 Mariner to Mercury, Venus and Mars Between 1962 and late 1973, NASA’s Jet carry a host of scientific instruments. Some of the Propulsion Laboratory designed and built 10 space- instruments, such as cameras, would need to be point- craft named Mariner to explore the inner solar system ed at the target body it was studying. Other instru- -- visiting the planets Venus, Mars and Mercury for ments were non-directional and studied phenomena the first time, and returning to Venus and Mars for such as magnetic fields and charged particles. JPL additional close observations. The final mission in the engineers proposed to make the Mariners “three-axis- series, Mariner 10, flew past Venus before going on to stabilized,” meaning that unlike other space probes encounter Mercury, after which it returned to Mercury they would not spin. for a total of three flybys. The next-to-last, Mariner Each of the Mariner projects was designed to have 9, became the first ever to orbit another planet when two spacecraft launched on separate rockets, in case it rached Mars for about a year of mapping and mea- of difficulties with the nearly untried launch vehicles. surement. Mariner 1, Mariner 3, and Mariner 8 were in fact lost The Mariners were all relatively small robotic during launch, but their backups were successful. No explorers, each launched on an Atlas rocket with Mariners were lost in later flight to their destination either an Agena or Centaur upper-stage booster, and planets or before completing their scientific missions.
    [Show full text]
  • 2012.07.1.4X12239 Page 1 of 16 GLEX
    GLEX-2012.07.1.4x12239 Mars—On the Path or In the Way? Brent Sherwood Jet Propulsion Laboratory, California Institute of Technology, USA, [email protected] Explore Mars may not be the highest and best use of government-funded human space flight. However, Explore Mars is pervasively accepted as the ultimate goal for human space flight. This meme has become refractory within the human space flight community despite dramatic contextual changes since Apollo: human space flight is no longer central to commonly-held national priorities, NASA’s fraction of the federal budget has diminished 8 fold, over 60 enabling technology challenges have been identified, and the stunning achievements of robotic Mars exploration have accelerated. The Explore Mars vision has not kept pace with these changes. An unprecedented budgetary commitment would have to be sustained for an unprecedented number of decades to achieve the Explore Mars goal. Further, the goal’s justification as uniquely able to definitively determine Mars habitability is brittle, and not driving current planning in any case; yet NASA owns the choice of this goal and has authority to change it. Three alternative goals for government investment in human space flight meet NASA’s own expressed rationale at least as well as Explore Mars, some with far greater capacity to regain the cultural centrality of human space flight and to grow by attracting private capital. At a minimum the human space flight advocacy community should address the pragmatics of choosing such a vulnerable goal. I. INTRODUCTION1 Mars by explorers using ever-better robots, who are Explore Mars is a refractory meme, but is it a vision or a now directly investigating the planet’s habitability.
    [Show full text]
  • Combinatorics in Space
    Combinatorics in Space The Mariner 9 Telemetry System Mariner 9 Mission Launched: May 30, 1971 Arrived: Nov. 14, 1971 Turned Off: Oct. 27, 1972 Mission Objectives: (Mariner 8): Map 70% of Martian surface. (Mariner 9): Study temporal changes in Martian atmosphere and surface features. Live TV A black and white TV camera was used to broadcast “live” pictures of the Martian surface. Each photo-receptor in the camera measures the brightness of a section of the Martian surface about 4-5 km square, and outputs a grayness value in the range 0-63. This value is represented as a binary 6-tuple. The TV image is thus digitalized by the photo-receptor bank and is output as a stream of thousands of binary 6-tuples. Coding Needed Without coding and a failure probability p = 0.05, 26% of the image would be in error ... unacceptably poor quality for the nature of the mission. Any coding will increase the length of the transmitted message. Due to power constraints on board the probe and equipment constraints at the receiving stations on Earth, the coded message could not be much more than 5 times as long as the data. Thus, a 6-tuple of data could be coded as a codeword of about 30 bits in length. Other concerns A second concern involves the coding procedure. Storage of data requires shielding of the storage media – this is dead weight aboard the probe and economics require that there be little dead weight. Coding should therefore be done “on the fly”, without permanent memory requirements.
    [Show full text]
  • Determination of Optimal Earth-Mars Trajectories to Target the Moons Of
    The Pennsylvania State University The Graduate School Department of Aerospace Engineering DETERMINATION OF OPTIMAL EARTH-MARS TRAJECTORIES TO TARGET THE MOONS OF MARS A Thesis in Aerospace Engineering by Davide Conte 2014 Davide Conte Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science May 2014 ii The thesis of Davide Conte was reviewed and approved* by the following: David B. Spencer Professor of Aerospace Engineering Thesis Advisor Robert G. Melton Professor of Aerospace Engineering Director of Undergraduate Studies George A. Lesieutre Professor of Aerospace Engineering Head of the Department of Aerospace Engineering *Signatures are on file in the Graduate School iii ABSTRACT The focus of this thesis is to analyze interplanetary transfer maneuvers from Earth to Mars in order to target the Martian moons, Phobos and Deimos. Such analysis is done by solving Lambert’s Problem and investigating the necessary targeting upon Mars arrival. Additionally, the orbital parameters of the arrival trajectory as well as the relative required ΔVs and times of flights were determined in order to define the optimal departure and arrival windows for a given range of date. The first step in solving Lambert’s Problem consists in finding the positions and velocities of the departure (Earth) and arrival (Mars) planets for a given range of dates. Then, by solving Lambert’s problem for various combinations of departure and arrival dates, porkchop plots can be created and examined. Some of the key parameters that are plotted on porkchop plots and used to investigate possible transfer orbits are the departure characteristic energy, C3, and the arrival v∞.
    [Show full text]
  • MODELING and SIMULATION of the CHANDRAYAAN-I HYSI DATA for MINERAL MIXING ANALYSIS. S.B. Sayyad and Mohammed Zeeshan R, (Departm
    4th Planetary Data Workshop 2019 (LPI Contrib. No. 2151) 7074.pdf MODELING AND SIMULATION OF THE CHANDRAYAAN-I HYSI DATA FOR MINERAL MIXING ANALYSIS. S.B. Sayyad and Mohammed Zeeshan R, (Department of Physics, Milliya College Arts Science and Management Science College Beed Maharashtra India. [email protected], [email protected] ) Introduction: The space weathering is the primary process involved on the lunar surface which has the strong influence on the reflectance properties because of the accumulation of small submicroscopic iron [1- 2]. Long time exposure to the environment complicates the understanding of the surface composition [3-6] Theoretical model can be employed to understand the effect of space weathering and to study the composition of the lunar regolith. From the studies done on the lu- nar samples from the Apollo mission it was clear that there are the significant differences between the optical properties of spectra pulverized in the laboratory and spectra obtained from the lunar soil [7-9]. The lunar Fig. 1. Site Location of Mare Crisium and data subset of soil spectra shows systematic influence of space weath- Mare Crisium. ering which is reduction in overall reflectance red- dened -slope continuum and attenuated absorption bands. To model the measured reflectance spectra of Chandrayaan-1 hyperspectral Imager (HySI) we have obtained an artificial reflectance spectrum using Bi- directional reflectance function (BRDF) based on the equation of radiative transfer proposed by Bruce Hap- ke and published in the series of papers [10-14]. The effect of space weathering, particle size, single particle phase function, porosity can be easily accommodated and it is con- sidered to be most efficient for modeling asteroids and plane- tary surfaces Modeling the Chandrayaan-1 HySI dataset: The Band to band registered level-4 HySI image was Fig.2.
    [Show full text]