2012.07.1.4X12239 Page 1 of 16 GLEX
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Why Do We Explore?
Why Do We Explore? Lesson Six Why Do We Explore? About This Lesson Students will work in small teams, each of which will be given a different reason why humans explore. Each team will become the expert on their one reason and will add a letter and summary sentence to an EXPLORE poster using their reason for exploration. With all the reasons on the poster, the word EXPLORE will be complete. Students will be using the skills of working in cooperative learning teams, reading, summarizing, paraphrasing, and creating a sentence that will best represent their reason for exploration. Students will also be illustrating and copying other teams sentences so that each student will have a small copy of the large class- room poster for reference or extension purposes. The teacher will lead a discussion that relates the reasons humans explore to the planned and possible future missions to Mars. Objectives Students will: v review the seven traditional reasons why people explore v write a summary of their reason why humans explore v illustrate their exploration summaries v relate the reasons for exploration to the missions to Mars Background Students do not always realize that the steps in future exploration are built on a tradition of Why Do We Explore? exploration that is as old as humans. This lesson is intended to introduce the concept of exploration through the seven traditional reasons that express why humans have always been explorers. Social scientists know that everyone, no matter how young or old, is constantly exploring the world and how it works. Space exploration, including the possible missions to Mars, has opened up a whole new world for us to explore. -
Mars Exploration: an Overview of Indian and International Mars Missions Nayamavalsa Scariah1, Dr
Taurian Innovative Journal/Volume 1/ Issue 1 Mars exploration: An overview of Indian and International Mars Missions NayamaValsa Scariah1, Dr. Mili Ghosh2, Dr.A.P.Krishna3 Birla Institute of Technology, Mesra, Ranchi Abstract- Mars is the fourth planet from the sun. It is 1. Introduction also known as red planet because of its iron oxide content. There are lots of missions have been launched to Mars is also known as red planet, because of the mars for better understanding of our neighboring planet. reddish iron oxide prevalent on its surface gives it a There are lots of unmanned spacecraft including reddish appearance. It is the fourth planet from sun. orbiters, landers and rovers have been launched into mars since early 1960. Sputnik was the first satellite The term sol is used to define duration of solar day on launched in 1957 by Soviet Union. After seven failure Mars. A mean Martian solar day or sol is 24 hours 39 missions to Mars, Mariner 4 was the first satellite which minutes and 34.244 seconds. Many space missions to reached the Martian orbiter successfully. The Viking 1 Mars have been planned and launched for Mars was the first lander reached on Mars on 1975. India exploration (Table:1) but most of them failed without successfully launched a spacecraft, Mangalyan (Mars completing the task specially in early attempts th Orbiter Mission) on 5 November, 2013, with five whereas some NASA missions were very payloads to Mars. India was the first nation to successful(such as the twin Mars Exploration Rovers, successfully reach Mars on its first attempt. -
Appendix 1: Venus Missions
Appendix 1: Venus Missions Sputnik 7 (USSR) Launch 02/04/1961 First attempted Venus atmosphere craft; upper stage failed to leave Earth orbit Venera 1 (USSR) Launch 02/12/1961 First attempted flyby; contact lost en route Mariner 1 (US) Launch 07/22/1961 Attempted flyby; launch failure Sputnik 19 (USSR) Launch 08/25/1962 Attempted flyby, stranded in Earth orbit Mariner 2 (US) Launch 08/27/1962 First successful Venus flyby Sputnik 20 (USSR) Launch 09/01/1962 Attempted flyby, upper stage failure Sputnik 21 (USSR) Launch 09/12/1962 Attempted flyby, upper stage failure Cosmos 21 (USSR) Launch 11/11/1963 Possible Venera engineering test flight or attempted flyby Venera 1964A (USSR) Launch 02/19/1964 Attempted flyby, launch failure Venera 1964B (USSR) Launch 03/01/1964 Attempted flyby, launch failure Cosmos 27 (USSR) Launch 03/27/1964 Attempted flyby, upper stage failure Zond 1 (USSR) Launch 04/02/1964 Venus flyby, contact lost May 14; flyby July 14 Venera 2 (USSR) Launch 11/12/1965 Venus flyby, contact lost en route Venera 3 (USSR) Launch 11/16/1965 Venus lander, contact lost en route, first Venus impact March 1, 1966 Cosmos 96 (USSR) Launch 11/23/1965 Possible attempted landing, craft fragmented in Earth orbit Venera 1965A (USSR) Launch 11/23/1965 Flyby attempt (launch failure) Venera 4 (USSR) Launch 06/12/1967 Successful atmospheric probe, arrived at Venus 10/18/1967 Mariner 5 (US) Launch 06/14/1967 Successful flyby 10/19/1967 Cosmos 167 (USSR) Launch 06/17/1967 Attempted atmospheric probe, stranded in Earth orbit Venera 5 (USSR) Launch 01/05/1969 Returned atmospheric data for 53 min on 05/16/1969 M. -
Mariner to Mercury, Venus and Mars
NASA Facts National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109 Mariner to Mercury, Venus and Mars Between 1962 and late 1973, NASA’s Jet carry a host of scientific instruments. Some of the Propulsion Laboratory designed and built 10 space- instruments, such as cameras, would need to be point- craft named Mariner to explore the inner solar system ed at the target body it was studying. Other instru- -- visiting the planets Venus, Mars and Mercury for ments were non-directional and studied phenomena the first time, and returning to Venus and Mars for such as magnetic fields and charged particles. JPL additional close observations. The final mission in the engineers proposed to make the Mariners “three-axis- series, Mariner 10, flew past Venus before going on to stabilized,” meaning that unlike other space probes encounter Mercury, after which it returned to Mercury they would not spin. for a total of three flybys. The next-to-last, Mariner Each of the Mariner projects was designed to have 9, became the first ever to orbit another planet when two spacecraft launched on separate rockets, in case it rached Mars for about a year of mapping and mea- of difficulties with the nearly untried launch vehicles. surement. Mariner 1, Mariner 3, and Mariner 8 were in fact lost The Mariners were all relatively small robotic during launch, but their backups were successful. No explorers, each launched on an Atlas rocket with Mariners were lost in later flight to their destination either an Agena or Centaur upper-stage booster, and planets or before completing their scientific missions. -
Determination of Optimal Earth-Mars Trajectories to Target the Moons Of
The Pennsylvania State University The Graduate School Department of Aerospace Engineering DETERMINATION OF OPTIMAL EARTH-MARS TRAJECTORIES TO TARGET THE MOONS OF MARS A Thesis in Aerospace Engineering by Davide Conte 2014 Davide Conte Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science May 2014 ii The thesis of Davide Conte was reviewed and approved* by the following: David B. Spencer Professor of Aerospace Engineering Thesis Advisor Robert G. Melton Professor of Aerospace Engineering Director of Undergraduate Studies George A. Lesieutre Professor of Aerospace Engineering Head of the Department of Aerospace Engineering *Signatures are on file in the Graduate School iii ABSTRACT The focus of this thesis is to analyze interplanetary transfer maneuvers from Earth to Mars in order to target the Martian moons, Phobos and Deimos. Such analysis is done by solving Lambert’s Problem and investigating the necessary targeting upon Mars arrival. Additionally, the orbital parameters of the arrival trajectory as well as the relative required ΔVs and times of flights were determined in order to define the optimal departure and arrival windows for a given range of date. The first step in solving Lambert’s Problem consists in finding the positions and velocities of the departure (Earth) and arrival (Mars) planets for a given range of dates. Then, by solving Lambert’s problem for various combinations of departure and arrival dates, porkchop plots can be created and examined. Some of the key parameters that are plotted on porkchop plots and used to investigate possible transfer orbits are the departure characteristic energy, C3, and the arrival v∞. -
Managing Software Development – the Hidden Risk * Dr
Managing Software Development – The Hidden Risk * Dr. Steve Jolly Sensing & Exploration Systems Lockheed Martin Space Systems Company *Based largely on the work: “Is Software Broken?” by Steve Jolly, NASA ASK Magazine, Spring 2009; and the IEEE Fourth International Conference of System of Systems Engineering as “System of Systems in Space 1 Exploration: Is Software Broken?”, Steve Jolly, Albuquerque, New Mexico June 1, 2009 Brief history of spacecraft development • Example of the Mars Exploration Program – Danger – Real-time embedded systems challenge – Fault protection 2 Robotic Mars Exploration 2011 Mars Exploration Program Search: Search: Search: Determine: Characterize: Determine: Aqueous Subsurface Evidence for water Global Extent Subsurface Bio Potential Minerals Ice Found Found of Habitable Ice of Site 3 Found Environments Found In Work Image Credits: NASA/JPL Mars: Easy to Become Infamous … 1. [Unnamed], USSR, 10/10/60, Mars flyby, did not reach Earth orbit 2. [Unnamed], USSR, 10/14/60, Mars flyby, did not reach Earth orbit 3. [Unnamed], USSR, 10/24/62, Mars flyby, achieved Earth orbit only 4. Mars 1, USSR, 11/1/62, Mars flyby, radio failed 5. [Unnamed], USSR, 11/4/62, Mars flyby, achieved Earth orbit only 6. Mariner 3, U.S., 11/5/64, Mars flyby, shroud failed to jettison 7. Mariner 4, U.S. 11/28/64, first successful Mars flyby 7/14/65 8. Zond 2, USSR, 11/30/64, Mars flyby, passed Mars radio failed, no data 9. Mariner 6, U.S., 2/24/69, Mars flyby 7/31/69, returned 75 photos 10. Mariner 7, U.S., 3/27/69, Mars flyby 8/5/69, returned 126 photos 11. -
Getting to Mars How Close Is Mars?
Getting to Mars How close is Mars? Exploring Mars 1960-2004 Of 42 probes launched: 9 crashed on launch or failed to leave Earth orbit 4 failed en route to Mars 4 failed to stop at Mars 1 failed on entering Mars orbit 1 orbiter crashed on Mars 6 landers crashed on Mars 3 flyby missions succeeded 9 orbiters succeeded 4 landers succeeded 1 lander en route Score so far: Earthlings 16, Martians 25, 1 in play Mars Express Mars Exploration Rover Mars Exploration Rover Mars Exploration Rover 1: Meridiani (Opportunity) 2: Gusev (Spirit) 3: Isidis (Beagle-2) 4: Mars Polar Lander Launch Window 21: Jun-Jul 2003 Mars Express 2003 Jun 2 In Mars orbit Dec 25 Beagle 2 Lander 2003 Jun 2 Crashed at Isidis Dec 25 Spirit/ Rover A 2003 Jun 10 Landed at Gusev Jan 4 Opportunity/ Rover B 2003 Jul 8 Heading to Meridiani on Sunday Launch Window 1: Oct 1960 1M No. 1 1960 Oct 10 Rocket crashed in Siberia 1M No. 2 1960 Oct 14 Rocket crashed in Kazakhstan Launch Window 2: October-November 1962 2MV-4 No. 1 1962 Oct 24 Rocket blew up in parking orbit during Cuban Missile Crisis 2MV-4 No. 2 "Mars-1" 1962 Nov 1 Lost attitude control - Missed Mars by 200000 km 2MV-3 No. 1 1962 Nov 4 Rocket failed to restart in parking orbit The Mars-1 probe Launch Window 3: November 1964 Mariner 3 1964 Nov 5 Failed after launch, nose cone failed to separate Mariner 4 1964 Nov 28 SUCCESS, flyby in Jul 1965 3MV-4 No. -
Mars Insight Launch Press Kit
Introduction National Aeronautics and Space Administration Mars InSight Launch Press Kit MAY 2018 www.nasa.gov 1 2 Table of Contents Table of Contents Introduction 4 Media Services 8 Quick Facts: Launch Facts 12 Quick Facts: Mars at a Glance 16 Mission: Overview 18 Mission: Spacecraft 30 Mission: Science 40 Mission: Landing Site 53 Program & Project Management 55 Appendix: Mars Cube One Tech Demo 56 Appendix: Gallery 60 Appendix: Science Objectives, Quantified 62 Appendix: Historical Mars Missions 63 Appendix: NASA’s Discovery Program 65 3 Introduction Mars InSight Launch Press Kit Introduction NASA’s next mission to Mars -- InSight -- will launch from Vandenberg Air Force Base in California as early as May 5, 2018. It is expected to land on the Red Planet on Nov. 26, 2018. InSight is a mission to Mars, but it is more than a Mars mission. It will help scientists understand the formation and early evolution of all rocky planets, including Earth. A technology demonstration called Mars Cube One (MarCO) will share the launch with InSight and fly separately to Mars. Six Ways InSight Is Different NASA has a long and successful track record at Mars. Since 1965, it has flown by, orbited, landed and roved across the surface of the Red Planet. None of that has been easy. Only about 40 percent of the missions ever sent to Mars by any space agency have been successful. The planet’s thin atmosphere makes landing a challenge; its extreme temperature swings make it difficult to operate on the surface. But if a spacecraft survives the trip, there’s a bounty of science to be collected. -
MISSION POSSIBLE KORABL 4 LAUNCH About Half of All Mars Missions Have
Russia/U.S.S.R. U.S. Japan U.K./ESA member states Russia/China India MISSION POSSIBLE KORABL 4 LAUNCH About half of all Mars missions have KORABL 5 ) The frst U.S. succeeded. Here’s a complete history, up s KORAB e L 11 to Mars t spacecraft EARTH a to the ExoMars Trace Gas Orbiter d mysteriously lost ORBIT MARS 1 h power eight hours c n KORA after launch u BL 13 FAILURE SUCCESS a L ( MARINER 3 s Flyby Orbiter Lander 0 MA 6 RINER 4 9 1 ZOND 2 MARINER 6 IN TRANSIT MARS 1969A MARINER 7 MARS 1969B MARINER 8 S H KOSMOS 419 MA R T RS 2 ORBITER/LANDER The frst man-made object MARS 3 ORBITER/LAN DER A R to land on Mars. s MARINER 9 MARS But contact was lost 0 The frst 7 ORBIT 20 seconds after A MARS 9 4 successful touchdown M 1 Mars surface MARS 5 E exploration found all elements MARS 6 FLYBY/LAND ER essential to MARS 7 FLYBY/LANDER life VIKING 1 ORBITER/LANDER VIKING 2 ORBITER/LANDER s 0 PHOBOS 1 ORBITER/LANDER 8 9 PHOBOS 2 ORBITER/LANDER 1 Pathfinder’s Sojourner was the MARS OBSERVER frst wheeled MARS GLOBAL SURVEYOR vehicle deployed on another planet s MARS 96 ORBITER/LANDER 0 9 MARS PATHFINDER 9 1 NOZOMI MARS CLIMATE ORBITER ONGOING ONGOING 2 PROBES/MARS POLAR LANDER The Phoenix ONGOING DEEP SPACE ONGOING lander frst MARS ODYSSEY confrmed the ONGOING presence of water /BEAGLE 2 LANDER MARS EXPRESS ORBITER in soil samples s RIT MARS EXPLORATION ROVER–SPI ONGOING 0 0 OVER–OPPORTUNITY 0 MARS EXPLORATION R ONGOING 2 ITER MARS RECONNAISSANCE ORB ENIX MARS LANDER PHO Curiosity descended on the -GRUNT/YINGHUO-1 PHOBOS frst “sky crane,” a s B/CURIOSITY highly precise landing DID YOU KNOW? The early missions had 0 MARS SCIENCE LA 1 system for large up to seven diferent names. -
India to Pull Ahead of China with Mangalyaan's Success
India is set to join the elite list of members after the US, Russia and Europe to have successfully launched termed successful only after the spacecraft manages to insert itself into the Mars orbit on September 21, INDIA TO PULL a spacecraft to Mars. The attempts made by Japan and China (using a Russian rocket) have failed so far. 2014. China had successfully sent two spacecraft, Chang’e 1 and Chang’e 2, into the lunar orbit and is India is banking on its most-successful PSLV rocket, which had put its first spacecraft, Chandrayaan-1, preparing to send a landing and rover mission, Chang’e 3, to the moon in December 2013. Here is a look AHEAD OF into the lunar orbit in 2008. The same rocket flew Mangalyaan on Tuesday. However, the mission will be at all the missions to Mars: LAUNCH DATE Mar 2 LAUNCH DATE Aug. 4 LAUNCH DATE June 10 COUNTRYEurope COUNTRY US CHINA WITH COUNTRYUS LAUNCH DATE May 30 MISSION GOAL Mars SPACECRAFT SPACECRAFT Rosetta SPACECRAFT Phoenix COUNTRY US orbit LAUNCH DATE Mars Exploration Rover A (Spirit) MISSION GOAL Comet MISSION GOAL Mars MANGALYAAN'S SPACECRAFT COMMENTS Aug 5 MISSION GOAL Rover landing COMMENTS Success landing COMMENTS Mariner-9 (Mariner I) Success COUNTRY Success COMMENTS Success LAUNCH DATE LAUNCH DATE Jul 18 LAUNCH DATE USSR LAUNCH DATE LAUNCH DATE LAUNCH DATE SUCCESS LAUNCH DATE Aug. 12 LAUNCH DATE Feb 25 SPACECRAFT Aug 20 Sep 9 Nov 7 LAUNCH DATE LAUNCH DATE July 7 COUNTRY USSR Dec 4 LAUNCH DATE June 2 COUNTRY US Nov. -
China's Mission to Mars S
6 CHINA DAILY | HONG KONG EDITION Friday, July 24, 2020 | 7 CHINA FACTS ABOUT MARS Mars is the fourth planet from the Sun and the Wenchang second-smallest planet in our solar system. HAINAN Lander Mars is one of the four terrestrial planets and is more like Earth than any other planet in the system. TIANWEN 1 The earliest record of the observation of Mars can be traced to ancient Egypt around 2000 BC. The red planet made its first appearances in China’s history around 1300 BC on oracle bone inscriptions. In CHINA’S MISSION TO MARS ancient China, it was named Yinghuo , derived from ancient astronomers’ observations that it moved - like a capricious flame in the night sky. The name Aims to fulfill three scientific objectives orbiting the red includes meanings of war and unrest. It is usually planet for comprehensive observation, landing on the Martian not difficult to see Mars with the naked eye as its Mars surface apparent magnitude is surpassed only by Venus, the surface and sending a rover to roam the landing site. It will compound detector to Earth’s moon and our sun. Mars appears red-orange study high-resolution when seen from Earth because its surface contains spectral signatures of conduct scientific investigations on Mars’ soil, geological lots of iron oxides. Here are some other basic facts surface substances structure, environment, atmosphere and water. about our planetary neighbor: Total surface area: LONG 144,798,500 sq km, about 28 percent of Earth’s MARCH 5 and nearly the same as Earth’s land area LONG JOURNEY Earth-Mars Position of Mars scientific instruments are Equatorial radius: With more than transfer when the carrier The 5-ton spacecraft trajectory is launched mounted on the 3,396 km, about half that of Earth 750 metric tons Length of a solar day on Mars: of propellants, will travel more than orbiter and each Long March 400 million km in the rover 24 hours, 39 minutes, and 35 seconds 5 has a liftoff nearly seven months. -
Mars Insight Landing Press Kit
Introduction National Aeronautics and Space Administration Mars InSight Landing Press Kit NOVEMBER 2018 www.nasa.gov 1 Table of Contents Introduction 3 Media Services 6 Quick Facts: Landing Facts 11 Quick Facts: Mars at a Glance 15 Mission: Overview 17 Mission: Spacecraft 29 Mission: Science 40 Mission: Landing Site 54 Program & Project Management 56 Appendix: Mars Cube One Tech Demo 58 Appendix: Gallery 62 Appendix: Science Objectives, Quantified 64 Appendix: Historical Mars Missions 65 Appendix: NASA’s Discovery Program 67 2 Introduction Mars InSight Landing Press Kit Introduction NASA’s next mission to Mars -- InSight -- is expected to land on the Red Planet on Nov. 26, 2018. InSight is a mission to Mars, but it is also more than a Mars mission. It will help scientists understand the formation and early evolution of all rocky planets, including Earth. In addition to InSight, a technology demonstration called Mars Cube One (MarCO) is flying separately to the Red Planet. It will test a new kind of data relay from another InSight will help us learn about the formation of Mars -- as well planet for the first time, though InSight’s success is not as all rocky planets. Credit: NASA/JPL-Caltech dependent on MarCO. Five Things to Know About Landing 1. Landing on Mars is difficult Only about 40 percent of the missions ever sent to Mars -- by any space agency -- have been successful. The U.S. is the only nation whose missions have survived a Mars landing. The thin atmosphere -- just 1 percent of Earth’s -- means that there’s little friction to slow down a spacecraft.