Mutations in FRMD7, a Newly Identified Member of the FERM

Total Page:16

File Type:pdf, Size:1020Kb

Mutations in FRMD7, a Newly Identified Member of the FERM BRIEF COMMUNICATIONS Mutations in FRMD7, a newly pathology, including ocular albinism, congenital stationary night blindness, achromatopsia, blue cone monochromatism and sensory identified member of the FERM visual defects of early childhood such as congenital cataract, retinitis pigmentosa, cone-rod dystrophy and optic nerve hypoplasia4. family, cause X-linked idiopathic ICN is usually inherited as an X-linked trait with incomplete penetrance in females. Most families map to Xq26–q27 and the congenital nystagmus locus (known as NYS1) has previously been mapped to a B12-Mb Patrick Tarpey1,20, Shery Thomas2,20, Nagini Sarvananthan2, interval between markers DXS9909 and DXS1211 (refs. 5,6). Others Uma Mallya3, Steven Lisgo4, Chris J Talbot5, Eryl O Roberts2, have proposed a further reduction of the candidate region to an Musarat Awan2, Mylvaganam Surendran2, Rebecca J McLean2, interval between DXS8033 and DXS8043 based on a recombination 7 Robert D Reinecke6, Andrea Langmann7, Susanne Lindner7, event in a clinically unaffected female . X-linked genetic heterogeneity Martina Koch7, Sunila Jain8, Geoffrey Woodruff2, has been suggested on the basis of a single ICN family that is reported Richard P Gale9, Chris Degg10, Konstantinos Droutsas11, to map to Xp11.4– Xp11.3 (ref. 8). http://www.nature.com/naturegenetics Ioannis Asproudis12, Alina A Zubcov13, Christina Pieh14, We screened 16 families with X-linked ICN using 17 markers 6 Colin D Veal5, Rajiv D Machado15, Oliver C Backhouse9, extending from Xq26–Xq27 (Supplementary Fig. 1 online) .In B Laura Baumber5,15, Cris S Constantinescu16,MichaelCBrodsky17, these families, the disease was fully penetrant in males and 50% David G Hunter18,RichardWHertle19, Randy J Read3, penetrant in females. The phenotype was variable even within families Sarah Edkins1,SarahO’Meara1, Adrian Parker1,ClaireStevens1, (Supplementary Fig. 2 and Supplementary Videos 1, 2 and 3 online). Jon Teague1,RichardWooster1, P Andrew Futreal1, In all 16 families, marker haplotypes were compatible with linkage to Richard C Trembath15, Michael R Stratton1, F Lucy Raymond3 & Xq26–q27 (Supplementary Methods online). Recombinant events in B Irene Gottlob2 affected males in family N1 refined the location of NYS1 to a 7.5-Mb interval between markers DXS1047 and DXS1041 (Fig. 1a,b). Idiopathic congenital nystagmus is characterized by The candidate interval contained 480 genes. We performed high- Nature Publishing Group Group Nature Publishing involuntary, periodic, predominantly horizontal oscillations throughput DNA sequence analysis of all coding exons of all genes 6 of both eyes. We identified 22 mutations in FRMD7 in within this interval9. DNA from one affected male individual from 200 26 families with X-linked idiopathic congenital nystagmus. each of the 16 linked families was screened for mutations. © Screening of 42 singleton cases of idiopathic congenital We detected mutations in FRMD7 (FERM domain–containing 7, nystagmus (28 male, 14 females) yielded three mutations (7%). previously known as LOC90167) at Xq26.2 in 15/16 of the linked We found restricted expression of FRMD7 in human embryonic families after screening 440 genes by sequence analysis (Fig. 1c). brain and developing neural retina, suggesting a specific role in FRMD7 has 12 exons and encodes a previously unidentified member the control of eye movement and gaze stability. of the protein 4.1 superfamily (RefSeq accession number NM_194277). All mutations identified in FRMD7 cosegregated with The prevalence of idiopathic congenital nystagmus (ICN) is estimated disease in the linked families and were absent from 300 male control to be 1 in 1,000. In ICN, visual function can be significantly reduced chromosomes (Table 1). The nonsense mutations leading to Q201X owing to constant eye movement, but the degree of visual impairment and R335X predict truncated proteins containing 28% and 47% of the varies1,2. The disease is likely to be due to abnormal development of protein, respectively. Four of the five splice site mutations were at areas in the brain controlling eye movements and gaze stability3.ICN conserved splice donor residues (position +1 and +2) and are is distinct from other hereditary causes of nystagmus and ocular thus predicted to be pathological by classical exon skipping and 1Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK. 2Ophthalmology Group, School of Medicine, University of Leicester, PO Box 65, Leicester LE2 7LX, UK. 3Cambridge Institute for Medical Research, Addenbrookes Hospital, Cambridge CB2 2XY, UK. 4Institute of Human Genetics, International Centre for Life, Newcastle University, Newcastle upon Tyne NE1 7RU, UK. 5Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, UK. 6Foerderer Eye Movement Centre for Children, Wills Eye Hospital, Philadelphia, Pennsylvania 19107, USA. 7Medical University Graz, Department of Ophthalmology, Auenbruggerplatz 4, 8036 Graz, Austria. 8Royal Preston Hospital, Sharoe Green Lane North, Fulwood, Preston, Lancashire PR2 9HT, UK. 9Department of Ophthalmology, Leeds General Infirmary, Leeds LS2 9NS, UK. 10Department of Medical Physics, University Hospitals of Leicester, Leicester LE1 5WW, UK. 11Department of Ophthalmology, Justus- Liebig-University, 35392 Giessen, Germany. 12Department of Ophthalmology, Medical Faculty, University Hospital of Ioannina, 45110 Ioannina, Greece. 13University Eye Hospital, Johann-Wolfgang-Goethe-Universita¨t, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany and Ginnheimer Hohl 6, 60431 Frankfurt/Main, Germany. 14Ophthalmology Department, University of Freiburg, Freiburg, Germany. 15Division of Genetics and Molecular Medicine, King’s College London SE1 9RT, UK. 16Division of Clinical Neurology, School of Medical and Surgical Sciences, University of Nottingham, Nottingham NG7 2UH, UK. 17Departments of Ophthalmology and Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72202, USA. 18Department of Ophthalmology, Children’s Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, USA. 19University of Pittsburgh Medical Centre, Division of Paediatric Ophthalmology, Children’s Hospital of Pittsburgh, 3705 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA. 20These authors contributed equally to this work. Correspondence should be addressed to F.L.R. (fl[email protected]) or I.G. ([email protected]). Received 6 June; accepted 1 September; published online 1 October 2006; doi:10.1038/ng1893 1242 VOLUME 38 [ NUMBER 11 [ NOVEMBER 2006 NATURE GENETICS BRIEF COMMUNICATIONS missense mutations in FRMD7 except the a l lI one leading to Y301C in the linked families. lII We inspected the structural environment of lV the disease-associated missense mutations V d e using the program Coot, which allows the VI N1 v identity and conformation of residues to be 12 c 130.1 Mb manipulated easily . Although the effect on DXS8072 cp the structure of L231V is not clearly apparent, v 130.8 mutations leading to G24R, L142R and C271 r are likely to destabilize the protein by the b 130.9 introduction of larger amino acids within V2 VI2 IV9 MST DXS1047 199 199 203 DXS8072 222 222 222 fgh restricted areas of the protein, and the intro- DXS8071 199 199 199 r DXS6748 211 211 211 LOC90167 DXS1114 114 114 144 131 duction of a proline residue at position 266 DXS8041 155 115 115 DXS8033 258 258 258 (A266P) will disrupt a helical domain in the DXS134.1 243 243 243 h DXS134.2 157 157 157 RAP2C DXS134.6 207 207 207 131.1 wild-type structure. DXS134.9 216 216 216 cp DXS691 155 155 155 From the results above, we concluded that GDB:204469 246 246 DXS8071 DXS8094 235 235 235 s DXS1041 169 157 169 mutations in FRMD7 are a major cause of DXS8050 197 199 197 131.2 DXS998 114 114 114 familial X-linked congenital motor nystag- MBNL3 mus. We then assessed the prevalence of 131.3 mutations in FRMD7 in smaller families in Figure 1 Refinement of the linkage interval to Xq26 and the pattern of expression of FRMD7 in brain which linkage data was not available and in a of human embryos B56 d.p.o. by in situ hybridization. (a) Pedigree of family N1. Arrow marks critical cohort of males and females with ICN but http://www.nature.com/naturegenetics individuals whose haplotypes define the minimum critical linkage interval. (b) Allele size for marker without a family history of the condition. We DXS1047 in individual IV9 is discordant compared with the other affected males, V2 and VI2, and the screened 14 families with two or more allele size at markers DXS1041 and DXS8050 in individual VI2 is discordant compared with affected individuals of either sex and found individuals V2 and IV9. (c) Location of LOC90167 (FRMD7) relative to the linkage markers DXS8072 mutations in 8/14 (57%). We also identified and DXS8071.(d–h) A 599-bp and a 681-bp probe from unique sequence in the 3¢ UTR of FRMD7 were used as probes for in situ hybridization. d and f show in situ hybridization results using sense mutations in 3/42 (7%) individuals without a probes, and e and g use antisense probes in similar anatomical locations. d and e are sagittal sections family history who had undergone careful showing the lateral ventricle (v), cerebellar peduncle (cp) and developing neural retina (r). h is an clinical and electrophysiological investigation enlargement of e, illustrating the retina. f and g are transverse sections showing the spinal cord (s), to exclude other causes of inherited congeni- hypothalamus (h) and cerebellar peduncle (cp). Scale bars: e, 2,000 mm; g, 1,800 mm. The study was tal nystagmus (Table 1). We identified muta- approved by the University of Leicester Ethics Committee. Written informed consent was obtained from tions in 1/14 female singletons and 2/28 male all study participants. singletons, and none of the new mutations Nature Publishing Group Group Nature Publishing 6 was found in samples from 300 male control nonsense-mediated decay. In family N7, whose members had the individuals. The results suggest that mutation analysis of FRMD7 may 200 - © mutation IVS2 +5G A, we detected negligible amounts of transcript be considered of diagnostic value even in isolated cases of either sex.
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • The Role of Cdep in the Embryonic Morphogenesis of Drosophila Melanogaster
    The Role of Cdep in the Embryonic Morphogenesis of Drosophila melanogaster Dissertation zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer.nat.) vorgelegt der Fakultät Mathematik und Naturwissenschaften der Technischen Universität Dresden von Anne Morbach Geboren am 05. August 1984 in Nordhausen, Deutschland Eingereicht am 30. Oktober 2015 Die Dissertation wurde in der Zeit von April 2012 bis Oktober 2015 im Max-Planck-Institut für molekulare Zellbiologie und Genetik angefertigt Gutachter: Prof. Dr. Elisabeth Knust Prof. Dr. Christian Dahmann Now, here, you see, it takes all the running you can do, to keep in the same place. Lewis Carroll, Through the Looking-Glass I Contents List of Figures V List of Tables VII Abstract IX List of Abbreviations XI 1 Introduction 1 1.1 Epithelial cell polarity . 1 1.1.1 Cellularization and formation of the primary epithelium . 1 1.1.1.1 Establishment of epithelial polarity and adhesion . 2 1.1.2 The epithelial polarity network . 3 1.1.3 Cell-cell adhesion . 5 1.1.3.1 Adherens junctions . 5 1.1.3.2 Septate junctions . 6 1.2 Epithelial movements in Drosophila embryonic morphogenesis . 6 1.2.1 Epithelial tube formation during Drosophila embryogenesis . 7 1.2.2 Coordinated migration of epithelial sheets during Dros. embryogenesis 7 1.2.2.1 FERM domain proteins in epithelial migration . 9 1.2.2.2 Cdep . 10 1.3 Mutagenesis with the CRISPR/Cas9 system . 12 2 Aim of My PhD Thesis Work 15 3 Preliminary Work 17 4 Results 19 4.1 A screen for novel regulators in Drosophila embryonic morphogenesis .
    [Show full text]
  • Modular and Distinct Plexin-A4/FARP2/Rac1 Signaling Controls Dendrite Morphogenesis
    The Journal of Neuroscience, July 8, 2020 • 40(28):5413–5430 • 5413 Development/Plasticity/Repair Modular and Distinct Plexin-A4/FARP2/Rac1 Signaling Controls Dendrite Morphogenesis Victor Danelon,1* Ron Goldner,2* Edward Martinez,1 Irena Gokhman,2 Kimberly Wang,1 Avraham Yaron,2 and Tracy S. Tran1 1Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102, and 2Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel Diverse neuronal populations with distinct cellular morphologies coordinate the complex function of the nervous system. Establishment of distinct neuronal morphologies critically depends on signaling pathways that control axonal and dendritic devel- opment. The Sema3A-Nrp1/PlxnA4 signaling pathway promotes cortical neuron basal dendrite arborization but also repels axons. However, the downstream signaling components underlying these disparate functions of Sema3A signaling are unclear. Using the KRK-AAA novel PlxnA4 knock-in male and female mice, generated by CRISPR/cas9, we show here that the KRK motif in the PlxnA4 cytoplasmic domain is required for Sema3A-mediated cortical neuron dendritic elaboration but is dispensable for inhibitory axon guidance. The RhoGEF FARP2, which binds to the KRK motif, shows identical functional specificity as the KRK motif in the PlxnA4 receptor. We find that Sema3A activates the small GTPase Rac1, and that Rac1 activity is required for dendrite elaboration but not axon growth cone collapse. This work identifies a novel Sema3A-Nrp1/PlxnA4/FARP2/Rac1 signaling pathway that specifi- cally controls dendritic morphogenesis but is dispensable for repulsive guidance events. Overall, our results demonstrate that the divergent signaling output from multifunctional receptor complexes critically depends on distinct signaling motifs, highlighting the modular nature of guidance cue receptors and its potential to regulate diverse cellular responses.
    [Show full text]
  • A Draft Map of the Human Proteome
    ARTICLE doi:10.1038/nature13302 A draft map of the human proteome Min-Sik Kim1,2, Sneha M. Pinto3, Derese Getnet1,4, Raja Sekhar Nirujogi3, Srikanth S. Manda3, Raghothama Chaerkady1,2, Anil K. Madugundu3, Dhanashree S. Kelkar3, Ruth Isserlin5, Shobhit Jain5, Joji K. Thomas3, Babylakshmi Muthusamy3, Pamela Leal-Rojas1,6, Praveen Kumar3, Nandini A. Sahasrabuddhe3, Lavanya Balakrishnan3, Jayshree Advani3, Bijesh George3, Santosh Renuse3, Lakshmi Dhevi N. Selvan3, Arun H. Patil3, Vishalakshi Nanjappa3, Aneesha Radhakrishnan3, Samarjeet Prasad1, Tejaswini Subbannayya3, Rajesh Raju3, Manish Kumar3, Sreelakshmi K. Sreenivasamurthy3, Arivusudar Marimuthu3, Gajanan J. Sathe3, Sandip Chavan3, Keshava K. Datta3, Yashwanth Subbannayya3, Apeksha Sahu3, Soujanya D. Yelamanchi3, Savita Jayaram3, Pavithra Rajagopalan3, Jyoti Sharma3, Krishna R. Murthy3, Nazia Syed3, Renu Goel3, Aafaque A. Khan3, Sartaj Ahmad3, Gourav Dey3, Keshav Mudgal7, Aditi Chatterjee3, Tai-Chung Huang1, Jun Zhong1, Xinyan Wu1,2, Patrick G. Shaw1, Donald Freed1, Muhammad S. Zahari2, Kanchan K. Mukherjee8, Subramanian Shankar9, Anita Mahadevan10,11, Henry Lam12, Christopher J. Mitchell1, Susarla Krishna Shankar10,11, Parthasarathy Satishchandra13, John T. Schroeder14, Ravi Sirdeshmukh3, Anirban Maitra15,16, Steven D. Leach1,17, Charles G. Drake16,18, Marc K. Halushka15, T. S. Keshava Prasad3, Ralph H. Hruban15,16, Candace L. Kerr19{, Gary D. Bader5, Christine A. Iacobuzio-Donahue15,16,17, Harsha Gowda3 & Akhilesh Pandey1,2,3,4,15,16,20 The availability of human genome sequence has transformed biomedical research over the past decade. However, an equiv- alent map for the human proteome with direct measurements of proteins and peptides does not exist yet. Here we present a draft map of the human proteome using high-resolution Fourier-transform mass spectrometry.
    [Show full text]
  • MAP17's Up-Regulation, a Crosspoint in Cancer and Inflammatory
    García-Heredia and Carnero Molecular Cancer (2018) 17:80 https://doi.org/10.1186/s12943-018-0828-7 REVIEW Open Access Dr. Jekyll and Mr. Hyde: MAP17’s up- regulation, a crosspoint in cancer and inflammatory diseases José M. García-Heredia1,2,3 and Amancio Carnero1,3* Abstract Inflammation is a common defensive response that is activated after different harmful stimuli. This chronic, or pathological, inflammation is also one of the causes of neoplastic transformation and cancer development. MAP17 is a small protein localized to membranes with a restricted pattern of expression in adult tissues. However, its expression is common in destabilized cells, as it is overexpressed both in inflammatory diseases and in cancer. MAP17 is overexpressed in most, if not all, carcinomas and in many tumors of mesenchymal origin, and correlates with higher grade and poorly differentiated tumors. This overexpression drives deep changes in cell homeostasis including increased oxidative stress, deregulation of signaling pathways and increased growth rates. Importantly, MAP17 is associated in tumors with inflammatory cells infiltration, not only in cancer but in various inflammatory diseases such as Barret’s esophagus, lupus, Crohn’s, psoriasis and COPD. Furthermore, MAP17 also modifies the expression of genes connected to inflammation, showing a clear induction of the inflammatory profile. Since MAP17 appears highly correlated with the infiltration of inflammatory cells in cancer, is MAP17 overexpression an important cellular event connecting tumorigenesis and inflammation? Keywords: MAP17, Cancer, Inflammatory diseases Background process ends when the activated cells undergo apoptosis in Inflammatory response is a common defensive process acti- a highly regulated process that finishes after pathogens and vated after different harmful stimuli, constituting a highly cell debris have been phagocytized [9].
    [Show full text]
  • Genome-Wide DNA Methylation Dynamics During Epigenetic
    Gómez‑Redondo et al. Clin Epigenet (2021) 13:27 https://doi.org/10.1186/s13148‑021‑01003‑x RESEARCH Open Access Genome‑wide DNA methylation dynamics during epigenetic reprogramming in the porcine germline Isabel Gómez‑Redondo1*† , Benjamín Planells1†, Sebastián Cánovas2,3, Elena Ivanova4, Gavin Kelsey4,5 and Alfonso Gutiérrez‑Adán1 Abstract Background: Prior work in mice has shown that some retrotransposed elements remain substantially methylated during DNA methylation reprogramming of germ cells. In the pig, however, information about this process is scarce. The present study was designed to examine the methylation profles of porcine germ cells during the time course of epigenetic reprogramming. Results: Sows were artifcially inseminated, and their fetuses were collected 28, 32, 36, 39, and 42 days later. At each time point, genital ridges were dissected from the mesonephros and germ cells were isolated through magnetic‑ activated cell sorting using an anti‑SSEA‑1 antibody, and recovered germ cells were subjected to whole‑genome bisulphite sequencing. Methylation levels were quantifed using SeqMonk software by performing an unbiased analysis, and persistently methylated regions (PMRs) in each sex were determined to extract those regions showing 50% or more methylation. Most genomic elements underwent a dramatic loss of methylation from day 28 to day 36, when the lowest levels were shown. By day 42, there was evidence for the initiation of genomic re‑methylation. We identifed a total of 1456 and 1122 PMRs in male and female germ cells, respectively, and large numbers of transpos‑ able elements (SINEs, LINEs, and LTRs) were found to be located within these PMRs. Twenty‑one percent of the introns located in these PMRs were found to be the frst introns of a gene, suggesting their regulatory role in the expression of these genes.
    [Show full text]
  • Genome-Wide Detection of Natural Selection in African Americans Pre- and Post-Admixture
    Downloaded from genome.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Method Genome-wide detection of natural selection in African Americans pre- and post-admixture Wenfei Jin,1 Shuhua Xu,1,6 Haifeng Wang,2 Yongguo Yu,3 Yiping Shen,4,5 Bailin Wu,4,5 and Li Jin1,4,6 1Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences and Max Planck Society (CAS-MPG) Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; 2Chinese National Human Genome Center, Shanghai 201203, China; 3Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China; 4Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China; 5Children’s Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, USA It is particularly meaningful to investigate natural selection in African Americans (AfA) due to the high mortality their African ancestry has experienced in history. In this study, we examined 491,526 autosomal single nucleotide poly- morphisms (SNPs) genotyped in 5210 individuals and conducted a genome-wide search for selection signals in 1890 AfA. Several genomic regions showing an excess of African or European ancestry, which were considered the footprints of selection since population admixture, were detected based on a commonly used approach. However, we also developed a new strategy to detect natural selection both pre- and post-admixture by reconstructing an ancestral African population (AAF) from inferred African components of ancestry in AfA and comparing it with indigenous African populations (IAF).
    [Show full text]
  • Egfr Activates a Taz-Driven Oncogenic Program in Glioblastoma
    EGFR ACTIVATES A TAZ-DRIVEN ONCOGENIC PROGRAM IN GLIOBLASTOMA by Minling Gao A thesis submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland March 2020 ©2020 Minling Gao All rights reserved Abstract Hyperactivated EGFR signaling is associated with about 45% of Glioblastoma (GBM), the most aggressive and lethal primary brain tumor in humans. However, the oncogenic transcriptional events driven by EGFR are still incompletely understood. We studied the role of the transcription factor TAZ to better understand master transcriptional regulators in mediating the EGFR signaling pathway in GBM. The transcriptional coactivator with PDZ- binding motif (TAZ) and its paralog gene, the Yes-associated protein (YAP) are two transcriptional co-activators that play important roles in multiple cancer types and are regulated in a context-dependent manner by various upstream signaling pathways, e.g. the Hippo, WNT and GPCR signaling. In GBM cells, TAZ functions as an oncogene that drives mesenchymal transition and radioresistance. This thesis intends to broaden our understanding of EGFR signaling and TAZ regulation in GBM. In patient-derived GBM cell models, EGF induced TAZ and its known gene targets through EGFR and downstream tyrosine kinases (ERK1/2 and STAT3). In GBM cells with EGFRvIII, an EGF-independent and constitutively active mutation, TAZ showed EGF- independent hyperactivation when compared to EGFRvIII-negative cells. These results revealed a novel EGFR-TAZ signaling axis in GBM cells. The second contribution of this thesis is that we performed next-generation sequencing to establish the first genome-wide map of EGF-induced TAZ target genes.
    [Show full text]
  • Regulating Rac in the Nervous System: Molecular Function and Disease Implication of Rac Gefs and Gaps
    Hindawi Publishing Corporation BioMed Research International Volume 2015, Article ID 632450, 17 pages http://dx.doi.org/10.1155/2015/632450 Review Article Regulating Rac in the Nervous System: Molecular Function and Disease Implication of Rac GEFs and GAPs Yanyang Bai, Xiaoliang Xiang, Chunmei Liang, and Lei Shi JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, Guangdong 510632, China Correspondence should be addressed to Lei Shi; [email protected] Received 23 January 2015; Accepted 6 March 2015 Academic Editor: Akito Tanoue Copyright © 2015 Yanyang Bai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Rho family GTPases, including RhoA, Rac1, and Cdc42 as the most studied members, are master regulators of actin cytoskeletal organization. Rho GTPases control various aspects of the nervous system and are associated with a number of neuropsychiatric and neurodegenerative diseases. The activity of Rho GTPases is controlled by two families of regulators, guanine nucleotide exchange factors (GEFs) as the activators and GTPase-activating proteins (GAPs) as the inhibitors. Through coordinated regulation by GEFs and GAPs, Rho GTPases act as converging signaling molecules that convey different upstream signals in the nervous system. So far,morethan70membersofeitherGEFsorGAPsofRhoGTPaseshavebeenidentifiedinmammals,butonlyasmallsubset of them have well-known functions. Thus, characterization of important GEFs and GAPs in the nervous system is crucial for the understanding of spatiotemporal dynamics of Rho GTPase activity in different neuronal functions. In this review, we summarize the current understanding of GEFs and GAPs for Rac1, with emphasis on the molecular function and disease implication of these regulators in the nervous system.
    [Show full text]
  • Semaphorins in Adult Nervous System Plasticity and Disease
    fnsyn-13-672891 May 5, 2021 Time: 18:18 # 1 REVIEW published: 11 May 2021 doi: 10.3389/fnsyn.2021.672891 Semaphorins in Adult Nervous System Plasticity and Disease Daniela Carulli1,2*, Fred de Winter1 and Joost Verhaagen1 1 Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands, 2 Department of Neuroscience Rita Levi-Montalcini and Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy Semaphorins, originally discovered as guidance cues for developing axons, are involved in many processes that shape the nervous system during development, from neuronal proliferation and migration to neuritogenesis and synapse formation. Interestingly, the expression of many Semaphorins persists after development. For instance, Semaphorin 3A is a component of perineuronal nets, the extracellular matrix structures enwrapping certain types of neurons in the adult CNS, which contribute to the closure of the critical period for plasticity. Semaphorin 3G and 4C play a crucial role in the control of adult hippocampal connectivity and memory processes, and Semaphorin 5A and 7A regulate adult neurogenesis. This evidence points to a role of Semaphorins in the regulation of adult neuronal plasticity. In this review, we address the distribution of Semaphorins in the adult nervous system and we discuss their function in physiological and pathological processes. Keywords: semaphorins, plasticity, perineuronal net, schizophrenia, epilepsy, Alzheimer’s disease, multiple sclerosis, autism Edited by: INTRODUCTION Juan Nacher, University of Valencia, Spain The development of complex tissues depends on proliferation, differentiation and migration of Reviewed by: cells. Cell guidance cues regulate these events and continue to be essential throughout life to Javier Gilabert-Juan, maintain tissue homeostasis.
    [Show full text]
  • Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily
    Membranes 2015, 5, 646-663; doi:10.3390/membranes5040646 OPEN ACCESS membranes ISSN 2077-0375 www.mdpi.com/journal/membranes Article Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily Marc Lenoir 1, Irina Kufareva 2, Ruben Abagyan 2, and Michael Overduin 3,* 1 School of Cancer Sciences, Faculty of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; E-Mail: [email protected] 2 Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; E-Mails: [email protected] (I.K.); [email protected] (R.A.) 3 Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada * Author to whom correspondence should be addressed: E-Mail: [email protected]; Tel.: +1-780-492-3357; Fax: +1-780-492-0886. Academic Editor: Shiro Suetsugu Received: 15 September 2015 / Accepted: 16 October 2015 / Published: 23 October 2015 Abstract: The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH) domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH) and Tec homology (TH) domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA) program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants.
    [Show full text]
  • The 2Q37-Deletion Syndrome: an Update of the Clinical Spectrum Including Overweight, Brachydactyly and Behavioural Features in 14 New Patients
    European Journal of Human Genetics (2013) 21, 602–612 & 2013 Macmillan Publishers Limited All rights reserved 1018-4813/13 www.nature.com/ejhg ARTICLE The 2q37-deletion syndrome: an update of the clinical spectrum including overweight, brachydactyly and behavioural features in 14 new patients Camille Leroy1,2,3, Emilie Landais1,2,4, Sylvain Briault5, Albert David6, Olivier Tassy7, Nicolas Gruchy8, Bruno Delobel9, Marie-Jose´ Gre´goire10, Bruno Leheup3,11, Laurence Taine12, Didier Lacombe12, Marie-Ange Delrue12, Annick Toutain13, Agathe Paubel13, Francine Mugneret14, Christel Thauvin-Robinet3,15, Ste´phanie Arpin13, Cedric Le Caignec6, Philippe Jonveaux3,10, Myle`ne Beri10, Nathalie Leporrier8, Jacques Motte16, Caroline Fiquet17,18, Olivier Brichet16, Monique Mozelle-Nivoix1,3, Pascal Sabouraud16, Nathalie Golovkine19, Nathalie Bednarek20, Dominique Gaillard1,2,3 and Martine Doco-Fenzy*,1,2,3,18 The 2q37 locus is one of the most commonly deleted subtelomeric regions. Such a deletion has been identified in 4100 patients by telomeric fluorescence in situ hybridization (FISH) analysis and, less frequently, by array-based comparative genomic hybridization (array-CGH). A recognizable ‘2q37-deletion syndrome’ or Albright’s hereditary osteodystrophy-like syndrome has been previously described. To better map the deletion and further refine this deletional syndrome, we formed a collaboration with the Association of French Language Cytogeneticists to collect 14 new intellectually deficient patients with a distal or interstitial 2q37 deletion characterized by FISH and array-CGH. Patients exhibited facial dysmorphism (13/14) and brachydactyly (10/14), associated with behavioural problems, autism or autism spectrum disorders of varying severity and overweight or obesity. The deletions in these 14 new patients measured from 2.6 to 8.8 Mb.
    [Show full text]