Development a HPLC Method for Simultaneous

Total Page:16

File Type:pdf, Size:1020Kb

Development a HPLC Method for Simultaneous Journal of Pharmaceutical and Health Sciences 2012;1(4), 79-87. Original Article Development a HPLC method for simultaneous determination of Open Access Azinphose methyl, Diazinon, Phosalone and Chlorpyrifos residues in fruit Maliheh Soodi1*, Atefeh Garshasbi2, Soheil Eskandari3 1 Department of Toxicology, School of Medical Sciences, Tarbiat Modares University, Tehran ,Iran 2 Department of Analytical Chemistry, Islamic Azad University-Shahr-e-Ray Branch, Tehran, Iran 3 Food and Drug Research Center, Tehran, Iran Abstract A high-performance liquid chromatography with ultraviolet detection (HPLC/UV) method which was used solid-phase extraction for cleanup, was developed for the determination of Azinphos methyl ,Phosalone, Diazinon and Chlorpyrifos residues in fruits. A full factorial experimental design was used for development of HPLC condition and evaluation of effect of three factors (pH of mobile phase, percent of acetonitril in mobile phase and flow rate) on the retention time and resolution of peaks. The samples were extracted with Hexan/Aceton(50/50) and then is loaded onto a C18 end-caped SPE cartridge for further clean up. For SPE condition optimization, several solvents (acetonitril, dichloromethane, ethyl acetate and hexane) were tested as eluent and the best recovery was found with hexane. The optimum HPLC condition was achieved with acetonitril: water (60:40) as mobile phase, flow rate 1 ml/min, on C8 column. The standard calibration curves were linear between 0.05-1μg/ml for Azinphos methyl and 0.1-2 μg/ml for others.Archive The hexan:acetone extraction followed of by the SID C18 end-cap SPE cleanup provided recoveries of >70% for all of pesticides and removing the greatest number of sample matrix interferences. Keywords: Azynphos methyl, Phosalone, Diazinon, Chlorpyrifos, Organophosphate pesticide, HPLC *Corresponding author: Maliheh Soodi, PhD., Department of Toxicology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran. Tel: +98 21 82884549 Fax: +98 21 82884555 E-mail address: [email protected] www.SID.ir Soodi et al. HPLC method is suitability of this technique 1. Introduction for precise analyzing of polar and thermally labile compounds. In some studies, pesticide Pesticides are chemical agents used to control compounds with a wide range of polarity and reduce pest populations. Published are simultaneously measured (Fernandes reports represent that the total amount of et al.,2011). Derivatization is not required pesticides used in agriculture is increasing. through this approach. Clean up procedure Unfortunately these compounds were using SPE cartridges is compatible with HPLC improperly used without attention to currency and also HPLC methods are more simple and period of pesticide by farmers. As a result of robust than GC methods (Picó et al.,2012; the large quantities and inappropriate use of Jedrzejczuk et al., 2001). the pesticides, they are present in all areas of Azinphose methyl, Diazinon, Phosalone and the natural environment and food commodity Chlorpyrifos are commonly used organophos- (Tadeo et al.,2008; Ecobichon 2001). phate pesticides in fruit gardens ,and the aim Organophosphate pesticides have been of this study was the development of a HPLC widely used as insecticide in agriculture for method to determine the residues of these last decades. Because of relatively rapid compound in fruits. decomposition of these compounds, then short half life in the environment, they were replaced organochlorine pesticide and todays extensive- ly were used in agriculture. As a consequence, 2.Materials and Methods residues of these substances can be found in food, and raises significant concerns about Chemicals potential risk for human health (Damalas et Azinphos methyl, Phosalen, Diazinon and al.,2011) . Several Studies have shown that chlorpryphs reference standards, purity > human exposure to these compounds can have 99%, AccuStandard® .Methanol, Acetonitrl, adverse health effects like suppressing of Hexan, Ethyl acetate, Methylen chloride, were the immune system, cancer and neurological analytical grade and were purchased from disorder (Damalas et al.,2011; Jaga et al.,2005; Merck. Kamel et al.,2005). Therefore, control and measurement of the Instrumentation pesticide residues on fruit crops is an essential The chromatography was performed on a measure and requires a simple and affordable Thermo Scientific Dionex UltiMate 3000 method of analysis. HPLC system, which comprised online Chromatography-based methods are frequent- degasser, autosampler, column oven, and ly applied for theArchive determination of pesticide UV detector.of ThisSID system was controlled by residues in various matrices. Gas chromatog- Cromoleon software 6.8. An RP column raphy is the conventional method for the (Prontosil 120,C8 ACE-EPS, 5μm, 25 × 0.46 detection and quantification of organophos- cm ) was used. phate pesticides (Hennion et al.,1997; Picó et al.,2012) . However, number of studies Preparation of Standard solutions used high-performance liquid chromatog- Individual stock standards solutions of each raphy (HPLC) technique for analyzing compound were prepared by weighing the the organophosphate residues in food is powder and dissolution in 10 mL of Acetonitril increasing (Picó et al.,2012; Jedrzejczuk et al., to prepare 1000 μg/ml stock solution then this 2001; Ravelo-Pérez et al.,2006, Fernandes et stock solution was diluted by acetonitril to al.,2011) .The major advantage of the use of prepare 100 μg/ml working standard . Next, 80 J Pharm Health Sci Volume 1 Issue 4 Autumnwww.SID.ir 2012 simultaneous determination of organophosphate pesticide pesticide mixture solutions were prepared by dryness on a vacuum rotary evaporator, The adequate dilution of the corresponding stock obtained residue was re-dissolved in 5 mL of solution with acetonitril. The concentration of hexan and 1 ml of this extract was loaded on standard solutions were 0.1, 0.2, 0.4, 0.8, 1.6 SPE cartridge for further clean up. and 2 μg/ml for Diazinon , Chlorpryphos and Phosalen, and 0.05, 0.1, 0.2, 0.4, 0.8 and 1 μg/ Clean up ml for Azinphos methyl. The C18 SPE cartridge (CHROMBOND®, end-capped) was used for clean up the extracts. Extraction The SPE sorbent was conditioned with 3 ml The chopped fresh fruits were blended in Methanol followed by 3 ml water and then a blender and 20 gr of well blended fruits loaded with1 ml of extract. Different solvents were weighed in two 250 mL glass bottles including Hexan, Acetonitrl, Dichloro methan fitted with screw caps. One of these weighed and Ethyl acetate) were tried as eluent to obtain samples was used as blank sample and another the optimum recovery for elution .Finally, the one was used as spiked sample. The spiked eluate was saved and evaporated to dryness sample was prepared by adding proper amount under a gentle nitrogen stream then residue of stock solution of pesticides, in which final was re-dissolved in 2 ml mobile phase and concentrations of 0.25 μg/ml for Azinphos injected to the HPLC. methyl and 0.5 μg/ml for Diazinon , Chlorpry- phos and Phosalen were achieved. The spiked HPLC method development samples were left standing for 1 h before The mixed standard solution of pesticides was beginning the extraction step. Two samples used for the optimization of HPLC conditions. were extracted as described by Talebi([Talebi, The eluate was monitored by UV absorbance 2006). Briefly, Solvent (acetone:hexane, at 235 nm. The preliminary experiment 50:50 v/v) in the amount of 150 mL was conducted with C18 column as stationary added and agitated for 20 min using a shaker. phase and water/acetonitril mixture with The sample was filtered, and the resultant varying percent as mobile phase .But these liquid was transferred into a separatory funnel conditions were not resulted in good separation containing 50 mL of sodium chloride solution of pesticide peaks, even with changing percent (20 g/l).The solution was shaken vigorously of acetonitrl in mobile phase and flow rate and left on the lab bench for layers to separate. (figure 1), therefore the experiments were The upper layer was separated, and the lower conducted by C8 column. layer was re-extracted with 25 mL of hexane. Experimental design method was used for The combined hexaneArchive extract evaporated to estimation of of optimumSID HPLC condition. a Figure 1. Chromatogram of the mixed standard solution of pesticides on C18 column ©2012 Soodi et al.; licensee to Islamic Azad University-Pharmaceutical Sciences Branch www.SID.ir81 Soodi et al. 23 full factorial design was proposed for In this method each factor was tested in two assessing effect of three major factors ( pH of levels , 2.5 and 7 for pH, 50 and 70 for percent mobile phase , percent of acetonitril in mobile of acetonitril in mobile phase and 0.7 and 1.3 phase and flow rate ) on the retention times for flow rate, and each condition was repeated and resolution of pesticide peaks , and for three times, then the total 24 experiments estimating the best value for these factors in were performed (Table 1). Design Expert® which the pesticide were eluted in minimum 6.01 software (Stat- Ease Inc.) was used for retention time and optimum peak resolution. planning and interpreting of this design. Table 1. Assignment of factors and levels of the factorial design Archive of SID 3. Results and discussion According to model that software was prepared were not affected by changing of pH of mobile between factors and responses , the pH factor phase (p value > 0.05 with ANOVA analysis), did not any significant effect on responses and but two other factors significantly affect the the retention time of peaks and peak resolution responses.(Table 2). The retention time of 82 J Pharm Health Sci Volume 1 Issue 4 Autumnwww.SID.ir 2012 simultaneous determination of organophosphate pesticide Table 2. Results of experiments Each result represents Mean ± SD of three replicate for each condition R1: resolution of Azinphos methyl and Diazinon peaks R2: resolution of Diazinon and Phosalon peaks R3: resolution of PhosalonArchive and Clorpiryfos peaks of SID peaks and peak resolution were significantly the software.
Recommended publications
  • Toxic Influence of Diazinon As an Organophosphate Pesticide on Parameters of Dry Matter Degradability According to in Situ Technique M
    International Journal of Basic & Applied Sciences IJBAS-IJENS Vol:12 No:06 229 Toxic Influence of Diazinon as an Organophosphate Pesticide on Parameters of Dry Matter Degradability According to in Situ Technique M. Kazemi*, A. M. Tahmasbi, R. Valizadeh, A. A. Naserian Department of Animal Science, Excellence Center for Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, P. O. Box 91775-1163, Mashhad, Islamic Republic of Iran. *Corresponding author email: [email protected] Abstract-- Many feed and forages are exposed to low, medium metabolizing phosphate insecticides in vitro. Parathion was or high levels of organophosphorous (OP) pesticides. It is unclear reduced to aminoparathion by bovine rumen fluid. Kutches et whether these exposures (for example diazinon as an OP al. [15] reported that toxaphene was the most inhibitory of the pesticide) impact dry matter degradability parameters. So, pesticides tested and resulted in greater decreases of the in different levels (0, 0.7, 2.8 and 5.6 mg) of diazinon as an OP vitro dry matter disappearance, volatile fatty acids and rumen pesticide with different levels of calcium bentonite (CB) (0 and 100 mg) as a toxin binder were tested for their toxicological protozoa. Inhibitory effects of OP pesticides such as effects on in vitro dry matter disappearance. Also we investigated phosphomidon, chlorpyrifos and phosalone on tetrahymena whether CB can inactivate the probably deleterious effects of Spp. Were reported by Hoskin et al. [10]. Dauterman et al. [7] contaminated forage with diazinon in the situ procedure or not. treated rats and cattle with radioactive dimethoate and The study indicated that effect of diazinon with adding the analyzed blood, tissue, milk, and excreta.
    [Show full text]
  • 2002 NRP Section 6, Tables 6.1 Through
    Table 6.1 Scoring Table for Pesticides 2002 FSIS NRP, Domestic Monitoring Plan } +1 0.05] COMPOUND/COMPOUND CLASS * ) (EPA) (EPA) (EPA) (EPA) (EPA) (FSIS) (FSIS) PSI (P) TOX.(T) L-1 HIST. VIOL. BIOCON. (B) {[( (2*R+P+B)/4]*T} REG. CON. (R) * ENDO. DISRUP. LACK INFO. (L) LACK INFO. {[ Benzimidazole Pesticides in FSIS Benzimidazole MRM (5- 131434312.1 hydroxythiabendazole, benomyl (as carbendazim), thiabendazole) Carbamates in FSIS Carbamate MRM (aldicarb, aldicarb sulfoxide, NA44234416.1 aldicarb sulfone, carbaryl, carbofuran, carbofuran 3-hydroxy) Carbamates NOT in FSIS Carbamate MRM (carbaryl 5,6-dihydroxy, chlorpropham, propham, thiobencarb, 4-chlorobenzylmethylsulfone,4- NT 4 1 3 NV 4 4 13.8 chlorobenzylmethylsulfone sulfoxide) CHC's and COP's in FSIS CHC/COP MRM (HCB, alpha-BHC, lindane, heptachlor, dieldrin, aldrin, endrin, ronnel, linuron, oxychlordane, chlorpyrifos, nonachlor, heptachlor epoxide A, heptachlor epoxide B, endosulfan I, endosulfan I sulfate, endosulfan II, trans- chlordane, cis-chlordane, chlorfenvinphos, p,p'-DDE, p, p'-TDE, o,p'- 3444NV4116.0 DDT, p,p'-DDT, carbophenothion, captan, tetrachlorvinphos [stirofos], kepone, mirex, methoxychlor, phosalone, coumaphos-O, coumaphos-S, toxaphene, famphur, PCB 1242, PCB 1248, PCB 1254, PCB 1260, dicofol*, PBBs*, polybrominated diphenyl ethers*, deltamethrin*) (*identification only) COP's and OP's NOT in FSIS CHC/COP MRM (azinphos-methyl, azinphos-methyl oxon, chlorpyrifos, coumaphos, coumaphos oxon, diazinon, diazinon oxon, diazinon met G-27550, dichlorvos, dimethoate, dimethoate
    [Show full text]
  • Risk Mitigation Methods for Removal of Pesticide Residues in Brinjal for Food Safety
    Universal Journal of Agricultural Research 2(8): 279-283, 2014 http://www.hrpub.org DOI: 10.13189/ujar.2014.020801 Risk Mitigation Methods for Removal of Pesticide Residues in Brinjal for Food Safety Cherukuri Sreenivasa Rao*, Vemuri Shashi Bhushan, Harinatha Reddy A. , Ravindranath Darsi, Aruna M. , Ramesh B. Professor Jayashankar Telangana State Agricultural University, Rajendranagar, Hyderabad-500030, Andhra Pradesh, India *Corresponding Author: [email protected] Copyright © 2014 Horizon Research Publishing All rights reserved. Abstract The commercial production of highly 1. Introduction cultivated and consumed brinjal is highly dependent on regular usage of insecticides to protect the crop from insect Brinjal is the most popular vegetable in India, and state of pests. The increased consumer awareness and legal issues on Andhra Pradesh is third most important growing Brinjal food safety, with special reference to insecticide residues in producing 1.615 M mt with a share of 12% (NHB, 2013) foods, led us to attempt for cheap and effective methods for during 2012-13. In India, about 13-14% of the total removal of pesticide residues to address the issues of pesticides used in agriculture are used for fruits and consumer and food safety, as the farmers are not following vegetables covering only 3% of the cropped area. Repeated the Good Agricultural Practices i.e pre-harvest intervals. The application of pesticides on vegetables often results in the most commonly used pesticides such as profenophos, buildup of their residues. Surveys carried out in the country chlorpyriphos, dimethoate, malathion, phosalone, indicated that 50-70% of vegetables are contaminated with quinalphos, triazophos and -cyhalothrin were sprayed at insecticide residues).Studies on farm gate monitoring of recommended doses at brinjal formation stage, samples were vegetables carried out in different places revealed collected at 2 hours after treatment to quantify the deposits.
    [Show full text]
  • Environmental Health Criteria 63 ORGANOPHOSPHORUS
    Environmental Health Criteria 63 ORGANOPHOSPHORUS INSECTICIDES: A GENERAL INTRODUCTION Please note that the layout and pagination of this web version are not identical with the printed version. Organophophorus insecticides: a general introduction (EHC 63, 1986) INTERNATIONAL PROGRAMME ON CHEMICAL SAFETY ENVIRONMENTAL HEALTH CRITERIA 63 ORGANOPHOSPHORUS INSECTICIDES: A GENERAL INTRODUCTION This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organisation, or the World Health Organization. Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization World Health Orgnization Geneva, 1986 The International Programme on Chemical Safety (IPCS) is a joint venture of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization. The main objective of the IPCS is to carry out and disseminate evaluations of the effects of chemicals on human health and the quality of the environment. Supporting activities include the development of epidemiological, experimental laboratory, and risk-assessment methods that could produce internationally comparable results, and the development of manpower in the field of toxicology. Other activities carried out by the IPCS include the development of know-how for coping with chemical accidents, coordination
    [Show full text]
  • Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2019 Theinternational Programme on Chemical Safety (IPCS) Was Established in 1980
    The WHO Recommended Classi cation of Pesticides by Hazard and Guidelines to Classi cation 2019 cation Hazard of Pesticides by and Guidelines to Classi The WHO Recommended Classi The WHO Recommended Classi cation of Pesticides by Hazard and Guidelines to Classi cation 2019 The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2019 TheInternational Programme on Chemical Safety (IPCS) was established in 1980. The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management of chemicals. This publication was developed in the IOMC context. The contents do not necessarily reflect the views or stated policies of individual IOMC Participating Organizations. The Inter-Organization Programme for the Sound Management of Chemicals (IOMC) was established in 1995 following recommendations made by the 1992 UN Conference on Environment and Development to strengthen cooperation and increase international coordination in the field of chemical safety. The Participating Organizations are: FAO, ILO, UNDP, UNEP, UNIDO, UNITAR, WHO, World Bank and OECD. The purpose of the IOMC is to promote coordination of the policies and activities pursued by the Participating Organizations, jointly or separately, to achieve the sound management of chemicals in relation to human health and the environment. WHO recommended classification of pesticides by hazard and guidelines to classification, 2019 edition ISBN 978-92-4-000566-2 (electronic version) ISBN 978-92-4-000567-9 (print version) ISSN 1684-1042 © World Health Organization 2020 Some rights reserved.
    [Show full text]
  • Pesticide Residues : Maximum Residue Limits
    THAI AGRICULTURAL STANDARD TAS 9002-2013 PESTICIDE RESIDUES : MAXIMUM RESIDUE LIMITS National Bureau of Agricultural Commodity and Food Standards Ministry of Agriculture and Cooperatives ICS 67.040 ISBN UNOFFICAL TRANSLATION THAI AGRICULTURAL STANDARD TAS 9002-2013 PESTICIDE RESIDUES : MAXIMUM RESIDUE LIMITS National Bureau of Agricultural Commodity and Food Standards Ministry of Agriculture and Cooperatives 50 Phaholyothin Road, Ladyao, Chatuchak, Bangkok 10900 Telephone (662) 561 2277 Fascimile: (662) 561 3357 www.acfs.go.th Published in the Royal Gazette, Announcement and General Publication Volume 131, Special Section 32ง (Ngo), Dated 13 February B.E. 2557 (2014) (2) Technical Committee on the Elaboration of the Thai Agricultural Standard on Maximum Residue Limits for Pesticide 1. Mrs. Manthana Milne Chairperson Department of Agriculture 2. Mrs. Thanida Harintharanon Member Department of Livestock Development 3. Mrs. Kanokporn Atisook Member Department of Medical Sciences, Ministry of Public Health 4. Mrs. Chuensuke Methakulawat Member Office of the Consumer Protection Board, The Prime Minister’s Office 5. Ms. Warunee Sensupa Member Food and Drug Administration, Ministry of Public Health 6. Mr. Thammanoon Kaewkhongkha Member Office of Agricultural Regulation, Department of Agriculture 7. Mr. Pisan Pongsapitch Member National Bureau of Agricultural Commodity and Food Standards 8. Ms. Wipa Thangnipon Member Office of Agricultural Production Science Research and Development, Department of Agriculture 9. Ms. Pojjanee Paniangvait Member Board of Trade of Thailand 10. Mr. Charoen Kaowsuksai Member Food Processing Industry Club, Federation of Thai Industries 11. Ms. Natchaya Chumsawat Member Thai Agro Business Association 12. Mr. Sinchai Swasdichai Member Thai Crop Protection Association 13. Mrs. Nuansri Tayaputch Member Expert on Method of Analysis 14.
    [Show full text]
  • Target Pesticide List
    EUPT-FV17- TARGET PESTICIDE LIST MRRL Pesticide (mg/Kg) 3-hydroxy-carbofuran 0.01 Acephate 0.01 Acetamiprid 0.01 Acrinathrin 0.01 Aldicarb 0.01 Aldicarb Sulfone 0.01 Aldicarb Sulfoxide 0.01 Azinphos-methyl 0.01 Azoxystrobin 0.01 Benfuracarb 0.01 Benomyl 0.01 Bifenthrin 0.01 Bitertanol 0.01 Boscalid 0.01 Bromopropylate 0.01 Bromuconazole 0.01 Bupirimate 0.01 Buprofezin 0.01 Cadusafos 0.006 Carbaryl 0.01 Carbendazim 0.01 Carbofuran 0.01 Carbosulfan 0.01 Chlorfenapyr 0.01 Chlorfenvinphos 0.01 Chlorobenzilate 0.01 Chlorothalonil 0.01 Chlorpropham (only parent compound) 0.01 Chlorpyrifos 0.01 Chlorpyrifos-methyl 0.01 Clofentezine (only parent compound) 0.01 Clothianidin 0.01 Cyfluthrin (cyfluthrin incl. other mixtures of constituent isomers (sum of isomers)) 0.01 Cypermethrin (cypermethrin incl. other mixtures of constituent isomers (sum of isomers)) 0.01 Cyproconazole 0.01 Cyprodinil 0.01 Deltamethrin 0.01 Demeton-S-methylsulfone 0.006 Desmethyl-pirimicarb 0.01 Diazinon 0.01 Dichlofluanid (only parent compound) 0.01 Dichlorvos 0.01 Dicloran 0.01 Dicofol 0.01 Diethofencarb 0.01 Difenoconazole 0.01 Diflubenzuron 0.01 Dimethoate 0.003 Dimethomorph 0.01 Dimethylaminosulfotoluidide (DMST) 0.01 Diniconazole 0.01 Diphenylamine 0.01 Endosulfan alpha 0.01 Endosulfan beta 0.01 Endosulfan sulfate 0.01 EPN 0.01 Epoxiconazole 0.01 Ethion 0.01 Ethirimol 0.01 Ethoprophos 0.008 Etofenprox 0.01 Fenamidone 0.01 Fenamiphos 0.01 Fenamiphos sulfone 0.01 Fenamiphos sulfoxide 0.01 Fenarimol 0.01 Fenazaquin 0.01 Fenbuconazole 0.01 Fenhexamid 0.01 Fenitrothion 0.01
    [Show full text]
  • List of Class 1 Designated Chemical Substances
    List of Class 1 Designated Chemical Substances *1:CAS numbers are to be solely as references. They may be insufficient or lacking, in case there are multiple chemical substances. No. Specific Class 1 CAS No. (PRTR Chemical (*1) Name Law) Substances 1 - zinc compounds(water-soluble) 2 79-06-1 acrylamide 3 140-88-5 ethyl acrylate 4 - acrylic acid and its water-soluble salts 5 2439-35-2 2-(dimethylamino)ethyl acrylate 6 818-61-1 2-hydroxyethyl acrylate 7 141-32-2 n-butyl acrylate 8 96-33-3 methyl acrylate 9 107-13-1 acrylonitrile 10 107-02-8 acrolein 11 26628-22-8 sodium azide 12 75-07-0 acetaldehyde 13 75-05-8 acetonitrile 14 75-86-5 acetone cyanohydrin 15 83-32-9 acenaphthene 16 78-67-1 2,2'-azobisisobutyronitrile 17 90-04-0 o-anisidine 18 62-53-3 aniline 19 82-45-1 1-amino-9,10-anthraquinone 20 141-43-5 2-aminoethanol 21 1698-60-8 5-amino-4-chloro-2-phenylpyridazin-3(2H)-one; chloridazon 5-amino-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-3-cyano- 22 120068-37-3 4[(trifluoromethyl)sulfinyl]pyrazole; fipronil 23 123-30-8 p-aminophenol 24 591-27-5 m-aminophenol 4-amino-6-tert-butyl-3-methylthio-1,2,4-triazin-5(4H)-one; 25 21087-64-9 metribuzin 26 107-11-9 3-amino-1-propene 27 41394-05-2 4-amino-3-methyl-6-phenyl-1,2,4-triazin-5(4H)-one; metamitron 28 107-18-6 allyl alcohol 29 106-92-3 1-allyloxy-2,3-epoxypropane 30 - n-alkylbenzenesulfonic acid and its salts(alkyl C=10-14) 31 - antimony and its compounds 32 120-12-7 anthracene 33 1332-21-4 asbestos ○ 34 4098-71-9 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate 35 78-84-2 isobutyraldehyde
    [Show full text]
  • NMP-Free Formulations of Neonicotinoids
    (19) & (11) EP 2 266 400 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 29.12.2010 Bulletin 2010/52 A01N 43/40 (2006.01) A01N 43/86 (2006.01) A01N 47/40 (2006.01) A01N 51/00 (2006.01) (2006.01) (2006.01) (21) Application number: 09305544.0 A01P 7/00 A01N 25/02 (22) Date of filing: 15.06.2009 (84) Designated Contracting States: (72) Inventors: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR • Gasse, Jean-Jacques HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL 27600 Saint-Aubin-Sur-Gaillon (FR) PT RO SE SI SK TR • Duchamp, Guillaume Designated Extension States: 92230 Gennevilliers (FR) AL BA RS • Cantero, Maria 92230 Gennevilliers (FR) (71) Applicant: NUFARM 92233 Gennevelliers (FR) (74) Representative: Cabinet Plasseraud 52, rue de la Victoire 75440 Paris Cedex 09 (FR) (54) NMP-free formulations of neonicotinoids (57) The invention relates to NMP-free liquid formulation comprising at least one nicotinoid and at least one aprotic polar component selected from the group comprising the compounds of formula I, II or III below, and mixtures thereof, wherein R1 and R2 independently represent H or an alkyl group having less than 5 carbons, preferably a methyl group, and n represents an integer ranging from 0 to 5, and to their applications. EP 2 266 400 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 266 400 A1 Description Technical Field of the invention 5 [0001] The invention relates to novel liquid formulations of neonicotinoids and to their use for treating plants, for protecting plants from pests and/or for controlling pests infestation.
    [Show full text]
  • Compounds of Potential Interest
    TABLE A-1 INFORMATION ON COMPOUNDS OF POTENTIAL INTEREST (Page 1 of 24) CAS Number Compound Name Detected U.S. EPA Identified in PICs in Stack Data Available for All HHRAs Emissions (1993) 40 CFR Part 261 Combustion Unit Chemical-Specific Recommended and Emissions Actually PICs Recommended by U.S. EPA (1994c) Potential PICs (1994) Compounds Listed in Appendix VII or VIII U.S. EPA Compounds 50-00-0 Formaldehyde (methylene oxide) K009, K010, K038, K040, K156, K157 X X X 50-06-6 Phenobarbital 50-07-7 Mitomycin 50-18-0 Cyclophosphamide 50-29-3 4,4'-DDT X F032, F034, F037, F038, K001, K022, K035, K141, K142, 50-32-8 Benzo(a)pyrene X X X X K144, K145, K147, K148 50-55-5 Reserpine 51-28-5 2,4-Dinitrophenol K001 X X 51-43-4 Epinephrine 51-52-5 Propylthiouracil 51-79-6 Ethyl carbamate (urethane) X 52-85-7 Famphur 53-70-3 Dibenzo(a,h)anthracene F032, F034, K022, K141, K142, K144, K145, K147, K148 X X 53-96-3 2-Acetylaminofluorene 54-11-5 Nicotine 55-18-5 Nitrosodiethylamine 55-38-9 Fenthion 55-63-0 Nitroglycerine 55-91-4 Diisopropylfluorophosphate (DFP) 56-04-2 Methylthiouracil F001, F024, F025, K016, K019, K020, K021, K073, K116, 56-23-5 Carbon tetrachloride X X X X K150, K151, K157 56-38-2 Parathion 56-49-5 3-Methylcholanthrene 56-53-1 Diethylstilbestrol F032, F034, K001, K022, K035, K141, K142, K143, K144, 56-55-3 Benzo(a)anthracene X X X K145, K147, K148 56-57-5 Nitroquinoline-1-oxide Note: See Table A-1 References and Discussion (Appendix A-1) for explanation of the information presented.
    [Show full text]
  • 522 PART 185—TOLERANCES for PESTICIDES in FOOD Subpart A
    Pt. 185 40 CFR Ch. I (7±1±98 Edition) peaches, pears, strawberries, and toma- 185.3550 Hexakis. toes. This temporary exemption from 185.3575 Hexazinone. the requirement for a tolerance will 185.3600 Hydrogen cyanide. 185.3650 Imazalil. permit the marketing of the food com- 185.3700 Inorganic bromide. modities in this paragraph when treat- 185.3750 Iprodione. ed in accordance with the provisions of 185.3775 d-Limonene. experimental use permit 70515-EUP-1, 185.3800 Magnesium phosphide. which is being issued under the Federal 185.4000 Metalaxyl. Insecticide, Fungicide, and Rodenticide 185.4035 Metarhizium anisopliae strain Act (FIFRA), as amended (7 U.S.C. 136). ESF1. 185.4100 Methomyl. This temporary exemption from the re- 185.4150 Methoprene. quirement of a tolerance expires and is 185.4250 Methyl chloride. revoked on June 1, 2001. This tem- 185.4300 Methyl formate. porary exemption from the require- 185.4400 Nitrogen. ment of a tolerance may be revoked at 185.4500 N-Octylbicycloheptene any time if the experimental use per- dicarboximide. 185.4650 Paraformaldehyde. mit is revoked or if any experience 185.4800 Phosalone. with or scientific data on this pesticide 185.4850 Picloram. indicate that the tolerance is not safe. 185.4900 Piperonyl butoxide. 185.4950 Pirimiphos-methyl. [63 FR 32134, June 12, 1998] 185.5000 Propargite. 185.5100 Propetamphos. PART 185ÐTOLERANCES FOR 185.5150 Propylene oxide. PESTICIDES IN FOOD 185.5200 Pyrethrins. 185.5375 Sulfonium, trimethyl-salt with N- (phosphonomethyl)glycine (1:1). Subpart A [Reserved] 185.5950 Triforine. 185.6300 Zinc ion and maneb coordination Subpart BÐFood Additives Permitted in product.
    [Show full text]
  • Method Description
    Methods for Elements Method Method Description Analyte Calcium Copper Iron Inductively Coupled Plasma-Atomic Emission Magnesium EAM 4.4 Spectrometric Determination of Elements in Phosphorus Food Using Microwave Assisted Digestion Potassium Sodium Strontium Zinc Arsenic Cadmium Chromium Inductively Coupled Plasma-Mass Lead Spectrometric Determination of Arsenic, Manganese EAM 4.7 Cadmium, Chromium, Lead, Mercury and Mercury Other Elements in Food Using Microwave Molybdenum Assisted Digestion Nickel Selenium Uranium Vanadium Antimony Arsenic Barium Beryllium Cadmium Chromium Copper Method for Analysis of Bottled water for 18 Iron EAM 4.12 Elements by ICPMS Lead Manganese Mercury Nickel Selenium Thallium Uranium Zinc High Performance Liquid Chromatography- Inorganic arsenic, Inductively Coupled Plasma-Mass Dimethylarsinic acid (DMA), EAM 4.10 Spectrometric Determination of Four Arsenic Monomethylarsonic acid (MMA), Species in Fruit Juice Arsenobetaine (AsB) KAN-LAB-MET.95 Determination of Iodine in Foods Iodine Methods for Radionuclides Method Method Description Analyte Determination of Strontium-90 in Foods by WEAC.RN.METHOD.2.0 Strontium-90 Internal Gas-Flow Proportional Counting Americium-241 Cesium-134 Cesium-137 Determination of Gamma-Ray Emitting Cobalt-60 WEAC.RN.METHOD.3.0 Radionuclides in Foods by High-Purity Potassium-40 Germanium Spectrometry Radium-226 Ruthenium-103 Ruthenium-106 Thorium-232 Methods for Pesticides/Industrial Chemicals Method Method Description Analyte Extraction Method: Analysis of Pesticides KAN-LAB-PES.53 and
    [Show full text]