A Guide to Life on Sandy Shores Between Colwyn Bay and Fleetwood
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project
High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project AEA Technology, Environment Contract: W/35/00632/00/00 For: The Department of Trade and Industry New & Renewable Energy Programme Report issued 30 August 2002 (Version with minor corrections 16 September 2002) Keith Hiscock, Harvey Tyler-Walters and Hugh Jones Reference: Hiscock, K., Tyler-Walters, H. & Jones, H. 2002. High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project. Report from the Marine Biological Association to The Department of Trade and Industry New & Renewable Energy Programme. (AEA Technology, Environment Contract: W/35/00632/00/00.) Correspondence: Dr. K. Hiscock, The Laboratory, Citadel Hill, Plymouth, PL1 2PB. [email protected] High level environmental screening study for offshore wind farm developments – marine habitats and species ii High level environmental screening study for offshore wind farm developments – marine habitats and species Title: High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project. Contract Report: W/35/00632/00/00. Client: Department of Trade and Industry (New & Renewable Energy Programme) Contract management: AEA Technology, Environment. Date of contract issue: 22/07/2002 Level of report issue: Final Confidentiality: Distribution at discretion of DTI before Consultation report published then no restriction. Distribution: Two copies and electronic file to DTI (Mr S. Payne, Offshore Renewables Planning). One copy to MBA library. Prepared by: Dr. K. Hiscock, Dr. H. Tyler-Walters & Hugh Jones Authorization: Project Director: Dr. Keith Hiscock Date: Signature: MBA Director: Prof. S. Hawkins Date: Signature: This report can be referred to as follows: Hiscock, K., Tyler-Walters, H. -
Predator and Scavenger Aggregation to Discarded By-Catch from Dredge Fisheries: Importance of Damage Level
Journal of Sea Research 51 (2004) 69–76 www.elsevier.com/locate/seares Short Communication Predator and scavenger aggregation to discarded by-catch from dredge fisheries: importance of damage level S.R. Jenkinsa,b,*, C. Mullena, A.R. Branda a Port Erin Marine Laboratory (University of Liverpool), Port Erin, Isle of Man, British Isles, IM9 6JA, UK b Marine Biological Association, Citadel Hill, Plymouth, PL1 2PB, UK Received 23 October 2002; accepted 22 May 2003 Abstract Predator and scavenger aggregation to simulated discards from a scallop dredge fishery was investigated in the north Irish Sea using an in situ underwater video to determine differences in the response to varying levels of discard damage. The rate and magnitude of scavenger and predator aggregation was assessed using three different types of bait, undamaged, lightly damaged and highly damaged individuals of the great scallop Pecten maximus. In each treatment scallops were agitated for 40 minutes in seawater to simulate the dredging process, then subjected to the appropriate damage level before being tethered loosely in front of the video camera. The density of predators and scavengers at undamaged scallops was low and equivalent to recorded periods with no bait. Aggregation of a range of predators and scavengers occurred at damaged bait. During the 24 hour period following baiting there was a trend of increasing magnitude of predator abundance with increasing damage level. However, badly damaged scallops were eaten quickly and lightly damaged scallops attracted a higher overall magnitude of predator abundance over a longer 4 day period. Large scale temporal variability in predator aggregation to simulated discarded biota was examined by comparison of results with those of a previous study, at the same site, 4 years previously. -
The Impact of Hydraulic Blade Dredging on a Benthic Megafaunal Community in the Clyde Sea Area, Scotland
Journal of Sea Research 50 (2003) 45–56 www.elsevier.com/locate/seares The impact of hydraulic blade dredging on a benthic megafaunal community in the Clyde Sea area, Scotland C. Hauton*, R.J.A. Atkinson, P.G. Moore University Marine Biological Station Millport (UMBSM), Isle of Cumbrae, Scotland, KA28 0EG, UK Received 4 December 2002; accepted 13 February 2003 Abstract A study was made of the impacts on a benthic megafaunal community of a hydraulic blade dredge fishing for razor clams Ensis spp. within the Clyde Sea area. Damage caused to the target species and the discard collected by the dredge as well as the fauna dislodged by the dredge but left exposed at the surface of the seabed was quantified. The dredge contents and the dislodged fauna were dominated by the burrowing heart urchin Echinocardium cordatum, approximately 60–70% of which survived the fishing process intact. The next most dominant species, the target razor clam species Ensis siliqua and E. arcuatus as well as the common otter shell Lutraria lutraria, did not survive the fishing process as well as E. cordatum, with between 20 and 100% of individuals suffering severe damage in any one dredge haul. Additional experiments were conducted to quantify the reburial capacity of dredged fauna that was returned to the seabed as discard. Approximately 85% of razor clams retained the ability to rapidly rebury into both undredged and dredged sand, as did the majority of those heart urchins Echinocardium cordatum which did not suffer aerial exposure. Individual E. cordatum which were brought to surface in the dredge collecting cage were unable to successfully rebury within three hours of being returned to the seabed. -
MOLLUSCS Species Names – for Consultation 1
MOLLUSCS species names – for consultation English name ‘Standard’ Gaelic name Gen Scientific name Notes Neologisms in italics der MOLLUSC moileasg m MOLLUSCS moileasgan SEASHELL slige mhara f SEASHELLS sligean mara SHELLFISH (singular) maorach m SHELLFISH (plural) maoraich UNIVALVE SHELLFISH aon-mhogalach m (singular) UNIVALVE SHELLFISH aon-mhogalaich (plural) BIVALVE SHELLFISH dà-mhogalach m (singular) BIVALVE SHELLFISH dà-mhogalaich (plural) LIMPET (general) bàirneach f LIMPETS bàirnich common limpet bàirneach chumanta f Patella vulgata ‘common limpet’ slit limpet bàirneach eagach f Emarginula fissura ‘notched limpet’ keyhole limpet bàirneach thollta f Diodora graeca ‘holed limpet’ china limpet bàirneach dhromanach f Patella ulyssiponensis ‘ridged limpet’ blue-rayed limpet copan Moire m Patella pellucida ‘The Virgin Mary’s cup’ tortoiseshell limpet bàirneach riabhach f Testudinalia ‘brindled limpet’ testudinalis white tortoiseshell bàirneach bhàn f Tectura virginea ‘fair limpet’ limpet TOP SHELL brùiteag f TOP SHELLS brùiteagan f painted top brùiteag dhotamain f Calliostoma ‘spinning top shell’ zizyphinum turban top brùiteag thurbain f Gibbula magus ‘turban top shell’ grey top brùiteag liath f Gibbula cineraria ‘grey top shell’ flat top brùiteag thollta f Gibbula umbilicalis ‘holed top shell’ pheasant shell slige easaig f Tricolia pullus ‘pheasant shell’ WINKLE (general) faochag f WINKLES faochagan f banded chink shell faochag chlaiseach bhannach f Lacuna vincta ‘banded grooved winkle’ common winkle faochag chumanta f Littorina littorea ‘common winkle’ rough winkle (group) faochag gharbh f Littorina spp. ‘rough winkle’ small winkle faochag bheag f Melarhaphe neritoides ‘small winkle’ flat winkle (2 species) faochag rèidh f Littorina mariae & L. ‘flat winkle’ 1 MOLLUSCS species names – for consultation littoralis mudsnail (group) seilcheag làthaich f Fam. -
Clams” Fauna Along French Coasts
Asian Journal of Research in Animal and Veterinary Sciences 1(1): 1-12, 2018; Article no.AJRAVS.39207 The Regulation of Interspecific Variations of Shell Shape in Bivalves: An Illustration with the Common “Clams” Fauna along French Coasts Jean Béguinot1* 1Biogéosciences, UMR 6282, CNRS, Université Bourgogne Franche-Comté, 6, Boulevard Gabriel, 21000 Dijon, France. Author’s contribution The sole author designed, analyzed, interpreted and prepared the manuscript. Article Information DOI: 10.9734/AJRAVS/2018/39207 Editor(s): (1) Andras Fodor, Department of Animal Sciences, Ohio State University, USA. Reviewers: (1) Mahmoud Abdelhamid Dawood, Kafrelsheikh University, Egypt. (2) Mbadu Zebe Victorine, Democratic Republic of Congo. Complete Peer review History: http://www.sciencedomain.org/review-history/23116 Received 24th November 2017 th Original Research Article Accepted 6 February 2018 Published 10th February 2018 ABSTRACT I report an unexpected negative covariance occurring between two major parameters governing shell growth in marine bivalves, especially within the order Veneroida. This relationship is highlighted, here, considering a set of forty, rather common species of clams collected from French coasts. Interestingly, this negative covariance has two (geometrically related) consequences on the pattern of variation of shell shape at the inter-specific level: (i) An extended range of variation of shell elongation ‘E’ is made compatible with. (ii) A severely restricted range of variation of the ventral convexity ‘K’ of the shell contour. I suggest that: (i) The extended range of interspecific variation of the shell elongation ‘E’ results from a trend towards larger differentiation between species according to this functionally important parameter E, while, in contrast, (ii) The strongly restricted range of variation of the ventral convexity ‘K’ of the shell contour might arguably result from a common need for improved shell resistance, face to mechanical solicitations from the environment, either biotic or abiotic. -
Report of the Study Group on Electrical Trawling 2011
ICES SGELECTRA REPORT 2011 SCICOM STEERING GROUP ON ECOSYSTEM SURVEYS SCIENCE AND TECHNOLOGY ICES CM 2011/SSGESST:09 REF. SCICOM Report of the Study Group on Electrical Trawling (SGELECTRA) 7-8 May 2011 Reykjavik, Iceland International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H. C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Recommended format for purposes of citation: ICES. 2011. Report of the Study Group on Electrical Trawling (SGELECTRA), 7-8 May 2011, Reykjavik, Iceland. ICES CM 2011/SSGESST:09. 93 pp. For permission to reproduce material from this publication, please apply to the Gen- eral Secretary. The document is a report of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. © 2011 International Council for the Exploration of the Sea ICES SGELECTRA REPORT 2011 | i Contents Executive summary ................................................................................................................ 1 1 Opening of the meeting ................................................................................................ 3 2 Confidentiality issue ..................................................................................................... 3 3 Adoption of the agenda ................................................................................................ 3 4 Review of earlier -
On the Ciliary Mechanisms and Interrelationships of Lamellibranchs
On the Ciliary Mechanisms and Interrelationships of Lamellibranchs. PAET IV: Cuticular Fusion, with special reference to the Fourth Aperture in certain Lamelli- branchs. By Daphne Atkins, B.Sc. Marine Biological Laboratory, Plymouth. With 11 Text-figures. CONTENTS. PAGE INTRODUCTION 423 HISTOLOGICAL STRUCTURE OF THE JUNCTION .... 424 CUTICULAK FUSION IN RELATION TO THE FOURTH APERTURE IN CERTAIN LAMELLIBRANCHS ....... 436 Origin of the Fourth Aperture ....... 442 SUMMARY ........... 444 INTBODUCTION. A PECULIAR form of fusion, involving the cuticle only, has been found in a number of Lamellibranchs, but has been chiefly studied in the Solenidae. The positions so far discovered in which this type of fusion occurs are between the dorsal edges of the ascending lamellae of the outer demibranchs and the mantle or the visceral mass in Solen marginatus Montagu (=vagina), Ensis siliqua (L.), Ensis arcuatus (Jeffreys), Cultellus pellucidus (Pennant), Solecurtus scopula (Turton) (=candidus), Lutraria lutraria (L.) (=elliptica), and Tellina tenuis da Costa; between the dorsal edges of the ascending lamellae of the two inner demibranchs in Barnea parva (Pennant); and between the mantle lobes in the region between the pedal and fourth apertures in Ensis siliqua, Ensis arcuatus, and Cultellus pellucidus. 424 D. ATKINS HlSTOLOGICAL STRUCTURE OF THE JUNCTION. Material was fixed in Bouin-Duboscq's fluid with the following formula: saturated picric acid in 90 per cent, alcohol, 2 parts; saturated corrosive sublimate (water), 3 parts; 40 per cent, formalin, 1 part; glacial acetic acid, 2 parts. The stains used were Heidenhain's iron haematoxylin counterstained with acid m.f TEXT-FIG. 1 A. Transverse section showing the method of junction of the mantle lobes in the mid-ventral region between the pedal and fourth apertures. -
Assessing the Conservation Status of Marine Habitats: Thoughts from a Sandflat on the Isles of Scilly
MURDOCH RESEARCH REPOSITORY This is the author’s final version of the work, as accepted for publication following peer review but without the publisher’s layout or pagination. The definitive version is available at http://dx.doi.org/10.1016/j.seares.2014.07.013 Warwick, R.M. and Somerfield, P.J. (2014) Assessing the conservation status of marine habitats: thoughts from a sandflat on the Isles of Scilly. Journal of Sea Research, 98. pp. 109-119. http://researchrepository.murdoch.edu.au/23345/ Copyright: © 2014 Elsevier B.V. It is posted here for your personal use. No further distribution is permitted. ÔØ ÅÒÙ×Ö ÔØ Assessing the conservation status of marine habitats: Thoughts from a sandflat on the Isles of Scilly R.M. Warwick, P.J. Somerfield PII: S1385-1101(14)00136-1 DOI: doi: 10.1016/j.seares.2014.07.013 Reference: SEARES 1277 To appear in: Journal of Sea Research Received date: 21 February 2014 Revised date: 14 July 2014 Accepted date: 20 July 2014 Please cite this article as: Warwick, R.M., Somerfield, P.J., Assessing the conservation status of marine habitats: Thoughts from a sandflat on the Isles of Scilly, Journal of Sea Research (2014), doi: 10.1016/j.seares.2014.07.013 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. -
List of All Nominal Recent Species Belonging to the Superfamily Mactroidea Distributed in American Waters
Appendix A: List of All Nominal Recent Species Belonging to the Superfamily Mactroidea Distributed in American Waters Valid species (in the current combination) Synonym Examined type material Harvella elegans NHMUK 20190673, two syntypes (G.B. Sowerby I, 1825) Harvella pacifica ANSP 51308, syntype Conrad, 1867 Mactra estrellana PRI 21265, holotype Olsson, 1922 M. (Harvella) PRI 2354, holotype sanctiblasii Maury, 1925 Raeta maxima Li, AMNH 268093, lectotype; AMNH 268093a, 1930 paralectotype Harvella elegans PRI 2252, holotype tucilla Olsson, 1932 Mactrellona alata ZMUC-BIV, holotype, articulated specimen; (Spengler, 1802) ZMUC-BIV, paratype, one complete specimen Mactra laevigata ZMUC-BIV 1036, holotype Schumacher, 1817 Mactra carinata MNHN-IM-2000-7038, syntypes Lamarck, 1818 Mactrellona Types not found, based on the figure of the concentrica (Bory de “Tableau of Encyclopedique Methodique…” Saint Vincent, (pl. 251, Fig. 2a, b, pl. 252, Fig. 2c) published in 1827, in Bruguière 1797 without a nomenclatorial act et al. 1791–1827) Mactrellona clisia USNM 271481, holotype (Dall, 1915) Mactrellona exoleta NHMUK 196327, syntype, one complete (Gray, 1837) specimen © Springer Nature Switzerland AG 2019 103 J. H. Signorelli, The Superfamily Mactroidea (Mollusca:Bivalvia) in American Waters, https://doi.org/10.1007/978-3-030-29097-9 104 Appendix A: List of All Nominal Recent Species Belonging to the Superfamily… Valid species (in the current combination) Synonym Examined type material Lutraria ventricosa MCZ 169451, holotype; MCZ 169452, paratype; -
Marine Biological Research at Lundy
Irving, RA, Schofield, AJ and Webster, CJ. Island Studies (1997). Bideford: Lundy Field Society Marine Biological Research at Lundy summarised in Tregelles ( 193 7) and are incorporated into the fljracombejauna andjlora (Tregelles, Palmer & Brokenshire 1946) and the Flora of Devon (Anonymous Keith Hiscock 1952). The first systematic studies of marine ecology at Lundy were undertaken by Professor L.A. Harvey and Mrs C.C. Harvey together with students of Exeter Introduction University in the late 1940s and early 1950s The earliest recorded marine biological studies near to (Anonymous 1949, Harvey 1951, Harvey 1952). These Lundy are noted in the work of Forbes (1851) who took studies again emphasised the richness of the slate dredge samples off the east coast of the island in 1848. shores especially when compared to the relatively The first descriptions of the seashore wildlife on Lundy impoverished fauna on the granite shores. A later are those published in 1853 by the foremost Victorian study (Hawkins & Hiscock 1983) suggested that marine naturalist and writer, P.H. Gosse, in the Home impoverishment in intertidal mollusc species was Friend (reproduced later in Gosse 1865). However, his due to the isolation of Lundy from mainland sources of descriptions are unenthusiastic, reveal nothing unusu larvae. al and draw attention to the very few species found on When marine biologists started to use diving the granite shores. There are further brief references to equipment to explore underwater around Lundy at Lundy in the literature of other Victorian naturalists. the end of the 1960s, they discovered rich and diverse Tugwell ( 1856) found the shores rich collecting communities and many rare species leading to a wide grounds and cites the success of a collecting party who range of studies being undertaken, both underwater (with the help of "an able-bodied man with a crowbar") and on the shore, in the 1970s and early 1980s. -
Actiniaria, Actiniidae)
BASTERIA, 50: 87-92, 1986 The Queen Scallop, Chlamys opercularis (L., 1758) (Bivalvia, Pectinidae), as a food item of the Urticina sea anemone eques (Gosse, 1860) (Actiniaria, Actiniidae) J.C. den Hartog Rijksmuseum van Natuurlijke Historie, Leiden, The Netherlands detailed is available about the food of but do Scantly knowledge sea anemones, we know that intertidal many species, especially forms, are opportunistic feeders on sizeable prey, such as other Coelenterata, Crustacea, Echinodermata and Mollusca, notably gastropods. of the Urticina Representatives genus Ehrenberg, 1834 ( = Tealia Gosse, 1858) oc- both and in moderate well-known curring intertidally depths, are as large prey predators (Slinn, 1961; Den Hartog, 1963; Sebens & Laakso, 1977; Shimek, 1981; Thomas, 1981). Slinn (loc. cit.) reported an incidental record of two actinians brought in by Port Erin scallop fishermen, identifiedas Tealiafelina (L., 1761), but more likely Urticina each of which had individual of to represent eques (Gosse, 1860), ingested an the sea urchin Echinus esculentus L., 1758. Den Hartog (loc. cit.: 77-78) referring to the Dutch coast reported the starfish Asterias rubens L., 1758, to be the main food item of the shore-form of Urticinafelina (L., 1761) [often referred to in the older literature as Tealia coriacea (Cuvier) or the var. coriacea; cf. Stephenson, 1935], including specimens considerably exceeding the basal diameterof the anemones. Second-common was the crab Carcinus width 30 further is maenas (L. 1758) (carapax up to mm) and noteworthy of of the a record a specimen rather rigid scyphozoan Rhizostoma octopus (L., 1788) [as R. pulmo (Macri, 1778)] with an umbrella almost twice the basal diameter of its swallower. -
Growth and Reproductive Biology of the Sea Star Astropecten Aranciacus
Baeta et al. Helgol Mar Res _#####################_ DOI 10.1186/s10152-016-0453-z Helgoland Marine Research ORIGINAL ARTICLE Open Access Growth and reproductive biology of the sea star Astropecten aranciacus (Echinodermata, Asteroidea) on the continental shelf of the Catalan Sea (northwestern Mediterranean) Marc Baeta1,2*, Eve Galimany1,3 and Montserrat Ramón1,3 Abstract The growth and reproductive biology of the sea star Astropecten aranciacus was investigated on the continental shelf of the northwestern Mediterranean Sea. Sea stars were captured monthly in two bathymetric ranges (5–30 and 50–150 m) between November 2009 and October 2012. Bathymetric segregation by size in A. aranciacus was detected: small individuals inhabit shallow areas (5–30 m), while large individuals inhabit deeper areas of the conti‑ nental shelf (50–150 m). Recruitment was recorded twice nearshore but no recruitment was detected offshore during the whole study period. Three cohorts were identified in each bathymetric range and growth rates were estimated. A. aranciacus population exhibited a seasonal growth pattern, being higher from June to October in the nearshore cohorts and from February to October in the offshore ones. Histology and organ indices revealed that spawning likely started in March, coinciding with the spring phytoplankton bloom and the increase in sea water temperature, and extended until June–July. Ratio between males and females was approximately 1:1 throughout the year and in both bathymetrical ranges. The size at first maturity (R50 %) was estimated to be R 112 mm. A. aranciacus did not show an inverse relationship between gonad index and pyloric caeca index. = Keywords: Asteroidea, Starfish, Mediterranean and echinoderm Background Astropecten (Fam.