Download PDF Version
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project
High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project AEA Technology, Environment Contract: W/35/00632/00/00 For: The Department of Trade and Industry New & Renewable Energy Programme Report issued 30 August 2002 (Version with minor corrections 16 September 2002) Keith Hiscock, Harvey Tyler-Walters and Hugh Jones Reference: Hiscock, K., Tyler-Walters, H. & Jones, H. 2002. High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project. Report from the Marine Biological Association to The Department of Trade and Industry New & Renewable Energy Programme. (AEA Technology, Environment Contract: W/35/00632/00/00.) Correspondence: Dr. K. Hiscock, The Laboratory, Citadel Hill, Plymouth, PL1 2PB. [email protected] High level environmental screening study for offshore wind farm developments – marine habitats and species ii High level environmental screening study for offshore wind farm developments – marine habitats and species Title: High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project. Contract Report: W/35/00632/00/00. Client: Department of Trade and Industry (New & Renewable Energy Programme) Contract management: AEA Technology, Environment. Date of contract issue: 22/07/2002 Level of report issue: Final Confidentiality: Distribution at discretion of DTI before Consultation report published then no restriction. Distribution: Two copies and electronic file to DTI (Mr S. Payne, Offshore Renewables Planning). One copy to MBA library. Prepared by: Dr. K. Hiscock, Dr. H. Tyler-Walters & Hugh Jones Authorization: Project Director: Dr. Keith Hiscock Date: Signature: MBA Director: Prof. S. Hawkins Date: Signature: This report can be referred to as follows: Hiscock, K., Tyler-Walters, H. -
Diseases Affecting Finfish
Diseases Affecting Finfish Legislation Ireland's Exotic / Disease Name Acronym Health Susceptible Species Vector Species Non-Exotic Listed National Status Disease Measures Bighead carp (Aristichthys nobilis), goldfish (Carassius auratus), crucian carp (C. carassius), Epizootic Declared Rainbow trout (Oncorhynchus mykiss), redfin common carp and koi carp (Cyprinus carpio), silver carp (Hypophtalmichthys molitrix), Haematopoietic EHN Exotic * Disease-Free perch (Percha fluviatilis) Chub (Leuciscus spp), Roach (Rutilus rutilus), Rudd (Scardinius erythrophthalmus), tench Necrosis (Tinca tinca) Beluga (Huso huso), Danube sturgeon (Acipenser gueldenstaedtii), Sterlet sturgeon (Acipenser ruthenus), Starry sturgeon (Acipenser stellatus), Sturgeon (Acipenser sturio), Siberian Sturgeon (Acipenser Baerii), Bighead carp (Aristichthys nobilis), goldfish (Carassius auratus), Crucian carp (C. carassius), common carp and koi carp (Cyprinus carpio), silver carp (Hypophtalmichthys molitrix), Chub (Leuciscus spp), Roach (Rutilus rutilus), Rudd (Scardinius erythrophthalmus), tench (Tinca tinca) Herring (Cupea spp.), whitefish (Coregonus sp.), North African catfish (Clarias gariepinus), Northern pike (Esox lucius) Catfish (Ictalurus pike (Esox Lucius), haddock (Gadus aeglefinus), spp.), Black bullhead (Ameiurus melas), Channel catfish (Ictalurus punctatus), Pangas Pacific cod (G. macrocephalus), Atlantic cod (G. catfish (Pangasius pangasius), Pike perch (Sander lucioperca), Wels catfish (Silurus glanis) morhua), Pacific salmon (Onchorhynchus spp.), Viral -
Predator and Scavenger Aggregation to Discarded By-Catch from Dredge Fisheries: Importance of Damage Level
Journal of Sea Research 51 (2004) 69–76 www.elsevier.com/locate/seares Short Communication Predator and scavenger aggregation to discarded by-catch from dredge fisheries: importance of damage level S.R. Jenkinsa,b,*, C. Mullena, A.R. Branda a Port Erin Marine Laboratory (University of Liverpool), Port Erin, Isle of Man, British Isles, IM9 6JA, UK b Marine Biological Association, Citadel Hill, Plymouth, PL1 2PB, UK Received 23 October 2002; accepted 22 May 2003 Abstract Predator and scavenger aggregation to simulated discards from a scallop dredge fishery was investigated in the north Irish Sea using an in situ underwater video to determine differences in the response to varying levels of discard damage. The rate and magnitude of scavenger and predator aggregation was assessed using three different types of bait, undamaged, lightly damaged and highly damaged individuals of the great scallop Pecten maximus. In each treatment scallops were agitated for 40 minutes in seawater to simulate the dredging process, then subjected to the appropriate damage level before being tethered loosely in front of the video camera. The density of predators and scavengers at undamaged scallops was low and equivalent to recorded periods with no bait. Aggregation of a range of predators and scavengers occurred at damaged bait. During the 24 hour period following baiting there was a trend of increasing magnitude of predator abundance with increasing damage level. However, badly damaged scallops were eaten quickly and lightly damaged scallops attracted a higher overall magnitude of predator abundance over a longer 4 day period. Large scale temporal variability in predator aggregation to simulated discarded biota was examined by comparison of results with those of a previous study, at the same site, 4 years previously. -
Pecten Maximus) Sea-Ranching in Norway – Lessons Learned
Scallop (Pecten maximus) sea-ranching in Norway – lessons learned Ellen Sofie Grefsrud, Tore Strohmeier & Øivind Strand Background - Sea ranching in Norway • 1990-1997: Program to develop and encourage sea ranching (PUSH) • Focus on four species • Atlantic salmon (Salmo salar) • Atlantic cod (Gadus morhua) • Arctic char (Salvelinus alpinus) • European lobster (Homarus gammarus) • Only lobster showed an economic potential Grefsrud et. al, 6th ISSESR, 11-14 November, Sarasota FL, USA Background - Scallop sea ranching • 1980-90’s – a growing interest on scallop Pecten maximus cultivation in Norway • Based on suspended culture (1980’s) – labour costs high • European concensus that seeding on bottom was the most viable option • First experimental releases i Norway in mid-1990’s Photo: IMR Photo: IMR Grefsrud et. al, 6th ISSESR, 11-14 November, Sarasota FL, USA Production model Pecten maximus • Hatchery + nursery – larvae + 2-20 mm shell height • Intermediate culture – 20-55 mm • Grow-out on seabed – 55->100 mm Photo: IMR Three production steps to lower risk for investors and increase the profit in each step Time aspect – four-five years from hatchery to market sized scallops Grefsrud et. al, 6th ISSESR, 11-14 November, Sarasota FL, USA Hatchery + nursery • Established a commercial hatchery, Scalpro Photo: S. Andersen • Industry + research developed methodolgy for producing spat on a commercial scale • Larvae phase • Antibiotics and probiotica to prevent bacterial outbreaks (early phase) • Continous flow-through in larvae tank and increased volume • No use of antibiotics in commercial production • From hatching to spat in about three weeks Photo: IMR Grefsrud et. al, 6th ISSESR, 11-14 November, Sarasota FL, USA Hatchery + nursery • Transferred from hatchery to nursery in the sea at 2-4 mm • Land based race-way system – 2-20 mm Photo: IMR • Flow-through filtered sea water • Reduced predation and fouling • The commercial hatchery, Scalpro, covered both the hatchey and nursery phase Photo: IMR Grefsrud et. -
Morphology, 18S Rrna Gene Sequence and Life History of a New Polydora Species (Polychaeta: Spionidae) from Northeastern Japan
Vol. 18: 31–45, 2013 AQUATIC BIOLOGY Published online January 23 doi: 10.3354/ab00485 Aquat Biol Morphology, 18S rRNA gene sequence and life history of a new Polydora species (Polychaeta: Spionidae) from northeastern Japan Wataru Teramoto*, Waka Sato-Okoshi, Hirokazu Abe, Goh Nishitani, Yoshinari Endo Laboratory of Biological Oceanography, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan ABSTRACT: A new species of spionid polychaete, Polydora onagawaensis, is described from mol- lusk shells in Pacific waters of northeastern Japan. Its nuclear 18S rRNA gene sequence as well as its morphology, reproductive features, life history and infestation characteristics are reported. Polydora onagawaensis sp. nov. belongs to the Polydora ciliata/websteri group and has a moder- ate size and variable black pigmentation on the palps and body. Up to 115 worms were found bor- ing in a single scallop shell from suspended cultures in Onagawa Bay, with significantly higher numbers in the right than in the left valve. Females repeatedly deposited a string of egg capsules from around October to June (seawater temperature was below 15°C). The larvae developed inside the egg capsules for 2 wk (10°C, laboratory conditions), until the 3-chaetiger stage, before being released as planktonic larvae. The main spawning occurred in December, recruitment onto the shells increased after January, and most large worms disappeared between July and October. Thus, the estimated life span is around 1.5 yr after settlement. Details on biology and gene infor- mation not only contribute to distinguishing the species from other polydorids similar in morpho- logy, but also allow control of polydorid infestation in mollusk aquaculture. -
Amnesic Shellfish Poisoning Toxins in Bivalve Molluscs in Ireland
Amnesic shellfish poisoning toxins in bivalve molluscs in Ireland Kevin J. Jamesa,*, Marion Gillmana,Mo´nica Ferna´ndez Amandia, Ame´rico Lo´pez-Riverab, Patricia Ferna´ndez Puentea, Mary Lehanea, Simon Mitrovica, Ambrose Fureya aPROTEOBIO, Mass Spectrometry Centre for Proteomics and Biotoxin Research, Department of Chemistry, Cork Institute of Technology, Bishopstown, Cork, Ireland bMarine Toxins Laboratory, Biomedical Sciences Institute, Faculty of Medicine, University of Chile, Santiago, Chile Abstract In December 1999, domoic acid (DA) a potent neurotoxin, responsible for the syndrome Amnesic Shellfish Poisoning (ASP) was detected for the first time in shellfish harvested in Ireland. Two liquid chromatography (LC) methods were applied to quantify DA in shellfish after sample clean-up using solid-phase extraction (SPE) with strong anion exchange (SAX) cartridges. Toxin detection was achieved using photodiode array ultraviolet (LC-UV) and multiple tandem mass spectrometry (LC-MSn). DA was identified in four species of bivalve shellfish collected along the west and south coastal regions of the Republic of Ireland. The amount of DA that was present in three species was within EU guideline limits for sale of shellfish (20 mg DA/g); mussels (Mytilus edulis), !1.0 mg DA/g; oysters (Crassostrea edulis), !5.0 mg DA/g and razor clams (Ensis siliqua), !0.3 mg DA/g. However, king scallops (Pecten maximus) posed a significant human health hazard with levels up to 240 mg DA/g total tissues. Most scallop samples (55%) contained DA at levels greater than the regulatory limit. The DA levels in the digestive glands of some samples of scallops were among the highest that have ever been recorded (2820 mg DA/g). -
Embryonic and Larval Development of Ensis Arcuatus (Jeffreys, 1865) (Bivalvia: Pharidae)
EMBRYONIC AND LARVAL DEVELOPMENT OF ENSIS ARCUATUS (JEFFREYS, 1865) (BIVALVIA: PHARIDAE) FIZ DA COSTA, SUSANA DARRIBA AND DOROTEA MARTI´NEZ-PATIN˜O Centro de Investigacio´ns Marin˜as, Consellerı´a de Pesca e Asuntos Marı´timos, Xunta de Galicia, Apdo. 94, 27700 Ribadeo, Lugo, Spain (Received 5 December 2006; accepted 19 November 2007) ABSTRACT The razor clam Ensis arcuatus (Jeffreys, 1865) is distributed from Norway to Spain and along the British coast, where it lives buried in sand in low intertidal and subtidal areas. This work is the first study to research the embryology and larval development of this species of razor clam, using light and scanning electron microscopy. A new method, consisting of changing water levels using tide simulations with brief Downloaded from https://academic.oup.com/mollus/article/74/2/103/1161011 by guest on 23 September 2021 dry periods, was developed to induce spawning in this species. The blastula was the first motile stage and in the gastrula stage the vitelline coat was lost. The shell field appeared in the late gastrula. The trocho- phore developed by about 19 h post-fertilization (hpf) (198C). At 30 hpf the D-shaped larva showed a developed digestive system consisting of a mouth, a foregut, a digestive gland followed by an intestine and an anus. Larvae spontaneously settled after 20 days at a length of 378 mm. INTRODUCTION following families: Mytilidae (Redfearn, Chanley & Chanley, 1986; Fuller & Lutz, 1989; Bellolio, Toledo & Dupre´, 1996; Ensis arcuatus (Jeffreys, 1865) is the most abundant species of Hanyu et al., 2001), Ostreidae (Le Pennec & Coatanea, 1985; Pharidae in Spain. -
Panopea Abrupta ) Ecology and Aquaculture Production
COMPREHENSIVE LITERATURE REVIEW AND SYNOPSIS OF ISSUES RELATING TO GEODUCK ( PANOPEA ABRUPTA ) ECOLOGY AND AQUACULTURE PRODUCTION Prepared for Washington State Department of Natural Resources by Kristine Feldman, Brent Vadopalas, David Armstrong, Carolyn Friedman, Ray Hilborn, Kerry Naish, Jose Orensanz, and Juan Valero (School of Aquatic and Fishery Sciences, University of Washington), Jennifer Ruesink (Department of Biology, University of Washington), Andrew Suhrbier, Aimee Christy, and Dan Cheney (Pacific Shellfish Institute), and Jonathan P. Davis (Baywater Inc.) February 6, 2004 TABLE OF CONTENTS LIST OF FIGURES ........................................................................................................... iv LIST OF TABLES...............................................................................................................v 1. EXECUTIVE SUMMARY ....................................................................................... 1 1.1 General life history ..................................................................................... 1 1.2 Predator-prey interactions........................................................................... 2 1.3 Community and ecosystem effects of geoducks......................................... 2 1.4 Spatial structure of geoduck populations.................................................... 3 1.5 Genetic-based differences at the population level ...................................... 3 1.6 Commercial geoduck hatchery practices ................................................... -
Pecten Maximus
Assessing the association between scallops, Pecten Maximus, and the benthic ecosystem within the Isle of Man marine reserves A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science (MSc) in Marine Environmental Protection. Chyanna Allison Bsc Marine Biology with International Experience (2015, Bangor University) Supervisor: Michel J. Kaiser, Isobel Bloor and Jack Emmerson School of Ocean Sciences, College of Natural Sciences Bangor University, Gwynedd, LL57 2UW, UK September 2016 DECLARATION This work has not previously been accepted in substance for any degree and is not being concurrently submitted in candidature for any degree. Signed: Chyanna Allison Date: 16/09/16 STATEMENT 1: This thesis is the result of my own investigations, except where otherwise stated. Where correction services have been used, the extent and nature of the correction is clearly marked in a footnote(s). Other sources are acknowledged by footnotes giving explicit references. A bibliography is appended. Signed: Chyanna Allison Date: 16/09/16 STATEMENT 2: I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter- library loan, and for the title and summary to be made available to outside organisations. Signed: Chyanna Allison Date: 16/09/16 NB: Candidates on whose behalf a bar on access has been approved by the University should use the following version of Statement 2: I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter- library loans after expiry of a bar on access approved by the University. Signed: Chyanna Allison Date: 16/09/16 i | P a g e Abstract The increased threat to the world’s marine environment has forced the use of management strategies that encourage resource sustainability like spatial closure and stock replenishment. -
ORDOVICIAN to RECENT Edited by Claus Nielsen & Gilbert P
b r y o z o a : ORDOVICIAN TO RECENT Edited by Claus Nielsen & Gilbert P. Larwood BRYOZOA: ORDOVICIAN TO RECENT EDITED BY CLAUS NIELSEN & GILBERT P. LARWOOD Papers presented at the 6th International Conference on Bryozoa Vienna 1983 OLSEN & OLSEN, FREDENSBORG 1985 International Bryozoology Association dedicates this volume to the memory of MARCEL PRENANT in recognition o f the importance of his studies on Bryozoa Bryozoa: Ordovician to Recent is published by Olsen & Olsen, Helstedsvej 10, DK-3480 Fredensborg, Denmark Copyright © Olsen & Olsen 1985 ISBN 87-85215-13-9 The Proceedings of previous International Bryozoology Association conferences are published in volumes of papers as follows: Annoscia, E. (ed.) 1968. Proceedings of the First International Conference on Bryozoa. - Atti. Soc. ital. Sci. nat. 108: 4-377. Larwood, G.P. (cd.) 1973. Living and Fossil Bryozoa — Recent Advances in Research. — Academic Press (London). 634 pp. Pouyet, S. (ed.) 1975. Brvozoa 1974. Proc. 3rd Conf. I.B.A. - Docums Lab. Geol. Fac. Sci. Lvon, H.S. 3:1-690. Larwood, G.P. & M.B. Abbott (eds) 1979. Advances in Bryozoology. - Systematics Association, Spec. 13: 1-639. Academic Press (London). Larwood, G. P. «S- C. Nielsen (eds) 1981. Recent and Fossil Bryozoa. - Olsen & Olsen, Fredensborg, Denmark. 334 pp. Printed by Olsen £? Olsen CONTENTS Preface........................................................................................................................... viii Annoscia, Enrico: Bryozoan studies in Italy in the last decade: 1973 to 1982........ 1 Bigey, Françoise P.: Biogeography of Devonian Bryozoa ...................................... 9 Bizzarini, Fabrizio & Giampietro Braga: Braiesopora voigti n. gen. n.sp. (cyclo- stome bryozoan) in the S. Cassiano Formation in the Eastern Alps ( Italy).......... 25 Boardman, Richards. -
Reproduction and Larval Development of the New Zealand Scallop, Pecten Novaezelandiae
Reproduction and larval development of the New Zealand scallop, Pecten novaezelandiae. Neil E. de Jong A thesis submitted to Auckland University of Technology in partial fulfilment of the requirements for the degree of Master of Science (MSc) 2013 School of Applied Science Table of Contents TABLE OF CONTENTS ...................................................................................... I TABLE OF FIGURES ....................................................................................... IV TABLE OF TABLES ......................................................................................... VI ATTESTATION OF AUTHORSHIP ................................................................. VII ACKNOWLEDGMENTS ................................................................................. VIII ABSTRACT ....................................................................................................... X 1 CHAPTER ONE: INTRODUCTION AND LITERATURE REVIEW .............. 1 1.1 Scallop Biology and Ecology ........................................................................................ 2 1.1.1 Diet ............................................................................................................................... 4 1.2 Fisheries and Aquaculture ............................................................................................ 5 1.2.1 Scallop Enhancement .................................................................................................. 8 1.2.2 Hatcheries ................................................................................................................. -
Report of the Study Group on Electrical Trawling 2011
ICES SGELECTRA REPORT 2011 SCICOM STEERING GROUP ON ECOSYSTEM SURVEYS SCIENCE AND TECHNOLOGY ICES CM 2011/SSGESST:09 REF. SCICOM Report of the Study Group on Electrical Trawling (SGELECTRA) 7-8 May 2011 Reykjavik, Iceland International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H. C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Recommended format for purposes of citation: ICES. 2011. Report of the Study Group on Electrical Trawling (SGELECTRA), 7-8 May 2011, Reykjavik, Iceland. ICES CM 2011/SSGESST:09. 93 pp. For permission to reproduce material from this publication, please apply to the Gen- eral Secretary. The document is a report of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. © 2011 International Council for the Exploration of the Sea ICES SGELECTRA REPORT 2011 | i Contents Executive summary ................................................................................................................ 1 1 Opening of the meeting ................................................................................................ 3 2 Confidentiality issue ..................................................................................................... 3 3 Adoption of the agenda ................................................................................................ 3 4 Review of earlier