Marine Biological Research at Lundy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Environmental Assessment/Assessment of Effect ___
National Park Service U.S. Department of the Interior Cape Hatteras National Seashore Environmental Assessment/Assessment of Effect ___ Review and Adjustment of Wildlife Protection Buffers April 2015 1 Department of the Interior National Park Service Environmental Assessment: Review and Adjustment of Wildlife Protection Buffers Cape Hatteras National Seashore North Carolina April 2015 Summary The National Park Service (NPS) proposes to modify wildlife protection buffers established under the Cape Hatteras National Seashore Final Off-Road Vehicle Management Plan and Environmental Impact Statement of 2010 (ORV FEIS). This proposed action results from a review of the buffers, as mandated by Section 3057 of the Defense Authorization Act of Fiscal Year 2015, Public Law 113-291 (2014 Act). The 2014 Act directs the NPS “to ensure that the buffers are of the shortest duration and cover the smallest area necessary to protect a species, as determined in accordance with peer-reviewed scientific data.” This environmental assessment (EA) deals solely with review and modification, as appropriate, of wildlife protection buffers and the designation of pedestrian and vehicle corridors around buffers. All other aspects of the ORV FEIS remain unchanged. This EA analyzes potential impacts to the human environment resulting from two alternative courses of action. These alternatives are: alternative A (no action, i.e., continue current management under the ORV FEIS), and alternative B (modify buffers and provide additional access corridors) (the NPS preferred alternative). As more fully described in the EA, the proposed modifications to buffers and corridors in alternative B are as follows: For American oystercatcher: There would be an ORV corridor at the waterline during nesting, but only when (a) no alternate route is available, and (b) the nest is at least 25 meters from the vehicle corridor. -
High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project
High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project AEA Technology, Environment Contract: W/35/00632/00/00 For: The Department of Trade and Industry New & Renewable Energy Programme Report issued 30 August 2002 (Version with minor corrections 16 September 2002) Keith Hiscock, Harvey Tyler-Walters and Hugh Jones Reference: Hiscock, K., Tyler-Walters, H. & Jones, H. 2002. High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project. Report from the Marine Biological Association to The Department of Trade and Industry New & Renewable Energy Programme. (AEA Technology, Environment Contract: W/35/00632/00/00.) Correspondence: Dr. K. Hiscock, The Laboratory, Citadel Hill, Plymouth, PL1 2PB. [email protected] High level environmental screening study for offshore wind farm developments – marine habitats and species ii High level environmental screening study for offshore wind farm developments – marine habitats and species Title: High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project. Contract Report: W/35/00632/00/00. Client: Department of Trade and Industry (New & Renewable Energy Programme) Contract management: AEA Technology, Environment. Date of contract issue: 22/07/2002 Level of report issue: Final Confidentiality: Distribution at discretion of DTI before Consultation report published then no restriction. Distribution: Two copies and electronic file to DTI (Mr S. Payne, Offshore Renewables Planning). One copy to MBA library. Prepared by: Dr. K. Hiscock, Dr. H. Tyler-Walters & Hugh Jones Authorization: Project Director: Dr. Keith Hiscock Date: Signature: MBA Director: Prof. S. Hawkins Date: Signature: This report can be referred to as follows: Hiscock, K., Tyler-Walters, H. -
Anthopleura and the Phylogeny of Actinioidea (Cnidaria: Anthozoa: Actiniaria)
Org Divers Evol (2017) 17:545–564 DOI 10.1007/s13127-017-0326-6 ORIGINAL ARTICLE Anthopleura and the phylogeny of Actinioidea (Cnidaria: Anthozoa: Actiniaria) M. Daly1 & L. M. Crowley2 & P. Larson1 & E. Rodríguez2 & E. Heestand Saucier1,3 & D. G. Fautin4 Received: 29 November 2016 /Accepted: 2 March 2017 /Published online: 27 April 2017 # Gesellschaft für Biologische Systematik 2017 Abstract Members of the sea anemone genus Anthopleura by the discovery that acrorhagi and verrucae are are familiar constituents of rocky intertidal communities. pleisiomorphic for the subset of Actinioidea studied. Despite its familiarity and the number of studies that use its members to understand ecological or biological phe- Keywords Anthopleura . Actinioidea . Cnidaria . Verrucae . nomena, the diversity and phylogeny of this group are poor- Acrorhagi . Pseudoacrorhagi . Atomized coding ly understood. Many of the taxonomic and phylogenetic problems stem from problems with the documentation and interpretation of acrorhagi and verrucae, the two features Anthopleura Duchassaing de Fonbressin and Michelotti, 1860 that are used to recognize members of Anthopleura.These (Cnidaria: Anthozoa: Actiniaria: Actiniidae) is one of the most anatomical features have a broad distribution within the familiar and well-known genera of sea anemones. Its members superfamily Actinioidea, and their occurrence and exclu- are found in both temperate and tropical rocky intertidal hab- sivity are not clear. We use DNA sequences from the nu- itats and are abundant and species-rich when present (e.g., cleus and mitochondrion and cladistic analysis of verrucae Stephenson 1935; Stephenson and Stephenson 1972; and acrorhagi to test the monophyly of Anthopleura and to England 1992; Pearse and Francis 2000). -
Downloaded from Brill.Com10/11/2021 08:33:28AM Via Free Access 224 E
Contributions to Zoology, 67 (4) 223-235 (1998) SPB Academic Publishing bv, Amsterdam Optics and phylogeny: is there an insight? The evolution of superposition eyes in the Decapoda (Crustacea) Edward Gaten Department of Biology, University’ ofLeicester, Leicester LEI 7RH, U.K. E-mail: [email protected] Keywords: Compound eyes, superposition optics, adaptation, evolution, decapod crustaceans, phylogeny Abstract cannot normally be predicted by external exami- nation alone, and usually microscopic investiga- This addresses the of structure and in paper use eye optics the tion of properly fixed optical elements is required construction of and crustacean phylogenies presents an hypoth- for a complete diagnosis. This largely rules out esis for the evolution of in the superposition eyes Decapoda, the use of fossil material in the based the of in comparatively on distribution eye types extant decapod fami- few lies. It that arthropodan specimens where the are is suggested reflecting superposition optics are eyes symplesiomorphic for the Decapoda, having evolved only preserved (Glaessner, 1969), although the optics once, probably in the Devonian. loss of Subsequent reflecting of some species of trilobite have been described has superposition optics occurred following the adoption of a (Clarkson & Levi-Setti, 1975). Also the require- new habitat (e.g. Aristeidae,Aeglidae) or by progenetic paedo- ment for good fixation and the fact that complete morphosis (Paguroidea, Eubrachyura). examination invariably involves the destruction of the specimen means that museum collections Introduction rarely reveal enough information to define the optics unequivocally. Where the optics of the The is one of the compound eye most complex component parts of the eye are under investiga- and remarkable not on of its fixation organs, only account tion, specialised to preserve the refrac- but also for the optical precision, diversity of tive properties must be used (Oaten, 1994). -
Predator and Scavenger Aggregation to Discarded By-Catch from Dredge Fisheries: Importance of Damage Level
Journal of Sea Research 51 (2004) 69–76 www.elsevier.com/locate/seares Short Communication Predator and scavenger aggregation to discarded by-catch from dredge fisheries: importance of damage level S.R. Jenkinsa,b,*, C. Mullena, A.R. Branda a Port Erin Marine Laboratory (University of Liverpool), Port Erin, Isle of Man, British Isles, IM9 6JA, UK b Marine Biological Association, Citadel Hill, Plymouth, PL1 2PB, UK Received 23 October 2002; accepted 22 May 2003 Abstract Predator and scavenger aggregation to simulated discards from a scallop dredge fishery was investigated in the north Irish Sea using an in situ underwater video to determine differences in the response to varying levels of discard damage. The rate and magnitude of scavenger and predator aggregation was assessed using three different types of bait, undamaged, lightly damaged and highly damaged individuals of the great scallop Pecten maximus. In each treatment scallops were agitated for 40 minutes in seawater to simulate the dredging process, then subjected to the appropriate damage level before being tethered loosely in front of the video camera. The density of predators and scavengers at undamaged scallops was low and equivalent to recorded periods with no bait. Aggregation of a range of predators and scavengers occurred at damaged bait. During the 24 hour period following baiting there was a trend of increasing magnitude of predator abundance with increasing damage level. However, badly damaged scallops were eaten quickly and lightly damaged scallops attracted a higher overall magnitude of predator abundance over a longer 4 day period. Large scale temporal variability in predator aggregation to simulated discarded biota was examined by comparison of results with those of a previous study, at the same site, 4 years previously. -
Checklist of Fish and Invertebrates Listed in the CITES Appendices
JOINTS NATURE \=^ CONSERVATION COMMITTEE Checklist of fish and mvertebrates Usted in the CITES appendices JNCC REPORT (SSN0963-«OStl JOINT NATURE CONSERVATION COMMITTEE Report distribution Report Number: No. 238 Contract Number/JNCC project number: F7 1-12-332 Date received: 9 June 1995 Report tide: Checklist of fish and invertebrates listed in the CITES appendices Contract tide: Revised Checklists of CITES species database Contractor: World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge, CB3 ODL Comments: A further fish and invertebrate edition in the Checklist series begun by NCC in 1979, revised and brought up to date with current CITES listings Restrictions: Distribution: JNCC report collection 2 copies Nature Conservancy Council for England, HQ, Library 1 copy Scottish Natural Heritage, HQ, Library 1 copy Countryside Council for Wales, HQ, Library 1 copy A T Smail, Copyright Libraries Agent, 100 Euston Road, London, NWl 2HQ 5 copies British Library, Legal Deposit Office, Boston Spa, Wetherby, West Yorkshire, LS23 7BQ 1 copy Chadwick-Healey Ltd, Cambridge Place, Cambridge, CB2 INR 1 copy BIOSIS UK, Garforth House, 54 Michlegate, York, YOl ILF 1 copy CITES Management and Scientific Authorities of EC Member States total 30 copies CITES Authorities, UK Dependencies total 13 copies CITES Secretariat 5 copies CITES Animals Committee chairman 1 copy European Commission DG Xl/D/2 1 copy World Conservation Monitoring Centre 20 copies TRAFFIC International 5 copies Animal Quarantine Station, Heathrow 1 copy Department of the Environment (GWD) 5 copies Foreign & Commonwealth Office (ESED) 1 copy HM Customs & Excise 3 copies M Bradley Taylor (ACPO) 1 copy ^\(\\ Joint Nature Conservation Committee Report No. -
Os Nomes Galegos Dos Moluscos
A Chave Os nomes galegos dos moluscos 2017 Citación recomendada / Recommended citation: A Chave (2017): Nomes galegos dos moluscos recomendados pola Chave. http://www.achave.gal/wp-content/uploads/achave_osnomesgalegosdos_moluscos.pdf 1 Notas introdutorias O que contén este documento Neste documento fornécense denominacións para as especies de moluscos galegos (e) ou europeos, e tamén para algunhas das especies exóticas máis coñecidas (xeralmente no ámbito divulgativo, por causa do seu interese científico ou económico, ou por seren moi comúns noutras áreas xeográficas). En total, achéganse nomes galegos para 534 especies de moluscos. A estrutura En primeiro lugar preséntase unha clasificación taxonómica que considera as clases, ordes, superfamilias e familias de moluscos. Aquí apúntase, de maneira xeral, os nomes dos moluscos que hai en cada familia. A seguir vén o corpo do documento, onde se indica, especie por especie, alén do nome científico, os nomes galegos e ingleses de cada molusco (nalgún caso, tamén, o nome xenérico para un grupo deles). Ao final inclúese unha listaxe de referencias bibliográficas que foron utilizadas para a elaboración do presente documento. Nalgunhas desas referencias recolléronse ou propuxéronse nomes galegos para os moluscos, quer xenéricos quer específicos. Outras referencias achegan nomes para os moluscos noutras linguas, que tamén foron tidos en conta. Alén diso, inclúense algunhas fontes básicas a respecto da metodoloxía e dos criterios terminolóxicos empregados. 2 Tratamento terminolóxico De modo moi resumido, traballouse nas seguintes liñas e cos seguintes criterios: En primeiro lugar, aprofundouse no acervo lingüístico galego. A respecto dos nomes dos moluscos, a lingua galega é riquísima e dispomos dunha chea de nomes, tanto específicos (que designan un único animal) como xenéricos (que designan varios animais parecidos). -
109 Annotated Checklist Of
THE RAFFLES BULLETIN OF ZOOLOGY 2010 Supplement No. 23: 109–129 Date of Publication: 31 Oct.2010 © National University of Singapore ANNOTATED CHECKLIST OF ANOMURAN DECAPOD CRUSTACEANS OF THE WORLD (EXCLUSIVE OF THE KIWAOIDEA AND FAMILIES CHIROSTYLIDAE AND GALATHEIDAE OF THE GALATHEOIDEA) PART II – PORCELLANIDAE Masayuki Osawa Research Center for Coastal Lagoon and Environments, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan Email: [email protected] Patsy A. McLaughlin Shannon Point Marine Center, Western Washington University, 1900 Shannon Point Road, Anacortes, WA 98221-4042, USA Email: hermit@fi dalgo.net INTRODUCTION Porcellanidae Haworth, 1825 = Porcellaniens H. Milne Edwards, 1837 Ng et al. (2008) and McLaughlin et al. (this volume) referred = Porcellaniadae Randall, 1840 to the “windows” to the literature and the “springboards” for = Porcellanodea Henderson 1888 associating species with their scientifi c names that provided = Porcellainea Holmes, 1900 the foundations for subsequent brachyuran, paguroid and lithodoid research. For the porcellanids, one treatise in particular has provided a similar base upon which virtually all DESCRIPTIVE TERMS AND CURRENT STATUS subsequent porcellanid reports have been patterned. Despite its regional focus, Haig’s (1960) monograph of eastern General morphology. – The general body shape is crab- Pacifi c species included 87 of the 225 species estimated to like and the carapace is well calcifi ed. Regions of the dorsal be present worldwide at the time (Chace, 1951). During the integument are not usually well defi ned. The anterior margin last half century the number of genera has increased from of the carapace is produced into a short rostrum or rostral 14 prior to Haig’s (1960) monograph to 30 and the number lobe. -
United Nations Unep/Med Wg.474/3 United
UNITED NATIONS UNEP/MED WG.474/3 UNITED NATIONS ENVIRONMENT PROGRAMME MEDITERRANEAN ACTION PLAN 24 Avril 2019 Original: English Meeting of the Ecosystem Approach of Correspondence Group on Monitoring (CORMON), Biodiversity and Fisheries. Rome, Italy, 12-13 May 2019 Agenda item 3: Guidance on monitoring marine benthic habitats (Common Indicators 1 and 2) Monitoring protocols of the Ecosystem Approach Common Indicators 1 and 2 related to marine benthic habitats For environmental and economy reasons, this document is printed in a limited number and will not be distributed at the meeting. Delegates are kindly requested to bring their copies to meetings and not to request additional copies. UNEP/MAP SPA/RAC - Tunis, 2019 Note by the Secretariat The 19th Meeting of the Contracting Parties to the Barcelona Convention (COP 19) agreed on the Integrated Monitoring and Assessment Programme (IMAP) of the Mediterranean Sea and Coast and Related Assessment Criteria which set, in its Decision IG.22/7, a specific list of 27 common indicators (CIs) and Good Environmental Status (GES) targets and principles of an integrated Mediterranean Monitoring and Assessment Programme. During the initial phase of the IMAP implementation (2016-2019), the Contracting parties to the Barcelona Convention updated the existing national monitoring and assessment programmes following the Decision requirements in order to provide all the data needed to assess whether ‘‘Good Environmental Status’’ defined through the Ecosystem Approach process has been achieved or maintained. In line with IMAP, Guidance Factsheets were developed, reviewed and agreed by the Meeting of the Ecosystem Approach Correspondence Group on Monitoring (CORMON) Biodiversity and Fisheries (Madrid, Spain, 28 February-1 March 2017) and the Meeting of the SPA/RAC Focal Points (Alexandria, Egypt, 9-12 May 2017) for the Common Indicators to ensure coherent monitoring. -
Seashore Pocket Guide
. y a B e e L d n a n i t r a M e b m o C , h t u o m n y L ) e v o b a ( . e m i t m e h t e v i g u o y f i e c i v e r c n e d d i h a m o r f t u o . a n i l l a r o c d n a e s l u d s a h c u s s d e e w a e s b a r C e l b i d E k u . v o g . k r a p l a n o i t a n - r o o m x e . w w w e r a t s a o c s ’ r o o m x E n o e f i l d l i w e r o h s a e s k c a b e v o m n e t f o l l i w s b a r c d n a h s i F . l l i t s y r e v g n i p e e k d e r r e v o c s i d n a c u o y s l o o p k c o r r o f k o o l o t s e c a l p e t i r u o v a f r u o f o e m o S , g n i h c t a w e m i t d n e p S . -
A Preliminary Study on Habitat Characteristics and Substrate Preference of Coral Species Distributed in the Dardanelles
Mar. Sci. Tech. Bull. (2014) 3(2):5-10 ISSN: 2147-9666 A preliminary study on habitat characteristics and substrate preference of coral species distributed in the Dardanelles. H. Baris Ozalp1*, Firat Sengun2, Zeki Karaca2, Olcay Hisar1 1Canakkale Onsekiz Mart University, Faculty of Marine Science and Technology, Canakkale, Turkey 2Canakkale Onsekiz Mart University, Faculty of Engineering, Canakkale, Turkey A R T I C L E I N F O A B S T R A C T Article history: The present study aims to investigate the characteristics of living substrata of two scleractinian corals in the Dardanelles by performing the ecologic and petrographical Received: 14.08.2014 analyses. The Mediterranean originated Caryophyllia smithii and Balanophyllia Received in revised form: 22.09.2014 europaea are frequent coral species in the Dardanelles and the studied area between Accepted : 07.10.2014 11 and 25 m depth is known as highly distributed zone of the species. In situ, the spreading area was searched by scuba technique and the ecological characteristics of Available online : 31.12.2014 species have been measured. For the purpose of petrographical analyses, six coral individuals were collected with the associated rock samples. According to the obtained Keywords: data it was determined that the rock samples are mainly composed of sandstone, micritic limestone and rhyolithic tuff. Additionally it was found that porosity in rock Coral structure has a positive effect on coral settlement and the habitat choice in B. Balanophyllia europaea europaea and C. smithii can differ based on the rock structure. Ecological, biological Caryophyllia smithii and zoogeographical features of Anthozoan species distributed in the Turkish coasts petrography are still poorly known. -
Morphological Monitoring of Subtidal Sponge Assemblages
MARINE ECOLOGY PROGRESS SERIES Vol. 311: 79–91, 2006 Published April 13 Mar Ecol Prog Ser Morphological monitoring of subtidal sponge assemblages James J. Bell1,*, Mark Burton2, Blaise Bullimore2, Philip B. Newman2, Kate Lock2 1Institute of Biological Sciences, University of Wales, Aberystwyth, Edward Llwyd Building, Aberystwyth, Ceredigion SY23 3DA, UK 2Skomer Marine Nature Reserve, Countryside Council for Wales, Fishermans Cottage, Martins Haven, Haverfordwest, Pembrokeshire SA62 3BJ, UK ABSTRACT: The management of the marine environment requires effective temporal monitoring of communities and assemblages to detect any change above the level of natural variability. Even though sponges are usually abundant in subtidal hard substratum environments and have the ability to significantly influence other community members, they have often been excluded from monitoring programmes because they are taxonomically difficult and often hard to quantify compared to other marine groups. We consider the use of a morphological method to examine photoquadrat data collected at 3 hard substratum sites over a 10 yr period at Skomer Marine Nature Reserve, south-west Wales. Differences in the morphological assemblages and abundance were apparent between years, but the sponge assemblages showed rapid recovery (within 1 yr) to their original assemblage composition and abundance following declines. The changes were attributed to natural biological variation or a short-term impact, rather than any response to prolonged environmental change and there was no correlation between any of the changes in assemblages observed and the environmen- tal variables measured. A comparison of morphological and species data enabled the same sponge assemblages to be identified at different sites, validating the method. This morphological approach to monitoring represents a cost-effective and realistic way of monitoring certain sponge assemblages.