Open Final Merkhofer Thesis.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Open Final Merkhofer Thesis.Pdf The Pennsylvania State University The Graduate School College of Earth and Mineral Sciences AUSTRALIAN ANALOGS FOR AN EOCENE PATAGONIAN PALEORAINFOREST A Thesis in Geosciences by Lisa Merkhofer Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science August 2014 The thesis of Lisa M. Merkhofer was reviewed and approved* by the following: Peter Wilf Professor of Geosciences Thesis Advisor Mark Patzkowsky Professor of Geosciences Timothy Bralower Professor of Geosciences Lee Kump Professor of Geosciences Head of the Department of Geosciences *Signatures are on file in the Graduate School. ii ABSTRACT The diverse Laguna del Hunco (LH) paleoflora from early Eocene Patagonia, Argentina, has striking similarities to subtropical and tropical Australian rainforests. Previous research recognized the Simple Notophyll Vine Forests (SNVFs) of montane New South Wales, Australia, as potential analogs for the paleoflora in terms of diversity, floristic composition, leaf size, and environment. In this study, I test this hypothesis by: (1) inferring the Laguna del Hunco rainforest type; (2) quantitatively comparing the paleoflora to 596 Australian rainforest plots; and (3) comparing these results to non-Australian regions in Australasia and Southeast Asia where Laguna del Hunco’s nearest living relatives also occur. First, I inferred rainforest type using paleofloristics and fossil dicot leaf area. Fossil leaf area was measured directly or estimated with the Cain and Castro formula, the Raunkiaer-Webb size classes, or vein scaling, a new method that has not yet been applied to fossils and uses a scaling relationship between leaf area and secondary vein density. By testing all three methods on 159 fossil leaves with intact areas, I found that vein scaling was as accurate at predicting leaf area as the Raunkiaer-Webb size classes, but more applicable to fragmentary leaves. When I used vein scaling to reconstruct the areas of 94 fragmented specimens from LH, the paleoflora’s grand mean leaf area increased by ~360 mm2, recovering large leaf areas that were previously undetected. Across 1152 fossil leaves representing 154 dicot species, Laguna del Hunco’s mean leaf size was 1755 mm2, or large microphyll. The paleoflora’s leaf size index and floristic composition were found to support its similarity to an SNVF. Secondly, I found that subtropical rainforests with moderate, but not montane elevations, were the closest Australian analogs for LH both in terms of leaf size, family composition, and the generic occurrences of Laguna del Hunco’s nearest living relatives (NLRs). Lastly, I found that Laguna del Hunco’s NLRs occurred in three non-overlapping climate regions: cool-dry areas in subtropical Australia, hot-wet areas in tropical Australia, and cool-wet areas not found in Australia, but in montane Australasia and Southeast Asia. These results suggest that Australia no longer has the cool, wet montane environment needed to support some of the lineages from the paleoflora. This study uses a novel, quantitative method of fossil-modern comparison that can be applied to other paleofloras, allowing paleoecological interpretations to be more precisely based on both taxon-free and taxon-informed data. iii TABLE OF CONTENTS LIST OF TABLES ....................................................................................................................... V! LIST OF FIGURES .................................................................................................................... VI! ACKNOWLEDGMENTS ........................................................................................................ VII! INTRODUCTION ......................................................................................................................... 1! Leaf area in paleorainforest reconstructions ................................................................................... 1! The Laguna del Hunco paleoflora ................................................................................................... 4! Australian rainforests as modern analogs ....................................................................................... 5! MATERIALS AND METHODS ................................................................................................. 8! Laguna del Hunco setting ............................................................................................................... 8! Paleofloristics and nearest living relatives ...................................................................................... 9! Fossil specimens and repository ................................................................................................... 13! Dicot leaf area analysis ................................................................................................................. 13! Australian rainforest dataset ......................................................................................................... 18! Analog rainforest analysis ............................................................................................................. 20! Climate space analysis .................................................................................................................. 22! RESULTS .................................................................................................................................... 25! Accuracy of the vein scaling method ............................................................................................ 25! Laguna del Hunco dicot leaf size .................................................................................................. 25! Leaf size comparisons ................................................................................................................... 29! Floristic comparisons .................................................................................................................... 33! Climate space comparisons ........................................................................................................... 36! DISCUSSION .............................................................................................................................. 39! Including fragmented leaves in fossil leaf area measurements ..................................................... 39! Assessing taphonomic bias in leaf area ........................................................................................ 40! Laguna del Hunco as a Simple Notophyll Vine Forest ................................................................. 42! Closest analog rainforests ............................................................................................................. 43! Australian climate spaces .............................................................................................................. 45! CONCLUSIONS ......................................................................................................................... 47! LITERATURE CITED .............................................................................................................. 49! APPENDIX A. SUPPLEMENTAL LEAF AREA METHODS AND RESULTS ................. 60! APPENDIX B. ADDITIONAL FOSSIL-MODERN COMPARISON RESULTS ............... 95! iv LIST OF TABLES Table 1. Taxa from Laguna del Hunco paleoflora used in floristic analyses ............................... 10! Table 2. Breakdown of fossil specimens used for Laguna del Hunco leaf area ........................... 17! Table 3. Geography, environment, and species diversity of living Australian rainforests ........... 19! Table 4. Climate ranges of selected nearest living relatives of fossil species .............................. 22! Table 5. Taxon-specific leaf area for Laguna del Hunco and Australian nearest living relatives 31! Table 6. Living Australian rainforests with the highest number of Laguna del Hunco’s nearest living relative genera ............................................................................................................. 37! v LIST OF FIGURES F igure 1. Measurement technique for estimating leaf area vein scaling ...................................... 15! Figure 2. Evaluating methods for measuring fossil leaf area ........................................................ 26! Figure 3. Accuracy of the vein scaling method ............................................................................ 27! Figure 4. Laguna del Hunco fossil dicot leaf areas. ...................................................................... 28! Figure 5. Leaf areas of Laguna del Hunco fossils and Australian nearest living relatives ........... 30! Figure 6. Grand mean leaf areas of Laguna del Hunco and living Australian rainforests ............ 32! Figure 7. Family compositions of Laguna del Hunco and living Australian rainforests .............. 34! Figure 8. Occurrences of Laguna del Hunco’s Australian nearest living relative genera ............ 35! Figure 9. Climate spaces of Laguna del Hunco’s nearest living relatives .................................... 38! vi ACKNOWLEDGMENTS I owe many thanks to my advisor Dr. Peter Wilf for his unflagging guidance throughout the course of this project. The many hours he devoted to commenting on drafts, ensuring that I had all necessary resources, and interpreting troublesome results was invaluable, as was his ever- present jovial encouragement. I would also like to thank to my committee members, Dr. Mark Patzkowsky and Dr.
Recommended publications
  • Brooklyn, Cloudland, Melsonby (Gaarraay)
    BUSH BLITZ SPECIES DISCOVERY PROGRAM Brooklyn, Cloudland, Melsonby (Gaarraay) Nature Refuges Eubenangee Swamp, Hann Tableland, Melsonby (Gaarraay) National Parks Upper Bridge Creek Queensland 29 April–27 May · 26–27 July 2010 Australian Biological Resources Study What is Contents Bush Blitz? Bush Blitz is a four-year, What is Bush Blitz? 2 multi-million dollar Abbreviations 2 partnership between the Summary 3 Australian Government, Introduction 4 BHP Billiton and Earthwatch Reserves Overview 6 Australia to document plants Methods 11 and animals in selected properties across Australia’s Results 14 National Reserve System. Discussion 17 Appendix A: Species Lists 31 Fauna 32 This innovative partnership Vertebrates 32 harnesses the expertise of many Invertebrates 50 of Australia’s top scientists from Flora 62 museums, herbaria, universities, Appendix B: Threatened Species 107 and other institutions and Fauna 108 organisations across the country. Flora 111 Appendix C: Exotic and Pest Species 113 Fauna 114 Flora 115 Glossary 119 Abbreviations ANHAT Australian Natural Heritage Assessment Tool EPBC Act Environment Protection and Biodiversity Conservation Act 1999 (Commonwealth) NCA Nature Conservation Act 1992 (Queensland) NRS National Reserve System 2 Bush Blitz survey report Summary A Bush Blitz survey was conducted in the Cape Exotic vertebrate pests were not a focus York Peninsula, Einasleigh Uplands and Wet of this Bush Blitz, however the Cane Toad Tropics bioregions of Queensland during April, (Rhinella marina) was recorded in both Cloudland May and July 2010. Results include 1,186 species Nature Refuge and Hann Tableland National added to those known across the reserves. Of Park. Only one exotic invertebrate species was these, 36 are putative species new to science, recorded, the Spiked Awlsnail (Allopeas clavulinus) including 24 species of true bug, 9 species of in Cloudland Nature Refuge.
    [Show full text]
  • Bulletin of Natural History ®
    FLORI'IDA MUSEUM BULLETIN OF NATURAL HISTORY ® A MIDDLE EOCENE FOSSIL PLANT ASSEMBLAGE (POWERS CLAY PIT) FROM WESTERN TENNESSEE DavidL. Dilcher and Terry A. Lott Vol. 45, No. 1, pp. 1-43 2005 UNIVERSITY OF FLORIDA GAINESVILLE - The FLORIDA MUSEUM OF NATURAL HiSTORY is Florida«'s state museum of natural history, dedicated to understanding, preser¥ingrand interpreting].biologica[1 diversity and culturafheritage. The BULLETIN OF THE FLORIDA- MUSEUM OF NATURAL HISTORY is a peer-reviewed publication thatpziblishes.the result5 of origifial reseafchin zodlogy, botany, paleontology, and archaeology. Address all inquiries t6 the Managing Editor ofthe Bulletin. Numbers,ofthe Bulletin,afe,published,at itregular intervals. Specific volumes are not'necessarily completed in anyone year. The end of a volume willl·be noted at the foot of the first page ofthe last issue in that volume. Richard Franz, Managing Editor Erika H. Simons, Production BulletinCommittee Richard Franz,,Chairperson Ann Cordell Sarah Fazenbaker Richard Hulbert WilliamMarquardt Susan Milbrath Irvy R. Quitmyer - Scott Robinson, Ex 01#cio Afember ISSN: 0071-6154 Publication Date: October 31,2005 Send communications concerning purchase or exchange of the publication and manustfipt queries to: Managing Editor of the BULLETIN Florida MuseumofNatural-History University offlorida PO Box 117800 Gainesville, FL 32611 -7800 U.S.A. Phone: 352-392-1721 Fax: 352-846-0287 e-mail: [email protected] A MIDDLE EOCENE FOSSIL PLANT ASSEMBLAGE (POWERS CLAY PIT) FROM WESTERN TENNESSEE David L. Dilcher and Terry A. Lottl ABSTRACT Plant megafossils are described, illustrated and discussed from Powers Clay Pit, occurring in the middle Eocene, Claiborne Group of the Mississippi Embayment in western Tennessee.
    [Show full text]
  • Cairns Regional Council Water and Waste Report for Mulgrave River Aquifer Feasibility Study Flora and Fauna Report
    Cairns Regional Council Water and Waste Report for Mulgrave River Aquifer Feasibility Study Flora and Fauna Report November 2009 Contents 1. Introduction 1 1.1 Background 1 1.2 Scope 1 1.3 Project Study Area 2 2. Methodology 4 2.1 Background and Approach 4 2.2 Demarcation of the Aquifer Study Area 4 2.3 Field Investigation of Proposed Bore Hole Sites 5 2.4 Overview of Ecological Values Descriptions 5 2.5 PER Guidelines 5 2.6 Desktop and Database Assessments 7 3. Database Searches and Survey Results 11 3.1 Information Sources 11 3.2 Species of National Environmental Significance 11 3.3 Queensland Species of Conservation Significance 18 3.4 Pest Species 22 3.5 Vegetation Communities 24 3.6 Regional Ecosystem Types and Integrity 28 3.7 Aquatic Values 31 3.8 World Heritage Values 53 3.9 Results of Field Investigation of Proposed Bore Hole Sites 54 4. References 61 Table Index Table 1: Summary of NES Matters Protected under Part 3 of the EPBC Act 5 Table 2 Summary of World Heritage Values within/adjacent Aquifer Area of Influence 6 Table 3: Species of NES Identified as Occurring within the Study Area 11 Table 4: Summary of Regional Ecosystems and Groundwater Dependencies 26 42/15610/100421 Mulgrave River Aquifer Feasibility Study Flora and Fauna Report Table 5: Freshwater Fish Species in the Mulgrave River 36 Table 6: Estuarine Fish Species in the Mulgrave River 50 Table 7: Description of potential borehole field in Aloomba as of 20th August, 2009. 55 Figure Index Figure 1: Regional Ecosystem Conservation Status and Protected Species Observation 21 Figure 2: Vegetation Communities and Groundwater Dependencies 30 Figure 3: Locations of Study Sites 54 Appendices A Database Searches 42/15610/100421 Mulgrave River Aquifer Feasibility Study Flora and Fauna Report 1.
    [Show full text]
  • Native Plants Sixth Edition Sixth Edition AUSTRALIAN Native Plants Cultivation, Use in Landscaping and Propagation
    AUSTRALIAN NATIVE PLANTS SIXTH EDITION SIXTH EDITION AUSTRALIAN NATIVE PLANTS Cultivation, Use in Landscaping and Propagation John W. Wrigley Murray Fagg Sixth Edition published in Australia in 2013 by ACKNOWLEDGEMENTS Reed New Holland an imprint of New Holland Publishers (Australia) Pty Ltd Sydney • Auckland • London • Cape Town Many people have helped us since 1977 when we began writing the first edition of Garfield House 86–88 Edgware Road London W2 2EA United Kingdom Australian Native Plants. Some of these folk have regrettably passed on, others have moved 1/66 Gibbes Street Chatswood NSW 2067 Australia to different areas. We endeavour here to acknowledge their assistance, without which the 218 Lake Road Northcote Auckland New Zealand Wembley Square First Floor Solan Road Gardens Cape Town 8001 South Africa various editions of this book would not have been as useful to so many gardeners and lovers of Australian plants. www.newhollandpublishers.com To the following people, our sincere thanks: Steve Adams, Ralph Bailey, Natalie Barnett, www.newholland.com.au Tony Bean, Lloyd Bird, John Birks, Mr and Mrs Blacklock, Don Blaxell, Jim Bourner, John Copyright © 2013 in text: John Wrigley Briggs, Colin Broadfoot, Dot Brown, the late George Brown, Ray Brown, Leslie Conway, Copyright © 2013 in map: Ian Faulkner Copyright © 2013 in photographs and illustrations: Murray Fagg Russell and Sharon Costin, Kirsten Cowley, Lyn Craven (Petraeomyrtus punicea photograph) Copyright © 2013 New Holland Publishers (Australia) Pty Ltd Richard Cummings, Bert
    [Show full text]
  • Temperate and Tropical Podocarps: How Ecologically Alike Are They? David A
    7 Temperate and Tropical Podocarps: How Ecologically Alike Are They? David A. Coomes and Peter J. Bellingham ABSTRACT. With few exceptions, podocarps are specialists of nutrient-poor soils within temperate and tropical rainforests. They are locally abundant in some tropical mountains, especially near the tree line, and in the lowland tropics most are confined to heathlands and impoverished habitats, although some can persist in forest understories. The ecology of tropical podocarps is not well understood, so here we draw on literature from temperate regions to help characterize their niches. Temperate podocarps are ef- fective at capturing and retaining nutrients at the expense of competitors. They are uni- versally slow growing, but this is not necessarily an encumbrance on poor soils because competition for light is relatively weak. Temperate podocarps are often outcompeted on richer soils because several factors stack against them: they are ill equipped to compete with angiosperms in the race to occupy canopy gaps, there may be few sites for their establishment on the forest floors, and continuous regeneration by podocarps is seldom found in the forest understory because their growth is severely hampered by shading. We suggest that competition excludes imbricate- leaved podocarps from most lowland tropi- cal forests, whereas broad- leaved species with anastomosing veins (Nageia and some Podocarpus) are so shade tolerant that they regenerate beneath closed canopies. INTRODUCTION In 1989, Bond revisited an old but unresolved question: why were coni- David A. Coomes, Forest Conservation and fers pushed out of the lowland tropics and mesic temperate regions by angio- Ecology Group, Department of Plant Sciences, sperms as they diversified and expanded in range during the Late Cretaceous? University of Cambridge, Cambridge CB2 3EA, UK.
    [Show full text]
  • Ackama Rosifolia
    Ackama rosifolia COMMON NAME Makamaka SYNONYMS Caldcluvia rosifolia (A.Cunn.) Hoogland FAMILY Cunoniaceae AUTHORITY Ackama rosifolia A.Cunn. FLORA CATEGORY Vascular – Native ENDEMIC TAXON Yes ENDEMIC GENUS No ENDEMIC FAMILY No STRUCTURAL CLASS Trees & Shrubs - Dicotyledons NVS CODE ACKROS Fruit. In cultivation. Nov 2006. Photographer: Peter de Lange CHROMOSOME NUMBER 2n=32 CURRENT CONSERVATION STATUS 2012 | Not Threatened PREVIOUS CONSERVATION STATUSES 2009 | Not Threatened 2004 | Not Threatened BRIEF DESCRIPTION Small Northland tree. Leaves consisting of 4 to 10 or more opposite pairs of toothed leaflets and a terminal leaflet which have small hairy pits at the junction of the main leaflet veins. Flowers in dense sprays of cream coloured flowers developing into pinkish or red fruits. DISTRIBUTION Endemic. North Island only from near Kaitaia south to just north of Wellsford. Often rather local in its occurrences, particularly south of Whangarei. Fruit. In cultivation. Nov 2006. Photographer: SIMILAR TAXA Peter de Lange Very similar to juvenile foliage of Weinmannia silvicola but can be distinguished by the domatia on the underside of the leaves. These domatia are known as tuft pocket domatia and occur at the junction of the mid-rib and the side vein where there is a pocket of hairs. Makamaka also has huge prominent stipules that are large, green and heavily veined. FLOWER COLOURS Cream, White LIFE CYCLE Hairy carpels dispersed by wind (Thorsen et al., 2009). PROPAGATION TECHNIQUE Can be grown from semi-hardwood cuttings and fresh seed. A fast growing, and rather attractive small tree. However, very drought intolerant, and needs a damp soil and sunny aspect to thrive.
    [Show full text]
  • Ackama Paniculosa (F.Muell.) Heslewood Family: Cunoniaceae Heslewood, M.M
    Australian Tropical Rainforest Plants - Online edition Ackama paniculosa (F.Muell.) Heslewood Family: Cunoniaceae Heslewood, M.M. & Wilson, P.G. (2013) Telopea 15: 6. Common name: Soft Corkwood Stem Tree to 40m; bark pale fawn to light grey, fissured and corky; buds and young stems densely hairy; older stems hairy or smooth; interpetiolar stipules falling early leaving a horizontal scar. Leaves Leaflets and inflorescence [not vouchered]. CC-BY: S. & A. Leaves pinnately compound with a terminal leaflet, 8-30 cm long, opposite and decussate; leaflets Pearson. opposite; 3-7; lamina elliptic to lanceolate, 7-20 cm by 1.5-6 cm; margins regularly toothed; both surfaces mostly glabrous; pinnately veined with 8-14 pairs of main laterals, impressed above, raised below; domatia prominent, hairy. Flowers In panicles 10-15cm long, terminal and in upper axils; flowers bisexual, actinomorphic, white; calyx lobes 5, c. 1mm; petals 5, 1-2mm; stamens 10, 4-8mm, free; filaments of different lengths; ovary 2- locular, superior; style c. 5mm long. Fruit A dry capsule, subglobose; 2-3mm; seeds few, flattened. Seedlings Leaves and inflorescence. CC- Features not available. BY: APII, ANBG. Distribution and Ecology Occurs in CEQ, southwards to central New South Wales. Altitudinal range from 150-1200 m. Grows in well developed upland and mountain rain forest and wet sclerophyll forest. Synonyms Caldcluvia paniculosa (F.Muell.) Hoogland, Blumea 25(2): 488 (1979). Weinmannia paniculosa F.Muell., Fragmenta Phytographiae Australiae 2(15): 126. Weinmannia paniculata F.Muell. [nom. illeg.], Fragmenta Phytographiae Australiae 2(13): 83 (1860), Type: "Ad amnes fluvii Clarence Flowers and immature fruit. CC- River, e.g.
    [Show full text]
  • Mangrove Guidebook for Southeast Asia
    RAP PUBLICATION 2006/07 MANGROVE GUIDEBOOK FOR SOUTHEAST ASIA The designations and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its frontiers or boundaries. The opinions expressed in this publication are those of the authors alone and do not imply any opinion whatsoever on the part of FAO. Authored by: Wim Giesen, Stephan Wulffraat, Max Zieren and Liesbeth Scholten ISBN: 974-7946-85-8 FAO and Wetlands International, 2006 Printed by: Dharmasarn Co., Ltd. First print: July 2007 For copies write to: Forest Resources Officer FAO Regional Office for Asia and the Pacific Maliwan Mansion Phra Atit Road, Bangkok 10200 Thailand E-mail: [email protected] ii FOREWORDS Large extents of the coastlines of Southeast Asian countries were once covered by thick mangrove forests. In the past few decades, however, these mangrove forests have been largely degraded and destroyed during the process of development. The negative environmental and socio-economic impacts on mangrove ecosystems have led many government and non- government agencies, together with civil societies, to launch mangrove conservation and rehabilitation programmes, especially during the 1990s. In the course of such activities, programme staff have faced continual difficulties in identifying plant species growing in the field. Despite a wide availability of mangrove guidebooks in Southeast Asia, none of these sufficiently cover species that, though often associated with mangroves, are not confined to this habitat.
    [Show full text]
  • Habitat, Population Structure and the Conservation Status of Araucaria Bidwillii Hook
    ResearchOnline@JCU This file is part of the following reference: Picone, Andrew Phillip (2014) Habitat, population structure and the conservation status of Araucaria bidwillii Hook. in the Australian Wet Tropics. PhD thesis, James Cook University. Access to this file is available from: http://researchonline.jcu.edu.au/44651/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://researchonline.jcu.edu.au/44651/ Habitat, population structure and the conservation status of Araucaria bidwillii Hook. in the Australian Wet Tropics. Thesis submitted by Andrew Phillip Picone (18856273) October 2015 For the degree of Masters in the College of Marine and Environmental Sciences James Cook University. ACKNOWLEDGEMENTS My supervisors Professor Paul Gadek, Dr Will Edwards and Dr Charles Clarke have demonstrated great patience in my part-time progress and provide support and guidance when sought. I’m particularly grateful for Prof. Gadek’s support for the original research proposal and shared interest in the Araucariaceae. The statistical approach was greatly improved under guidance from Dr Edwards and Dr Clarke provided invaluable advice on approaching the conservation assessment. Comments on overall style and structure were gratefully received from all supervisors. I’d also like to thank the College of Marine and Environmental Sciences at James Cook University. At the Wet Tropics Management Authority, Dr Steve Goosem and Mike Stott provided advice and data on vegetation mapping for Mount Lewis.
    [Show full text]
  • Accepted Manuscript
    Accepted Manuscript Plastid and nuclear DNA markers reveal intricate relationships at subfamilial and tribal levels in the soapberry family (Sapindaceae) Sven Buerki, Félix Forest, Pedro Acevedo-Rodríguez, Martin W. Callmander, Johan A.A. Nylander, Mark Harrington, Isabel Sanmartín, Philippe Küpfer, Nadir Alvarez PII: S1055-7903(09)00017-7 DOI: 10.1016/j.ympev.2009.01.012 Reference: YMPEV 3130 To appear in: Molecular Phylogenetics and Evolution Received Date: 21 May 2008 Revised Date: 27 November 2008 Accepted Date: 23 January 2009 Please cite this article as: Buerki, S., Forest, F., Acevedo-Rodríguez, P., Callmander, M.W., Nylander, J.A.A., Harrington, M., Sanmartín, I., Küpfer, P., Alvarez, N., Plastid and nuclear DNA markers reveal intricate relationships at subfamilial and tribal levels in the soapberry family (Sapindaceae), Molecular Phylogenetics and Evolution (2009), doi: 10.1016/j.ympev.2009.01.012 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Buerki et al. 1 1 Plastid and nuclear DNA markers reveal intricate relationships at subfamilial and tribal 2 levels in the soapberry family (Sapindaceae) 3 4 Sven Buerki a,*, Félix Forest b, Pedro Acevedo-Rodríguez c, Martin W. Callmander d,e, 5 Johan A.
    [Show full text]
  • Multivariate Analysis of Pollen Frequency of the Native Species Escallonia Pulverulenta (Saxifragaceae) in Chilean Honeys Gloria Montenegro1,2, Raúl C
    Revista Brasil. Bot., V.33, n.4, p.615-630, out.-dec. 2010 Multivariate analysis of pollen frequency of the native species Escallonia pulverulenta (Saxifragaceae) in Chilean honeys GLORIA MONTENEGRO1,2, RAÚL C. PEÑA and RODRIGO PIZARRO1 (received: July 04, 2007; accepted: October 14, 2010) ABSTRACT – (Multivariate analysis of pollen frequency of the native species Escallonia pulverulenta (Saxifragaceae) in Chilean honeys). The aim of this work was the identification of geographic zones suitable for the production of honeys in which pollen grains of Escallonia pulverulenta (Ruiz & Pav.) Pers. (Saxifragaceae) can be detected. The analysis of botanical origin of 240 honey samples produced between La Serena and Puerto Mont (the IV and X Administrative Regions of Chile), allowed the detection of pollen grains of E. pulverulenta in 46 Chilean honeys. The geographic distribution of the honeys studied is presented together with their affinities, through factor analysis and frequency tables. The study was based on the presence of E. pulverulenta pollen. Escallonia pulverulenta pollen percentages oscillated between 0.24% and 78.5%. Seventeen of the studied samples were designated as unifloral –i.e. samples showing more than 45% pollen of a determined plant species. Two of these corresponded to E. pulverulenta (corontillo, madroño or barraco) honeys. The remaining unifloral honeys correspond to 8 samples of Lotus uliginosus Schkuhr (birdsfoot trefoil), 2 samples of Aristotelia chilensis (Molina) Stuntz (maqui) and 1 sample of Escallonia rubra (Ruiz & Pav.) Pers. (siete camisas), Eucryphia cordifolia Cav. (ulmo or muemo), Weinmannia trichosperma Cav. (tineo), Rubus ulmifolius Schott (blackberry) and Brassica rapa L. (turnip). Honeys with different percentages of E.
    [Show full text]
  • I Is the Sunda-Sahul Floristic Exchange Ongoing?
    Is the Sunda-Sahul floristic exchange ongoing? A study of distributions, functional traits, climate and landscape genomics to investigate the invasion in Australian rainforests By Jia-Yee Samantha Yap Bachelor of Biotechnology Hons. A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2018 Queensland Alliance for Agriculture and Food Innovation i Abstract Australian rainforests are of mixed biogeographical histories, resulting from the collision between Sahul (Australia) and Sunda shelves that led to extensive immigration of rainforest lineages with Sunda ancestry to Australia. Although comprehensive fossil records and molecular phylogenies distinguish between the Sunda and Sahul floristic elements, species distributions, functional traits or landscape dynamics have not been used to distinguish between the two elements in the Australian rainforest flora. The overall aim of this study was to investigate both Sunda and Sahul components in the Australian rainforest flora by (1) exploring their continental-wide distributional patterns and observing how functional characteristics and environmental preferences determine these patterns, (2) investigating continental-wide genomic diversities and distances of multiple species and measuring local species accumulation rates across multiple sites to observe whether past biotic exchange left detectable and consistent patterns in the rainforest flora, (3) coupling genomic data and species distribution models of lineages of known Sunda and Sahul ancestry to examine landscape-level dynamics and habitat preferences to relate to the impact of historical processes. First, the continental distributions of rainforest woody representatives that could be ascribed to Sahul (795 species) and Sunda origins (604 species) and their dispersal and persistence characteristics and key functional characteristics (leaf size, fruit size, wood density and maximum height at maturity) of were compared.
    [Show full text]