Cairns Regional Council Water and Waste Report for Mulgrave River Aquifer Feasibility Study Flora and Fauna Report

Total Page:16

File Type:pdf, Size:1020Kb

Cairns Regional Council Water and Waste Report for Mulgrave River Aquifer Feasibility Study Flora and Fauna Report Cairns Regional Council Water and Waste Report for Mulgrave River Aquifer Feasibility Study Flora and Fauna Report November 2009 Contents 1. Introduction 1 1.1 Background 1 1.2 Scope 1 1.3 Project Study Area 2 2. Methodology 4 2.1 Background and Approach 4 2.2 Demarcation of the Aquifer Study Area 4 2.3 Field Investigation of Proposed Bore Hole Sites 5 2.4 Overview of Ecological Values Descriptions 5 2.5 PER Guidelines 5 2.6 Desktop and Database Assessments 7 3. Database Searches and Survey Results 11 3.1 Information Sources 11 3.2 Species of National Environmental Significance 11 3.3 Queensland Species of Conservation Significance 18 3.4 Pest Species 22 3.5 Vegetation Communities 24 3.6 Regional Ecosystem Types and Integrity 28 3.7 Aquatic Values 31 3.8 World Heritage Values 53 3.9 Results of Field Investigation of Proposed Bore Hole Sites 54 4. References 61 Table Index Table 1: Summary of NES Matters Protected under Part 3 of the EPBC Act 5 Table 2 Summary of World Heritage Values within/adjacent Aquifer Area of Influence 6 Table 3: Species of NES Identified as Occurring within the Study Area 11 Table 4: Summary of Regional Ecosystems and Groundwater Dependencies 26 42/15610/100421 Mulgrave River Aquifer Feasibility Study Flora and Fauna Report Table 5: Freshwater Fish Species in the Mulgrave River 36 Table 6: Estuarine Fish Species in the Mulgrave River 50 Table 7: Description of potential borehole field in Aloomba as of 20th August, 2009. 55 Figure Index Figure 1: Regional Ecosystem Conservation Status and Protected Species Observation 21 Figure 2: Vegetation Communities and Groundwater Dependencies 30 Figure 3: Locations of Study Sites 54 Appendices A Database Searches 42/15610/100421 Mulgrave River Aquifer Feasibility Study Flora and Fauna Report 1. Introduction 1.1 Background As part of the conclusion of its Water Supply Strategy, Cairns Regional Council Water and Waste is embarking on a program of works to provide necessary information to confirm its future water supply source. The assessment of the abstraction feasibility of a water supply from the Mulgrave River Aquifer (Mulgrave River Aquifer Scheme) forms part of this program of works. The proposed works includes the construction and operation of a borefield within an area of alluvium comprising part of the Mulgrave River aquifer. The borefield is designed to abstract up to 15 ML/day from up to ten bores, located in a general area between the Bruce Highway and the Mulgrave River, south of the small township of Aloomba, 20 km south of Cairns (see Figure 1 for Study Area). Each bore will have an electric submersible pump, and a connecting powerline, and be connected in an underground pipe network alongside the existing rural roads in the area and ultimately connect into the existing Behana Ceek water supply pipeline adjacent the project area. The only visible expression of the bores will be small security housing over each bore (approximately 2m by 3m) with a connecting powerline from the existing power grid. The borefield is designed as a supplementary water supply only for the southern Cairns area. It will be operated on an “as needs” requirement, only when other existing water supplies reach their allocated limits. Cairns Regional Council Water and Waste (CRCWW) currently hold a Licence to Take Water from the Mulgrave River Alluvium for up to 15,000 ML/year (approximately 40 ML/day) under certain land identified on the licence. This current proposed action is to abstract up to a maximum of 5,500 ML/year (or approximately 15 ML/day). Potential impacts arise from two aspects of this proposal: Short-term impacts arising from construction of the borefield, water treatment plant, reservoir and associated pipeline infrastructure; and Long-term impacts on the aquifer and associated ground water levels and consequential impacts on environmental values as well as possible socio-economic impacts and landuse impacts. 1.2 Scope The Mulgrave River Aquifer Scheme was referred to the Commonwealth in 2005 under the provisions of Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act). A Public Environment Report (PER) has been requested by the Commonwealth in order to determine the impact of the project on matters of National Environmental Significance (NES) that may be impacted upon by the project. The full legislative background to the referral and subsequent Commonwealth request for further information is outlined in Section 2.4. Specifically, the PER has been requested to address under the Terms of Reference the following matters of NES: Southern Cassowary (Casurarius casuarius johnsonii) (LE), including regional status, population size and distribution within the project site and adjacent habitat that may be impacted by the project. 42/15610/100421 Mulgrave River Aquifer Feasibility Study 1 Flora and Fauna Report Waterfall Frog (Litoria nannotis) (LE) and Common Mistfrog (Litoria rheocola) (LE), including regional status, population size and distribution within the project site and adjacent habitat that may be impacted by the project. Red Goshawk (Erythrotriorchis radiatus) (LV) and the Australian Painted Snipe (Rostratula australis) (LV, also listed migratory), including regional status, population size and distribution within the project site and adjacent habitat that may be impacted by the project. Flora species, Dendrobium Orchid (Dendrobium mirbelianum) (LE), Dendrobium nindii (LE), Eleocharis retroflexa (LV), Water Tassel-fern (Huperzia phlegmarioides) (LV). Listed migratory bird species that could occur in the project area, including regional status, population size, distribution and the habitat that may be impacted by the project. The purpose of this report is to summarise the methods and outcomes of the surveys undertaken in support of the PER. 1.3 Project Study Area The Project Study Area comprises part of the catchment of the Mulgrave River itself, and part of that area of the Mulgrave River valley underlain by Quaternary alluvium, referred to as the Mulgrave River aquifer. The Mulgrave River catchment includes only a small proportion of the Mulgrave River aquifer, however information related to catchment conditions, particularly as they relate to climate and surface and ground water features, were used in developing the numerical ground water model upon which many of the assessments of impacts in this report are made. Potential impacts of the project will be restricted to the environs of the Mulgrave River aquifer system, which comprises less than ¼ of the area of the total river catchment area. For the purposes of this PER, the Study Area is defined as areas of the Trinity Inlet catchment and the lower Mulgrave River valley below 20 m AHD and bounded (approximately) by points at: 17° 14’ S, 145° 57’ E; 17° 14’ S; 145° 55’ E, 17° 02’ S, 145° 45’ E; and 17° 02’ S, 145° 50’ E. Both the location of the catchment and the aquifer area are described below in further detail and the Study Area for the PER is shown in Figure 1. The Study Area for the PER was refined by the initial outcomes of the predicted numerical groundwater model (as described in Section 3). The Study Area does not include the entire catchment, as significant areas of the catchment are not influenced by the aquifer system. 1.3.1 The Mulgrave River Catchment Area The Mulgrave River catchment is located within the Wet Tropics of North Queensland, south of the regional centre of Cairns. Covering an area of approximately 810 km2 and with a mean annual discharge of 770,000 ML, the catchment has one of the highest areas of mean annual runoff of any Australian catchment. It receives high to very high annual rainfall, and takes in drainage sections of the Atherton 42/15610/100421 Mulgrave River Aquifer Feasibility Study 2 Flora and Fauna Report Tablelands on its western boundary and a number of coastal tributaries including the major streams of Behana Creek and Little Mulgrave River. Although most of the coastal plain has been developed for agriculture, with sugar cane production the most significant agricultural activity, the majority of the catchment is relatively pristine rugged mountain range, with more than 50% of the total area lying within the Wet Tropics of Queensland World Heritage Area (WTQWHA). 42/15610/100421 Mulgrave River Aquifer Feasibility Study 3 Flora and Fauna Report 2. Methodology 2.1 Background and Approach The PER is framed around the guidelines provided by the Commonwealth (Appendix A), and includes both the specific matters identified in the Guidelines as well as assessing other matters of conservation significance in the Study Area. Data for the assessment was sourced from multiple sources, and includes; Initial data from background research, including public databases, published information and data provided by individual contributors. Field Studies undertaken in support of the findings from the above background data research. Data sources from studies undertaken specifically for the Cairns Regional Council as part of the Mulgrave River Aquifer Feasibility Studies. This primarily includes data derived from two separate investigations for these Studies, namely a Numerical Groundwater Modelling Report and a Hydrogeological Report; both of these reports are produced in Appendices D and E respectively. The key area of investigation was the interaction of the ground water abstraction with the surface water flows in the Study Area (notably that of Mulgrave and Behana Creek as the major waterways, but also considering other minor watercourses). Of particular importance was the assessment of the potential impact of a lessened water flow on the identified ecological values of the Study Area as a result of abstraction. 2.2 Demarcation of the Aquifer Study Area The Study Area for the PER has been defined following hydrogeological investigations, the initial outcomes of the Numerical Groundwater Modelling Report and the requirements of the Commonwealth PER Guidelines.
Recommended publications
  • Flying-Fox Dispersal Feasibility Study Cassia Wildlife Corridor, Coolum Beach and Tepequar Drive Roost, Maroochydore
    Sunshine Coast Council Flying-Fox Dispersal Feasibility Study Cassia Wildlife Corridor, Coolum Beach and Tepequar Drive Roost, Maroochydore. Environmental Operations May 2013 0 | Page Table of Contents Introduction ................................................................................................................................ 2 Purpose ............................................................................................................................................... 2 Flying-fox Mitigation Strategies .......................................................................................................... 2 State and Federal Permits ................................................................................................................... 4 Roost Management Plan .................................................................................................................... 4 Risk ...................................................................................................................................................... 5 Flying-fox Dispersal Success in Australia ............................................................................................. 6 References .......................................................................................................................................... 7 Cassia Wildlife Corridor ................................................................................................................ 8 Background ........................................................................................................................................
    [Show full text]
  • Native Plants Sixth Edition Sixth Edition AUSTRALIAN Native Plants Cultivation, Use in Landscaping and Propagation
    AUSTRALIAN NATIVE PLANTS SIXTH EDITION SIXTH EDITION AUSTRALIAN NATIVE PLANTS Cultivation, Use in Landscaping and Propagation John W. Wrigley Murray Fagg Sixth Edition published in Australia in 2013 by ACKNOWLEDGEMENTS Reed New Holland an imprint of New Holland Publishers (Australia) Pty Ltd Sydney • Auckland • London • Cape Town Many people have helped us since 1977 when we began writing the first edition of Garfield House 86–88 Edgware Road London W2 2EA United Kingdom Australian Native Plants. Some of these folk have regrettably passed on, others have moved 1/66 Gibbes Street Chatswood NSW 2067 Australia to different areas. We endeavour here to acknowledge their assistance, without which the 218 Lake Road Northcote Auckland New Zealand Wembley Square First Floor Solan Road Gardens Cape Town 8001 South Africa various editions of this book would not have been as useful to so many gardeners and lovers of Australian plants. www.newhollandpublishers.com To the following people, our sincere thanks: Steve Adams, Ralph Bailey, Natalie Barnett, www.newholland.com.au Tony Bean, Lloyd Bird, John Birks, Mr and Mrs Blacklock, Don Blaxell, Jim Bourner, John Copyright © 2013 in text: John Wrigley Briggs, Colin Broadfoot, Dot Brown, the late George Brown, Ray Brown, Leslie Conway, Copyright © 2013 in map: Ian Faulkner Copyright © 2013 in photographs and illustrations: Murray Fagg Russell and Sharon Costin, Kirsten Cowley, Lyn Craven (Petraeomyrtus punicea photograph) Copyright © 2013 New Holland Publishers (Australia) Pty Ltd Richard Cummings, Bert
    [Show full text]
  • Parsonsia Velutina R.Br
    Australian Tropical Rainforest Plants - Online edition Parsonsia velutina R.Br. Family: Apocynaceae Brown, R. (1810) Prodromus Florae Novae Hollandiae : 466. Type: Queensland, probably Keppel Bay, 1802, R. Brown; holo: ?BM. Fide J. B. Williams, Fl. Austral. 28: 181 (1996). Common name: Silkpod, Hairy; Hairy Silkpod Stem A slender vine not exceeding a stem diameter of 2 cm. Leaves Petioles and twigs clothed in brown hairs. Twigs and petioles produce a clear exudate when cut or broken or do not produce any exudate. Leaf blades about 6.5-13 x 3-7 cm, petioles about 1-3 cm long. Lateral veins about 6-8 on each side of the midrib. Peg-like glands about 1 mm long present at Flowers. © Barry Jago the base of the petioles. Upper and lower leaf blade surfaces clothed in erect brown hairs. Markings resembling stipular scars often visible on the twigs between the points of attachment of the petioles. Flowers Primary peduncle about 7-8 cm long. Flowers about 5-6 mm diam. Pedicels about 2 mm long. Sepals hairy, reflexed, about 2.5 mm long. A small finger-shaped gland about 0.5 mm long usually present on the inside near the base opposite each sepal. Corolla tube about 1.7 mm long, lobes about 2 mm long. Hairs present on the inner surface near the base of the corolla lobes. Staminal filaments about 1 mm long, upper section clothed in hairs. Anthers cohering in a cone around the style. Anther bases sagittate. Disk glands 5, bilobed, opposite the sepals. Style about 1.5-2 mm long.
    [Show full text]
  • Checklist of Vascular Plants Recorded for Cattana Wetlands Class Family Code Taxon Common Name
    Checklist of Vascular Plants Recorded for Cattana Wetlands Class Family Code Taxon Common Name FERNS & ALLIES Aspleniaceae Asplenium nidus Birds Nest Fern Blechnaceae Stenochlaena palustris Climbing Swamp Fern Dryopteridaceae Coveniella poecilophlebia Marsileaceae Marsilea mutica Smooth Nardoo Polypodiaceae Colysis ampla Platycerium hillii Northern Elkhorn Fern Pteridaceae Acrostichum speciosum Mangrove Fern Schizaeaceae Lygodium microphyllum Climbing Maidenhair Fern Lygodium reticulatum GYMNOSPERMS Araucariaceae Agathis robusta Queensland Kauri Pine Podocarpaceae Podocarpus grayae Weeping Brown Pine FLOWERING PLANTS-DICOTYLEDONS Acanthaceae * Asystasia gangetica subsp. gangetica Chinese Violet Pseuderanthemum variabile Pastel Flower * Sanchezia parvibracteata Sanchezia Amaranthaceae * Alternanthera brasiliana Brasilian Joyweed * Gomphrena celosioides Gomphrena Weed; Soft Khaki Weed Anacardiaceae Blepharocarya involucrigera Rose Butternut * Mangifera indica Mango Tuesday, 31 August 2010 Checklist of Plants for Cattana Wetlands RLJ Page 1 of 12 Class Family Code Taxon Common Name Semecarpus australiensis Tar Tree Annonaceae Cananga odorata Woolly Pine Melodorum leichhardtii Acid Drop Vine Melodorum uhrii Miliusa brahei Raspberry Jelly Tree Polyalthia nitidissima Canary Beech Uvaria concava Calabao Xylopia maccreae Orange Jacket Apocynaceae Alstonia scholaris Milky Pine Alyxia ruscifolia Chain Fruit Hoya pottsii Native Hoya Ichnocarpus frutescens Melodinus acutiflorus Yappa Yappa Tylophora benthamii Wrightia laevis subsp. millgar Millgar
    [Show full text]
  • Temperate and Tropical Podocarps: How Ecologically Alike Are They? David A
    7 Temperate and Tropical Podocarps: How Ecologically Alike Are They? David A. Coomes and Peter J. Bellingham ABSTRACT. With few exceptions, podocarps are specialists of nutrient-poor soils within temperate and tropical rainforests. They are locally abundant in some tropical mountains, especially near the tree line, and in the lowland tropics most are confined to heathlands and impoverished habitats, although some can persist in forest understories. The ecology of tropical podocarps is not well understood, so here we draw on literature from temperate regions to help characterize their niches. Temperate podocarps are ef- fective at capturing and retaining nutrients at the expense of competitors. They are uni- versally slow growing, but this is not necessarily an encumbrance on poor soils because competition for light is relatively weak. Temperate podocarps are often outcompeted on richer soils because several factors stack against them: they are ill equipped to compete with angiosperms in the race to occupy canopy gaps, there may be few sites for their establishment on the forest floors, and continuous regeneration by podocarps is seldom found in the forest understory because their growth is severely hampered by shading. We suggest that competition excludes imbricate- leaved podocarps from most lowland tropi- cal forests, whereas broad- leaved species with anastomosing veins (Nageia and some Podocarpus) are so shade tolerant that they regenerate beneath closed canopies. INTRODUCTION In 1989, Bond revisited an old but unresolved question: why were coni- David A. Coomes, Forest Conservation and fers pushed out of the lowland tropics and mesic temperate regions by angio- Ecology Group, Department of Plant Sciences, sperms as they diversified and expanded in range during the Late Cretaceous? University of Cambridge, Cambridge CB2 3EA, UK.
    [Show full text]
  • Order GASTEROSTEIFORMES PEGASIDAE Eurypegasus Draconis
    click for previous page 2262 Bony Fishes Order GASTEROSTEIFORMES PEGASIDAE Seamoths (seadragons) by T.W. Pietsch and W.A. Palsson iagnostic characters: Small fishes (to 18 cm total length); body depressed, completely encased in Dfused dermal plates; tail encircled by 8 to 14 laterally articulating, or fused, bony rings. Nasal bones elongate, fused, forming a rostrum; mouth inferior. Gill opening restricted to a small hole on dorsolat- eral surface behind head. Spinous dorsal fin absent; soft dorsal and anal fins each with 5 rays, placed posteriorly on body. Caudal fin with 8 unbranched rays. Pectoral fins large, wing-like, inserted horizon- tally, composed of 9 to 19 unbranched, soft or spinous-soft rays; pectoral-fin rays interconnected by broad, transparent membranes. Pelvic fins thoracic, tentacle-like,withI spine and 2 or 3 unbranched soft rays. Colour: in life highly variable, apparently capable of rapid colour change to match substrata; head and body light to dark brown, olive-brown, reddish brown, or almost black, with dorsal and lateral surfaces usually darker than ventral surface; dorsal and lateral body surface often with fine, dark brown reticulations or mottled lines, sometimes with irregular white or yellow blotches; tail rings often encircled with dark brown bands; pectoral fins with broad white outer margin and small brown spots forming irregular, longitudinal bands; unpaired fins with small brown spots in irregular rows. dorsal view lateral view Habitat, biology, and fisheries: Benthic, found on sand, gravel, shell-rubble, or muddy bottoms. Collected incidentally by seine, trawl, dredge, or shrimp nets; postlarvae have been taken at surface lights at night.
    [Show full text]
  • Survey Guidelines for Australia's Threatened Fish
    Survey guidelines for Australia’s threatened fish Guidelines for detecting fish listed as threatened under the Environment Protection and Biodiversity Conservation Act 1999 Authorship and acknowledgments This report updates and expands on a report prepared in May 2004 by Australian Museum ichthyologist John Pogonoski and approved by AMBS Senior Project Manager Jayne Tipping. The current (2011) report includes updates to the 2004 report and additional information regarding recently listed species, current knowledge of all the listed species and current survey techniques. This additional information was prepared by Australian Museum ichthyologists Dr Doug Hoese and Sally Reader. Technical assistance was provided by AMBS ecologists Mark Semeniuk and Lisa McCaffrey. AMBS Senior Project Manager Glenn Muir co- ordinated the project team and reviewed the final report. These guidelines could not have been produced without the assistance of a number of experts. Individuals who have shared their knowledge and experience for the purpose of preparing this report are indicated in Appendix A. Disclaimer The views and opinions contained in this document are not necessarily those of the Australian Government. The contents of this document have been compiled using a range of source materials and while reasonable care has been taken in its compilation, the Australian Government does not accept responsibility for the accuracy or completeness of the contents of this document and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of or reliance on the contents of the document. © Commonwealth of Australia 2011 This work is copyright. You may download, display, print and reproduce this material in unaltered form only (retaining this notice) for your personal, non-commercial use or use within your organisation.
    [Show full text]
  • “The Secret Lives of Seahorses” Exhibit Press Kit Click on Headings Below to Go Directly to a Specific Page of the Press Kit
    “The Secret Lives of Seahorses” Exhibit Press Kit Click on headings below to go directly to a specific page of the press kit. 1. Main Exhibit News Release 2. Exhibit Fact Sheet 3. Exhibit Gallery Tour 4. Exhibit Animals 5. Seahorse Conservation News Release NEWS RELEASE FOR IMMEDIATE RELEASE For information contact: March 23, 2009 Angela Hains: (831) 647-6804; [email protected] Karen Jeffries: (831) 644-7548; [email protected] Ken Peterson: (831) 648-4922; [email protected] DURING ITS SILVER ANNIVERSARY YEAR, AQUARIUM UNVEILS “THE SECRET LIVES OF SEAHORSES” ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ New special exhibition offers an intimate look at these fascinating, fragile fishes Seahorses have been celebrated in art, literature and mythology for centuries, so you’d think we know a lot about them. In “The Secret Lives of Seahorses,” the Monterey Bay Aquarium’s new special exhibition, you’ll discover that nothing could be further from the truth. Beginning April 6, more than 15 species of seahorses, sea dragons and pipefish will beckon visitors into the elusive world of these charismatic creatures. The Secret Lives of Seahorses highlights the varied habitats in which seahorses and their relatives live, and shares important stories about the threats they face in the wild. “Seahorses are wonderful ambassadors for ocean conservation because they live in the most endangered habitats in the world – coral reefs, sea grass beds and mangrove forests,” said Ava Ferguson, senior exhibit developer for The Secret Lives of Seahorses. “When you save a seahorse, you also save some of Earth’s most precious marine habitats.” Through wrought-iron gates, visitors will enter the first gallery, “Seahorses and Kin,” and meet the seahorse family: fishes that have fused jaws and bony plates in place of the scales normally associated with fish.
    [Show full text]
  • Phytogeographic Review of Vietnam and Adjacent Areas of Eastern Indochina L
    KOMAROVIA (2003) 3: 1–83 Saint Petersburg Phytogeographic review of Vietnam and adjacent areas of Eastern Indochina L. V. Averyanov, Phan Ke Loc, Nguyen Tien Hiep, D. K. Harder Leonid V. Averyanov, Herbarium, Komarov Botanical Institute of the Russian Academy of Sciences, Prof. Popov str. 2, Saint Petersburg 197376, Russia E-mail: [email protected], [email protected] Phan Ke Loc, Department of Botany, Viet Nam National University, Hanoi, Viet Nam. E-mail: [email protected] Nguyen Tien Hiep, Institute of Ecology and Biological Resources of the National Centre for Natural Sciences and Technology of Viet Nam, Nghia Do, Cau Giay, Hanoi, Viet Nam. E-mail: [email protected] Dan K. Harder, Arboretum, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, U.S.A. E-mail: [email protected] The main phytogeographic regions within the eastern part of the Indochinese Peninsula are delimited on the basis of analysis of recent literature on geology, geomorphology and climatology of the region, as well as numerous recent literature information on phytogeography, flora and vegetation. The following six phytogeographic regions (at the rank of floristic province) are distinguished and outlined within eastern Indochina: Sikang-Yunnan Province, South Chinese Province, North Indochinese Province, Central Annamese Province, South Annamese Province and South Indochinese Province. Short descriptions of these floristic units are given along with analysis of their floristic relationships. Special floristic analysis and consideration are given to the Orchidaceae as the largest well-studied representative of the Indochinese flora. 1. Background The Socialist Republic of Vietnam, comprising the largest area in the eastern part of the Indochinese Peninsula, is situated along the southeastern margin of the Peninsula.
    [Show full text]
  • BIODIVERSITY CONSERVATION on the TIWI ISLANDS, NORTHERN TERRITORY: Part 1. Environments and Plants
    BIODIVERSITY CONSERVATION ON THE TIWI ISLANDS, NORTHERN TERRITORY: Part 1. Environments and plants Report prepared by John Woinarski, Kym Brennan, Ian Cowie, Raelee Kerrigan and Craig Hempel. Darwin, August 2003 Cover photo: Tall forests dominated by Darwin stringybark Eucalyptus tetrodonta, Darwin woollybutt E. miniata and Melville Island Bloodwood Corymbia nesophila are the principal landscape element across the Tiwi islands (photo: Craig Hempel). i SUMMARY The Tiwi Islands comprise two of Australia’s largest offshore islands - Bathurst (with an area of 1693 km 2) and Melville (5788 km 2) Islands. These are Aboriginal lands lying about 20 km to the north of Darwin, Northern Territory. The islands are of generally low relief with relatively simple geological patterning. They have the highest rainfall in the Northern Territory (to about 2000 mm annual average rainfall in the far north-west of Melville and north of Bathurst). The human population of about 2000 people lives mainly in the three towns of Nguiu, Milakapati and Pirlangimpi. Tall forests dominated by Eucalyptus miniata, E. tetrodonta, and Corymbia nesophila cover about 75% of the island area. These include the best developed eucalypt forests in the Northern Territory. The Tiwi Islands also include nearly 1300 rainforest patches, with floristic composition in many of these patches distinct from that of the Northern Territory mainland. Although the total extent of rainforest on the Tiwi Islands is small (around 160 km 2 ), at an NT level this makes up an unusually high proportion of the landscape and comprises between 6 and 15% of the total NT rainforest extent. The Tiwi Islands also include nearly 200 km 2 of “treeless plains”, a vegetation type largely restricted to these islands.
    [Show full text]
  • Hatching Success of Rainbowfish Eggs Following Exposure to Air
    WellBeing International WBI Studies Repository 2014 Hatching Success of Rainbowfish ggsE Following Exposure to Air Lois J. Oulton Macquarie University Penelope Carbia Macquarie University Culum Brown Macquarie University Follow this and additional works at: https://www.wellbeingintlstudiesrepository.org/acwp_aff Part of the Animal Studies Commons, Behavior and Ethology Commons, and the Comparative Psychology Commons Recommended Citation Oulton, L., Carbia, P., & Brown, C. (2014). Hatching success of rainbowfish eggs following exposure to air. Australian Journal of Zoology, 61(5), 395-398. This material is brought to you for free and open access by WellBeing International. It has been accepted for inclusion by an authorized administrator of the WBI Studies Repository. For more information, please contact [email protected]. Hatching success of rainbowfish eggs following exposure to air Lois Oulton, Penelope Carbia, and Culum Brown Macquarie University KEYWORDS egg desiccation, Lake Eacham, Melanotaenia, translocation ABSTRACT Translocation of fishes within and between drainage basins is widely recognised as a threatening process to Australian native fishes. While many translocations are deliberate, for example for fisheries enhancement, it is possible that translocation can occur naturally. In the Wet Tropic region of Australia, the widespread eastern rainbowfish, Melanotaenia splendida, has begun to colonise the Atherton tablelands. This is of particular concern because the area is home to several endangered endemic species such as the Lake Eacham rainbowfish, M. eachamensis, and its allies. It is likely that some of the translocations have occurred through the use of this species as bait, but the recent invasion of Lake Eacham may have occurred naturally via the movement of eggs between nearby streams running into Lake Tinaroo.
    [Show full text]
  • Late Cretaceous) of Morocco : Palaeobiological and Behavioral Implications Remi Allemand
    Endocranial microtomographic study of marine reptiles (Plesiosauria and Mosasauroidea) from the Turonian (Late Cretaceous) of Morocco : palaeobiological and behavioral implications Remi Allemand To cite this version: Remi Allemand. Endocranial microtomographic study of marine reptiles (Plesiosauria and Mosasauroidea) from the Turonian (Late Cretaceous) of Morocco : palaeobiological and behavioral implications. Paleontology. Museum national d’histoire naturelle - MNHN PARIS, 2017. English. NNT : 2017MNHN0015. tel-02375321 HAL Id: tel-02375321 https://tel.archives-ouvertes.fr/tel-02375321 Submitted on 22 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. MUSEUM NATIONAL D’HISTOIRE NATURELLE Ecole Doctorale Sciences de la Nature et de l’Homme – ED 227 Année 2017 N° attribué par la bibliothèque |_|_|_|_|_|_|_|_|_|_|_|_| THESE Pour obtenir le grade de DOCTEUR DU MUSEUM NATIONAL D’HISTOIRE NATURELLE Spécialité : Paléontologie Présentée et soutenue publiquement par Rémi ALLEMAND Le 21 novembre 2017 Etude microtomographique de l’endocrâne de reptiles marins (Plesiosauria et Mosasauroidea) du Turonien (Crétacé supérieur) du Maroc : implications paléobiologiques et comportementales Sous la direction de : Mme BARDET Nathalie, Directrice de Recherche CNRS et les co-directions de : Mme VINCENT Peggy, Chargée de Recherche CNRS et Mme HOUSSAYE Alexandra, Chargée de Recherche CNRS Composition du jury : M.
    [Show full text]