Ackama Paniculosa (F.Muell.) Heslewood Family: Cunoniaceae Heslewood, M.M

Total Page:16

File Type:pdf, Size:1020Kb

Ackama Paniculosa (F.Muell.) Heslewood Family: Cunoniaceae Heslewood, M.M Australian Tropical Rainforest Plants - Online edition Ackama paniculosa (F.Muell.) Heslewood Family: Cunoniaceae Heslewood, M.M. & Wilson, P.G. (2013) Telopea 15: 6. Common name: Soft Corkwood Stem Tree to 40m; bark pale fawn to light grey, fissured and corky; buds and young stems densely hairy; older stems hairy or smooth; interpetiolar stipules falling early leaving a horizontal scar. Leaves Leaflets and inflorescence [not vouchered]. CC-BY: S. & A. Leaves pinnately compound with a terminal leaflet, 8-30 cm long, opposite and decussate; leaflets Pearson. opposite; 3-7; lamina elliptic to lanceolate, 7-20 cm by 1.5-6 cm; margins regularly toothed; both surfaces mostly glabrous; pinnately veined with 8-14 pairs of main laterals, impressed above, raised below; domatia prominent, hairy. Flowers In panicles 10-15cm long, terminal and in upper axils; flowers bisexual, actinomorphic, white; calyx lobes 5, c. 1mm; petals 5, 1-2mm; stamens 10, 4-8mm, free; filaments of different lengths; ovary 2- locular, superior; style c. 5mm long. Fruit A dry capsule, subglobose; 2-3mm; seeds few, flattened. Seedlings Leaves and inflorescence. CC- Features not available. BY: APII, ANBG. Distribution and Ecology Occurs in CEQ, southwards to central New South Wales. Altitudinal range from 150-1200 m. Grows in well developed upland and mountain rain forest and wet sclerophyll forest. Synonyms Caldcluvia paniculosa (F.Muell.) Hoogland, Blumea 25(2): 488 (1979). Weinmannia paniculosa F.Muell., Fragmenta Phytographiae Australiae 2(15): 126. Weinmannia paniculata F.Muell. [nom. illeg.], Fragmenta Phytographiae Australiae 2(13): 83 (1860), Type: "Ad amnes fluvii Clarence Flowers and immature fruit. CC- River, e.g. ad torrentem Cloud's Creek. Dr. Beckler."(1861). BY: APII, ANBG. RFK Code 1253 Fruit [not vouchered]. CC-BY: S. & A. Pearson. Leaflets [not vouchered]. CC-BY: S. & A. Pearson. Copyright © CSIRO 2020, all rights reserved. Web edition hosted at https://apps.lucidcentral.org/rainforest.
Recommended publications
  • Ackama Rosifolia
    Ackama rosifolia COMMON NAME Makamaka SYNONYMS Caldcluvia rosifolia (A.Cunn.) Hoogland FAMILY Cunoniaceae AUTHORITY Ackama rosifolia A.Cunn. FLORA CATEGORY Vascular – Native ENDEMIC TAXON Yes ENDEMIC GENUS No ENDEMIC FAMILY No STRUCTURAL CLASS Trees & Shrubs - Dicotyledons NVS CODE ACKROS Fruit. In cultivation. Nov 2006. Photographer: Peter de Lange CHROMOSOME NUMBER 2n=32 CURRENT CONSERVATION STATUS 2012 | Not Threatened PREVIOUS CONSERVATION STATUSES 2009 | Not Threatened 2004 | Not Threatened BRIEF DESCRIPTION Small Northland tree. Leaves consisting of 4 to 10 or more opposite pairs of toothed leaflets and a terminal leaflet which have small hairy pits at the junction of the main leaflet veins. Flowers in dense sprays of cream coloured flowers developing into pinkish or red fruits. DISTRIBUTION Endemic. North Island only from near Kaitaia south to just north of Wellsford. Often rather local in its occurrences, particularly south of Whangarei. Fruit. In cultivation. Nov 2006. Photographer: SIMILAR TAXA Peter de Lange Very similar to juvenile foliage of Weinmannia silvicola but can be distinguished by the domatia on the underside of the leaves. These domatia are known as tuft pocket domatia and occur at the junction of the mid-rib and the side vein where there is a pocket of hairs. Makamaka also has huge prominent stipules that are large, green and heavily veined. FLOWER COLOURS Cream, White LIFE CYCLE Hairy carpels dispersed by wind (Thorsen et al., 2009). PROPAGATION TECHNIQUE Can be grown from semi-hardwood cuttings and fresh seed. A fast growing, and rather attractive small tree. However, very drought intolerant, and needs a damp soil and sunny aspect to thrive.
    [Show full text]
  • Multivariate Analysis of Pollen Frequency of the Native Species Escallonia Pulverulenta (Saxifragaceae) in Chilean Honeys Gloria Montenegro1,2, Raúl C
    Revista Brasil. Bot., V.33, n.4, p.615-630, out.-dec. 2010 Multivariate analysis of pollen frequency of the native species Escallonia pulverulenta (Saxifragaceae) in Chilean honeys GLORIA MONTENEGRO1,2, RAÚL C. PEÑA and RODRIGO PIZARRO1 (received: July 04, 2007; accepted: October 14, 2010) ABSTRACT – (Multivariate analysis of pollen frequency of the native species Escallonia pulverulenta (Saxifragaceae) in Chilean honeys). The aim of this work was the identification of geographic zones suitable for the production of honeys in which pollen grains of Escallonia pulverulenta (Ruiz & Pav.) Pers. (Saxifragaceae) can be detected. The analysis of botanical origin of 240 honey samples produced between La Serena and Puerto Mont (the IV and X Administrative Regions of Chile), allowed the detection of pollen grains of E. pulverulenta in 46 Chilean honeys. The geographic distribution of the honeys studied is presented together with their affinities, through factor analysis and frequency tables. The study was based on the presence of E. pulverulenta pollen. Escallonia pulverulenta pollen percentages oscillated between 0.24% and 78.5%. Seventeen of the studied samples were designated as unifloral –i.e. samples showing more than 45% pollen of a determined plant species. Two of these corresponded to E. pulverulenta (corontillo, madroño or barraco) honeys. The remaining unifloral honeys correspond to 8 samples of Lotus uliginosus Schkuhr (birdsfoot trefoil), 2 samples of Aristotelia chilensis (Molina) Stuntz (maqui) and 1 sample of Escallonia rubra (Ruiz & Pav.) Pers. (siete camisas), Eucryphia cordifolia Cav. (ulmo or muemo), Weinmannia trichosperma Cav. (tineo), Rubus ulmifolius Schott (blackberry) and Brassica rapa L. (turnip). Honeys with different percentages of E.
    [Show full text]
  • Descriptions of the Plant Types
    APPENDIX A Descriptions of the plant types The plant life forms employed in the model are listed, with examples, in the main text (Table 2). They are described in this appendix in more detail, including environmental relations, physiognomic characters, prototypic and other characteristic taxa, and relevant literature. A list of the forms, with physiognomic characters, is included. Sources of vegetation data relevant to particular life forms are cited with the respective forms in the text of the appendix. General references, especially descriptions of regional vegetation, are listed by region at the end of the appendix. Plant form Plant size Leaf size Leaf (Stem) structure Trees (Broad-leaved) Evergreen I. Tropical Rainforest Trees (lowland. montane) tall, med. large-med. cor. 2. Tropical Evergreen Microphyll Trees medium small cor. 3. Tropical Evergreen Sclerophyll Trees med.-tall medium seier. 4. Temperate Broad-Evergreen Trees a. Warm-Temperate Evergreen med.-small med.-small seier. b. Mediterranean Evergreen med.-small small seier. c. Temperate Broad-Leaved Rainforest medium med.-Iarge scler. Deciduous 5. Raingreen Broad-Leaved Trees a. Monsoon mesomorphic (lowland. montane) medium med.-small mal. b. Woodland xeromorphic small-med. small mal. 6. Summergreen Broad-Leaved Trees a. typical-temperate mesophyllous medium medium mal. b. cool-summer microphyllous medium small mal. Trees (Narrow and needle-leaved) Evergreen 7. Tropical Linear-Leaved Trees tall-med. large cor. 8. Tropical Xeric Needle-Trees medium small-dwarf cor.-scler. 9. Temperate Rainforest Needle-Trees tall large-med. cor. 10. Temperate Needle-Leaved Trees a. Heliophilic Large-Needled medium large cor. b. Mediterranean med.-tall med.-dwarf cor.-scler.
    [Show full text]
  • Introduction to the Census of the Queensland Flora 2015
    Introduction to the Census of the Queensland flora 2015 Queensland Herbarium 2015 Version 1.1 Department of Science, Information Technology and Innovation Prepared by Peter D Bostock and Ailsa E Holland Queensland Herbarium Science Delivery Division Department of Science, Information Technology and Innovation PO Box 5078 Brisbane QLD 4001 © The State of Queensland (Department of Science, Information Technology and Innovation) 2015 The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 3.0 Australia (CC BY) licence. Under this licence you are free, without having to seek permission from DSITI, to use this publication in accordance with the licence terms. You must keep intact the copyright notice and attribute the State of Queensland, Department of Science, Information Technology and Innovation as the source of the publication. For more information on this licence visit http://creativecommons.org/licenses/by/3.0/au/deed.en Disclaimer This document has been prepared with all due diligence and care, based on the best available information at the time of publication. The department holds no responsibility for any errors or omissions within this document. Any decisions made by other parties based on this document are solely the responsibility of those parties. Information contained in this document is from a number of sources and, as such, does not necessarily represent government or departmental policy. If you need to access this document in a language other than English, please call the Translating and Interpreting Service (TIS National) on 131 450 and ask them to telephone Library Services on +61 7 3170 5725 Citation for introduction (this document) Bostock, P.D.
    [Show full text]
  • Trees, Shrubs and Herbs of the Coastal Myrtaceae Swamp Forest (Región De La Araucanía, Chile): a Dataset
    Biodiversity Data Journal 9: e63634 doi: 10.3897/BDJ.9.e63634 Data Paper Trees, shrubs and herbs of the coastal Myrtaceae swamp forest (Región de La Araucanía, Chile): a dataset Jimmy Pincheira-Ulbrich‡, Elías Andrade Mansilla§, Fernando Peña-Cortés‡, Cristián Vergara Fernández‡ ‡ Laboratorio de Planificación Territorial, Departamento de Ciencias Ambientales, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega 02950, Temuco, Chile § Facultad de Educación, Universidad Católica de Temuco, Temuco, Chile Corresponding author: Jimmy Pincheira-Ulbrich ([email protected]) Academic editor: Anatoliy Khapugin Received: 26 Jan 2021 | Accepted: 23 Feb 2021 | Published: 01 Mar 2021 Citation: Pincheira-Ulbrich J, Andrade Mansilla E, Peña-Cortés F, Vergara Fernández C (2021) Trees, shrubs and herbs of the coastal Myrtaceae swamp forest (Región de La Araucanía, Chile): a dataset. Biodiversity Data Journal 9: e63634. https://doi.org/10.3897/BDJ.9.e63634 Abstract Background Species lists are fundamental for knowledge of species diversity in regions subject to intense anthropogenic pressure, especially in poorly-studied ecosystems. The dataset comes from an inventory conducted in 30 fragments of Myrtaceae swamp forest, located in an agroforestry matrix landscape of the coastal La Araucanía Region in Chile. The data collection was carried out using line transect sampling, which was traced through the core of each fragment orientated towards its longest axis. The dataset provides a record of 55 species (24 trees, 1 vine [as a host], 16 herbs and 15 shrubs) including accidental epiphytes (n = 7), hemiparasites (n = 4), host (n = 10) and additionally woody debris (n = 36). The most frequent trees in the landscape were Myrceugenia exsucca (n = 36 records) and Blepharocalyx cruckshanksii (n = 33 records), species that were also the most common hosts.
    [Show full text]
  • Subantarctic Forest Ecology: Case Study of a C on If Er Ou S-Br O Ad 1 E a V Ed Stand in Patagonia, Argentina
    Subantarctic forest ecology: case study of a c on if er ou s-br o ad 1 e a v ed stand in Patagonia, Argentina. Promotoren: Dr.Roelof A. A.Oldeman, hoogleraar in de Bosteelt & Bosoecologie, Wageningen Universiteit, Nederland. Dr.Luis A.Sancholuz, hoogleraar in de Ecologie, Universidad Nacional del Comahue, Argentina. j.^3- -•-»'.. <?J^OV Alejandro Dezzotti Subantarctic forest ecology: case study of a coniferous-broadleaved stand in Patagonia, Argentina. PROEFSCHRIFT ter verkrijging van de graad van doctor op gezag vand e Rector Magnificus van Wageningen Universiteit dr.C.M.Karssen in het openbaar te verdedigen op woensdag 7 juni 2000 des namiddags te 13:30uu r in de Aula. f \boo c^q hob-f Subantarctic forest ecology: case study of a coniferous-broadleaved stand in Patagonia, Argentina A.Dezzotti.Asentamient oUniversitari oSa nMarti nd elo sAndes .Universida dNaciona lde lComahue .Pasaj e del aPa z235 .837 0 S.M.Andes.Argentina .E-mail : [email protected]. The temperate rainforests of southern South America are dominated by the tree genus Nothofagus (Nothofagaceae). In Argentina, at low and mid elevations between 38°-43°S, the mesic southern beech Nothofagusdbmbeyi ("coihue") forms mixed forests with the xeric cypress Austrocedrus chilensis("cipres" , Cupressaceae). Avirgin ,post-fir e standlocate d ona dry , north-facing slopewa s examined regarding regeneration, population structures, and stand and tree growth. Inferences on community dynamics were made. Because of its lower density and higher growth rates, N.dombeyi constitutes widely spaced, big emergent trees of the stand. In 1860, both tree species began to colonize a heterogeneous site, following a fire that eliminated the original vegetation.
    [Show full text]
  • Downloaded from GBIF on August 107
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.23.916817; this version posted January 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Signals of recent tropical radiations in Cunoniaceae, an iconic family for understanding Southern Hemisphere biogeography Ricardo A. Segovia1,2, Andy R. Griffiths1, Diego Arenas3, A. A. Piyali Dias1,4, Kyle G. Dexter1,4 1 School of GeoSciences, University of Edinburgh, United Kingdom. 2 Instituto de Ecología y Biodiversidad (www.ieb-chile.cl), Santiago, Chile. 3 School of Computer Science, University of St Andrews, United Kingdom. 4 Royal Botanic Garden Edinburgh, United Kingdom. * [email protected] Abstract Extratropical angiosperm diversity is thought to have arisen from lineages that originated in the more diverse tropics, but studies of dispersal be- tween tropical and extratropical environments and their consequences for diversification are rare. In order to understand the evolutionary effects of shifts between the tropics and extratropics, defined here as areas that do versus do not regularly experience freezing temperatures, we studied the biogeographic history and associated diversification patterns of Cunoniaceae. We mapped the distribution of all species in the family and combined this with a newly constructed phylogeny for the family. The family shows a long evolutionary association with both tropical and extratropical environments, the tropics house considerably greater species richness of Cunoniaceae. In- deed, both tropical and extratropical environments appear to have had a similar number of lineages until 12 Ma, after which time the number of lineages in tropical areas increased at a faster rate.
    [Show full text]
  • Ackama Paniculosa Click on Images to Enlarge
    Species information Abo ut Reso urces Hom e A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Ackama paniculosa Click on images to enlarge Family Cunoniaceae Scientific Name Ackama paniculosa (F.Muell.) Heslewood Leaflets and inflorescence [not vouchered]. CC-BY: S. & A. Pearson. Heslewood, M.M. & Wilson, P.G. (2013) Telopea 15: 6. Common name Soft Corkwood Stem Tree to 40m; bark pale fawn to light grey, fissured and corky; buds and young stems densely hairy; older stems hairy or smooth; interpetiolar stipules falling early leaving a horizontal scar. Leaves Leaves and inflorescence. CC-BY: APII, ANBG. Leaves pinnately compound with a terminal leaflet, 8-30 cm long, opposite and decussate; leaflets opposite; 3-7; lamina elliptic to lanceolate, 7-20 cm by 1.5-6 cm; margins regularly toothed; both surfaces mostly glabrous; pinnately veined with 8-14 pairs of main laterals, impressed above, raised below; domatia prominent, hairy. Flowers In panicles 10-15cm long, terminal and in upper axils; flowers bisexual, actinomorphic, white; calyx lobes 5, c. 1mm; petals 5, 1-2mm; stamens 10, 4-8mm, free; filaments of different lengths; ovary 2-locular, superior; style c. 5mm long. Flowers and immature fruit. CC-BY: APII, ANBG. Fruit A dry capsule, subglobose; 2-3mm; seeds few, flattened. Seedlings Features not available. Distribution and Ecology Fruit [not vouchered]. CC-BY: S. & A. Pearson. Occurs in CEQ, southwards to central New South Wales. Altitudinal range from 150-1200 m. Grows in well developed upland and mountain rain forest and wet sclerophyll forest.
    [Show full text]
  • Plant Biodiversity Science, Discovery, and Conservation: Case Studies from Australasia and the Pacific
    Plant Biodiversity Science, Discovery, and Conservation: Case Studies from Australasia and the Pacific Craig Costion School of Earth and Environmental Sciences Department of Ecology and Evolutionary Biology University of Adelaide Adelaide, SA 5005 Thesis by publication submitted for the degree of Doctor of Philosophy in Ecology and Evolutionary Biology July 2011 ABSTRACT This thesis advances plant biodiversity knowledge in three separate bioregions, Micronesia, the Queensland Wet Tropics, and South Australia. A systematic treatment of the endemic flora of Micronesia is presented for the first time thus advancing alpha taxonomy for the Micronesia-Polynesia biodiversity hotspot region. The recognized species boundaries are used in combination with all known botanical collections as a basis for assessing the degree of threat for the endemic plants of the Palau archipelago located at the western most edge of Micronesia’s Caroline Islands. A preliminary assessment is conducted utilizing the IUCN red list Criteria followed by a new proposed alternative methodology that enables a degree of threat to be established utilizing existing data. Historical records and archaeological evidence are reviewed to establish the minimum extent of deforestation on the islands of Palau since the arrival of humans. This enabled a quantification of population declines of the majority of plants endemic to the archipelago. In the state of South Australia, the importance of establishing concepts of endemism is emphasized even further. A thorough scientific assessment is presented on the state’s proposed biological corridor reserve network. The report highlights the exclusion from the reserve system of one of the state’s most important hotspots of plant endemism that is highly threatened from habitat fragmentation and promotes the use of biodiversity indices to guide conservation priorities in setting up reserve networks.
    [Show full text]
  • Signals of Recent Tropical Radiations in Cunoniaceae, an Iconic Family for Understanding Southern Hemisphere Biogeography
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.23.916817; this version posted January 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Signals of recent tropical radiations in Cunoniaceae, an iconic family for understanding Southern Hemisphere biogeography Ricardo A. Segovia1,2, Andy R. Griffiths1, Diego Arenas3, A. A. Piyali Dias1,4, Kyle G. Dexter1,4 1 School of GeoSciences, University of Edinburgh, United Kingdom. 2 Instituto de Ecología y Biodiversidad (www.ieb-chile.cl), Santiago, Chile. 3 School of Computer Science, University of St Andrews, United Kingdom. 4 Royal Botanic Garden Edinburgh, United Kingdom. * [email protected] Abstract Extratropical angiosperm diversity is thought to have arisen from lineages that originated in the more diverse tropics, but studies of dispersal be- tween tropical and extratropical environments and their consequences for diversification are rare. In order to understand the evolutionary effects of shifts between the tropics and extratropics, defined here as areas that do versus do not regularly experience freezing temperatures, we studied the biogeographic history and associated diversification patterns of Cunoniaceae. We mapped the distribution of all species in the family and combined this with a newly constructed phylogeny for the family. The family shows a long evolutionary association with both tropical and extratropical environments, the tropics house considerably greater species richness of Cunoniaceae. In- deed, both tropical and extratropical environments appear to have had a similar number of lineages until 12 Ma, after which time the number of lineages in tropical areas increased at a faster rate.
    [Show full text]
  • Flora and Vegetation of the Huascarán National Park, Ancash, Peru: With
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1988 Flora and vegetation of the Huascarán National Park, Ancash, Peru: with preliminary taxonomic studies for a manual of the flora David Nelson Smith Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Botany Commons Recommended Citation Smith, David Nelson, "Flora and vegetation of the Huascarán National Park, Ancash, Peru: with preliminary taxonomic studies for a manual of the flora " (1988). Retrospective Theses and Dissertations. 8891. https://lib.dr.iastate.edu/rtd/8891 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS The most advanced technology has been used to photo­ graph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]
  • Caldcluvia, Pullea, Acsmithia, Preliminary to Dependances
    BLUMEA 25(1979)481-505 Studies in the Cunoniaceae, II. The genera Caldcluvia, Pullea, Acsmithia, and Spiraeanthemum R.D. Hoogland Australian National University, Canberra Summary ofthe of these A survey is given species genera: 1 Caldcluvia is of 11 and includes the a genus species formerly accepted generaAckama, Spiraeopsis, Betchea, Stollaea and Opocunonia. Ten new combinations are proposed to accommodate the species , transferred from these genera. 2. The number of species recognised in Pullea is reduced to three; a new variety is described. from and 13 3. The new genus Acsmithia is segregated Spiraeanthemum comprises species formerly included there and onenew species. 4. Spiraeanthemumin its reduced circumscription now contains six species, ofwhich oneis described here as new and one is accepted to include two subspecies. Introduction The accounts of these genera are preliminary to the treatments which are to future in Flora Flore Caledonie appear in the near Malesianaand de la Nouvelle et Dependances. It is hoped that a full account of the Australian Cunoniaceae will be published elsewhere and descriptions and other supplementary informationwill be included there and then. For the Malesian specimens an identification list will be issued in the series published by Flora MalesianaFoundation. CALDCLUVIA D. Don Caldcluvia D. Don, Edinb. New Phil. J. 9 (June 1830)92; Endl., Gen. PI. (1839) 819; Benth. & Hook./, Gen. PI. 1 (1865) 652; Baill., Hist. PI. 3 (1871) 378,450; Engl, in E. & P., Nat. Pfl. Fam. 3,2a(1891) 99; ed. 2, 18a (1928)** 246; Hutch., Gen. Flow. PI. Dicot. 2 (1967) 9. — Dieterica Ser. ex DC., Prodr. 4 (Sept.
    [Show full text]