Clinical and Morphological Practices in the Diagnosis Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Section 8: Hematology CHAPTER 47: ANEMIA
Section 8: Hematology CHAPTER 47: ANEMIA Q.1. A 56-year-old man presents with symptoms of severe dyspnea on exertion and fatigue. His laboratory values are as follows: Hemoglobin 6.0 g/dL (normal: 12–15 g/dL) Hematocrit 18% (normal: 36%–46%) RBC count 2 million/L (normal: 4–5.2 million/L) Reticulocyte count 3% (normal: 0.5%–1.5%) Which of the following caused this man’s anemia? A. Decreased red cell production B. Increased red cell destruction C. Acute blood loss (hemorrhage) D. There is insufficient information to make a determination Answer: A. This man presents with anemia and an elevated reticulocyte count which seems to suggest a hemolytic process. His reticulocyte count, however, has not been corrected for the degree of anemia he displays. This can be done by calculating his corrected reticulocyte count ([3% × (18%/45%)] = 1.2%), which is less than 2 and thus suggestive of a hypoproliferative process (decreased red cell production). Q.2. A 25-year-old man with pancytopenia undergoes bone marrow aspiration and biopsy, which reveals profound hypocellularity and virtual absence of hematopoietic cells. Cytogenetic analysis of the bone marrow does not reveal any abnormalities. Despite red blood cell and platelet transfusions, his pancytopenia worsens. Histocompatibility testing of his only sister fails to reveal a match. What would be the most appropriate course of therapy? A. Antithymocyte globulin, cyclosporine, and prednisone B. Prednisone alone C. Supportive therapy with chronic blood and platelet transfusions only D. Methotrexate and prednisone E. Bone marrow transplant Answer: A. Although supportive care with transfusions is necessary for treating this patient with aplastic anemia, most cases are not self-limited. -
Thrombotic Microangiopathy Score As a New Predictor for Neurologic Outcome in Patients Undergoing Targeted Temperature Management After Out-Of-Hospital Cardiac Arrest
Thrombotic Microangiopathy Score as a New Predictor for Neurologic Outcome in Patients Undergoing Targeted Temperature Management After Out-of-hospital Cardiac Arrest Taeyoung Kong Yonsei University College of Medicine Hye Sun Lee Yonsei University College of Medicine Soyoung Jeon Yonsei University College of Medicine Jong Wook Lee Konyang University Hospital Hyun Soo Chung Yonsei University College of Medicine Sung Phil Chung Yonsei University College of Medicine Je Sung You ( [email protected] ) Yonsei University College of MedicineGangnam Severance Hospital https://orcid.org/0000-0002-2074- 6745 Original research Keywords: Out-of-hospital cardiac arrest, Targeted temperature management, Thrombotic microangiopathy score, Mortality, Predictor, Schistocytes Posted Date: July 8th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-40096/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/21 Abstract Background: Given the morphological characteristics of schistocytes, thrombotic microangiopathy (TMA) score can be benecial as it can be quickly and serially measured without additional effort or costs. This study aimed to investigate whether the serial TMA scores until 48 h post admission are associated with clinical outcomes in patients undergoing targeted temperature management (TTM) after out-of-hospital cardiac arrest (OHCA). Methods:We retrospectively evaluated a cohort of 185 patients using a prospective registry. We analyzed the TMA score at admission and after 12, 24, and -
Morphological Study of Human Blood for Different Diseases
Research Article ISSN: 2574 -1241 DOI: 10.26717/BJSTR.2020.30.004893 Morphological Study of Human Blood for Different Diseases Muzafar Shah1*, Haseena1, Kainat1, Noor Shaba1, Sania1, Sadia1, Akhtar Rasool2, Fazal Akbar2 and Muhammad Israr3 1Centre for Animal Sciences & Fisheries, University of Swat, Pakistan 2Centre for Biotechnology and Microbiology, University of Swat, Pakistan 3Department of Forensic Sciences, University of Swat, Pakistan *Corresponding author: Muzafar Shah, Centre for Animal Sciences & Fisheries, University of Swat, Pakistan ARTICLE INFO ABSTRACT Received: August 25, 2020 The aim of our study was the screening of blood cells on the basis of morphology for different diseased with Morphogenetic characters I e. ear lobe attachment, clinodactyly Published: September 07, 2020 and tongue rolling. For this purpose, 318 blood samples were collected randomly. Samples were examined under the compound microscopic by using 100x with standard Citation: Muzafar Shah, Haseena, method. The results show 63 samples were found normal while in 255 samples, different Kainat, Noor Shaba, Sania, Sadia, et al. types of morphological changes were observed which was 68.5%, in which Bite cell 36%, Morphological Study of Human Blood for Elliptocyte 34%, Tear drop cell 30%, Schistocyte 26%, Hypochromic cell 22.5%, Irregular Different Diseases. Biomed J Sci & Tech Res contracted cell 16%, Echinocytes 15.5%, Roleaux 8%, Boat shape 6.5%, Sickle cell 5%, Keratocyte 4% and Acanthocytes 1.5%. During the screening of slides, bite cell, elliptocyte, tear drop cell, schistocytes, hypochromic cell, irregular contracted cells were found 30(1)-2020.Keywords: BJSTR.Human MS.ID.004893. blood; Diseases; frequently while echinocytes, boat shape cell, acanthocytes, sickle cells and keratocytes Morphological; Acanthocytes; Keratocyte were found rarely. -
Complete Blood Count in Primary Care
Complete Blood Count in Primary Care bpac nz better medicine Editorial Team bpacnz Tony Fraser 10 George Street Professor Murray Tilyard PO Box 6032, Dunedin Clinical Advisory Group phone 03 477 5418 Dr Dave Colquhoun Michele Cray free fax 0800 bpac nz Dr Rosemary Ikram www.bpac.org.nz Dr Peter Jensen Dr Cam Kyle Dr Chris Leathart Dr Lynn McBain Associate Professor Jim Reid Dr David Reith Professor Murray Tilyard Programme Development Team Noni Allison Rachael Clarke Rebecca Didham Terry Ehau Peter Ellison Dr Malcolm Kendall-Smith Dr Anne Marie Tangney Dr Trevor Walker Dr Sharyn Willis Dave Woods Report Development Team Justine Broadley Todd Gillies Lana Johnson Web Gordon Smith Design Michael Crawford Management and Administration Kaye Baldwin Tony Fraser Kyla Letman Professor Murray Tilyard Distribution Zane Lindon Lyn Thomlinson Colleen Witchall All information is intended for use by competent health care professionals and should be utilised in conjunction with © May 2008 pertinent clinical data. Contents Key points/purpose 2 Introduction 2 Background ▪ Haematopoiesis - Cell development 3 ▪ Limitations of reference ranges for the CBC 4 ▪ Borderline abnormal results must be interpreted in clinical context 4 ▪ History and clinical examination 4 White Cells ▪ Neutrophils 5 ▪ Lymphocytes 9 ▪ Monocytes 11 ▪ Basophils 12 ▪ Eosinophils 12 ▪ Platelets 13 Haemoglobin and red cell indices ▪ Low haemoglobin 15 ▪ Microcytic anaemia 15 ▪ Normocytic anaemia 16 ▪ Macrocytic anaemia 17 ▪ High haemoglobin 17 ▪ Other red cell indices 18 Summary Table 19 Glossary 20 This resource is a consensus document, developed with haematology and general practice input. We would like to thank: Dr Liam Fernyhough, Haematologist, Canterbury Health Laboratories Dr Chris Leathart, GP, Christchurch Dr Edward Theakston, Haematologist, Diagnostic Medlab Ltd We would like to acknowledge their advice, expertise and valuable feedback on this document. -
Red Blood Cell Morphology in Patients with Β-Thalassemia Minor
J Lab Med 2017; 41(1): 49–52 Short Communication Carolin Körber, Albert Wölfler, Manfred Neubauer and Christoph Robier* Red blood cell morphology in patients with β-thalassemia minor DOI 10.1515/labmed-2016-0052 Keywords: β-thalassemia minor; erythrocytes; red blood Received July 11, 2016; accepted October 20, 2016; previously published cells; red blood cell morphology. online December 10, 2016 Abstract In β-thalassemias, the examination of a peripheral blood (PB) smear may provide relevant clues to initial diagnosis. Background: A systematic analysis of the occurrence of Complete laboratory investigation consists of the determina- red blood cell (RBC) abnormalities in β-thalassemia minor tion of the complete blood count, assessment of red blood has not been performed to date. This study aimed to iden- cell (RBC) morphology, high performance liquid chroma- tify and quantify the frequency of RBC abnormalities in tography (HPLC), hemoglobin electrophoresis and, where patients with β-thalassemia minor. necessary, DNA analysis [1]. Especially in the clinically Methods: We examined blood smears of 33 patients with severe forms referred to as β-thalassemia major and interme- β-thalassemia minor by light microscopy for the occur- dia, RBC abnormalities are often markedly apparent [2]. In rence of 15 defined RBC abnormalities. In the case of posi- β-thalassemia minor, also called β-thalassemia trait, the car- tivity, the abnormal cells/20 high power fields (HPF) at riers are usually clinically asymptomatic, showing persistent 1000-fold magnification were counted. microcytosis and hypochromia or mild microcytic anemia [1, Results: Anisocytosis, poikilocytosis and target cells 3]. The PB smear may show microcytosis, hypochromia and, (median 42/20 HPF) were observed in all, and ovalocytes infrequently, poikilocytosis [2]. -
Hematological Issues in Critical Care
HEMATOLOGICAL ISSUES IN ACUTE CARE: PART A- RBC DISORDERS Dheeraj Reddy, MD Objectives- Part A To understand how various blood cell types are produced from pluripotent hematopoietic stem cells and how hematopoiesis is regulated To appreciate the importance of a thorough history and physical exam in the diagnostic approach to hematologic abnormalities Basic interpretation of peripheral blood smear Approach to RBC disorders Anemia Polycythemia Hematopoesis Production of all types of blood cells including formation, development, and differentiation of all types of blood cells. 11 12 10 –10 new blood cells are produced daily in our body to maintain steady state levels in the peripheral circulation All types of new blood cells are derived from “pluripotent stem cells” 1 Sites of Hematopoesis in pre- and postnatal periods MUCH SIMPLER! 2 Key Elements in History Weight loss Fever, night sweats (B symptoms) Fatigue, malaise, and lassitude Weakness Drugs and Chemicals Exposure Family History Sexual History Lumps and Bumps Bone Pain Skin rash/pruritus Surgical History Key Elements in Physical Exam LYMPH NODES 3 Splenomegaly Increased function Abnormal blood flow Infiltration (Congestion) Immune hyperplasia - Liver Cirrhosis Malignant - Response to infection (viral, - hepatic vein obstruction - Leukemias (acute, chronic, bacterial, fungal, parasitic) - portal vein obstruction lymphoid, and myeloid) - Disordered immunoregulation - Budd-Chiari syndrome - Lymphomas (Hodgkins and (RA, SLE, autoimmune hemolytic (associated with classical -
A Study of the Neonatal Haematology of Children with Down Syndrome
A study of the neonatal haematology of children with Down syndrome Rebecca James submitted in accordance with the requirements for the degree of Doctor of Philosophy Department of Health Sciences University of York, March 2011 Abstract This thesis describes the establishment and initial findings of the Children with Down Syndrome Study, a birth cohort of children with DS. The Children with Down Syndrome Study was set up in order to characterise the haematology of neonates with Down syndrome and specifically to test the hypothesis that that this differed in this population. The study was carried out with the support of the Down Syndrome Association and the Down Syndrome Medical Interest Group, and through consultation with clinicians and families. Following a pilot study in the Yorkshire region it was established in over 60 hospitals across the north of England. The Children with Down Syndrome Study is the largest birth cohort of children with Down syndrome established to date, and this is the largest reported analysis of the haematology of neonates with Down syndrome. The results confirm that neonates with Down syndrome have a distinct haematological profile. Means and ranges for haematological parameters throughout the neonatal period are provided. The effects of gestational age, birth weight, postnatal age and the venepuncture to processing interval on the neonatal full blood count were examined, and this is the first report of factors that influence the haematological parameters in neonates with Down syndrome. In order to analyse the blood cell morphology a new approach to morphology was developed and validated. Morphological review of samples from neonates with Down syndrome demonstrated that blasts were common. -
Hematological and Immune Changes in Piaractus Mesopotamicus in the Sepsis Induced by Aeromonas Hydrophila T
Fish and Shellfish Immunology 88 (2019) 259–265 Contents lists available at ScienceDirect Fish and Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Full length article Hematological and immune changes in Piaractus mesopotamicus in the sepsis induced by Aeromonas hydrophila T Gustavo S. Claudianoa,b,Jefferson Yunis-Aguinagac, Fausto A. Marinho-Netoa, Renata L. Mirandad, Isabela M. Martinsa, Fabrizia S. Otanib, Antonio V. Mundimd, ∗ Cleni M. Marzocchi-Machadoe, Julieta R.E. Moraesa,c, , Flávio Ruas de Moraesa,1 a Department of Veterinarian Pathology, Faculty of Agrarian and Veterinarian Sciences, São Paulo State University, Unesp, Brazil b Institute of Biodiversity and Forests, Federal University of Western Pará, UFOPA, Pará, Brazil c Aquaculture Center of UNESP, Jaboticabal, São Paulo, Brazil d Clinical Analysis Laboratory, Veterinary Hospital, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil e Department of Clinical, Toxicological and Bromatological Analyses, Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo (USP), Brazil ARTICLE INFO ABSTRACT Keywords: The pathogenesis of sepsis involves complex systems and multiple interrelationships between the host and pa- Leukocytes thogen producing high mortality rates in various animal species. In this study, hematological disturbances, Innate immunity innate immunity and survival during the septic process in Piaractus mesopotamicus inoculated with Aeromonas Blood hydrophila were studied. For this aim, fish blood samples were taken from control and infected groups 1, 3, 6, Pacu and 9 h post-inoculation (HPI). Leukogram showed reduction in the number of leukocytes and thrombocytes, Bacteria followed by cessation of leukocyte chemotaxis 6 HPI and severe morphological changes in leukocytes and er- ythrocytes. At 3 HPI production of reactive oxygen species increased and at 6 HPI decreased. -
TOPIC 5 Lab – B: Diagnostic Tools & Therapies – Blood & Lymphatic
TOPIC 5 Lab – B: Diagnostic Tools & Therapies – Blood & Lymphatic Disorders Refer to chapter 17 and selected online sources. Refer to the front cover of Gould & Dyer for normal blood test values. Complete and internet search for videos from reliable sources on blood donations and blood tests. Topic 5 Lab - A: Blood and Lymphatic Disorders You’ll need to refer to an anatomy & physiology textbook or lab manual to complete many of these objectives. Blood Lab Materials Prepared slides of normal blood Prepared slides of specific blood pathologies Models of formed elements Plaque models of formed elements Blood typing model kits Blood Lab Objectives – by the end of this lab, students should be able to: 1. Describe the physical characteristics of blood. 2. Differentiate between the plasma and serum. 3. Identify the formed elements on prepared slides, diagrams and models and state their main functions. You may wish to draw what you see in the space provided. Formed Element Description / Function Drawing Erythrocyte Neutrophil s e t y c Eosinophils o l u n a r Basophils Leukocytes G e Monocytes t y c o l u n Lymphocytes a r g A Thrombocytes 4. Define differential white blood cell count. State the major function and expected range (percentage) of each type of white blood cell in normal blood. WBC Type Function Expected % Neutrophils Eosinophils Basophils Monocytes Lymphocytes 5. Calculation of the differential count? 6. Define and use in proper context: 1. achlorhydria 5. amyloidosis 2. acute leukemia 6. anemia 3. agnogenic myeloid metaplasia 7. autosplenectomy 4. aleukemic leukemia 8. basophilic stippling 9. -
Electrophoretic and Ultracentrifugal Analysis of Serum Proteins in Multiple Myeloma*
ELECTROPHORETIC AND ULTRACENTRIFUGAL ANALYSIS OF SERUM PROTEINS IN MULTIPLE MYELOMA* LENA A. LEWIS, Ph.D. Research Division DONALD W. BORTZ, M.D. and JOHN D. BATTLE, JR., M.D. Department of General Medicine HILE many studies have been made on the serum proteins in multiple Wmyeloma, the application of both electrophoretic and ultracentrifugal analysis to the same sera has been limited. This report summarizes the results of electrophoretic and ultracentrifugal analyses of the serum or plasma pro- teins of 10 patients with multiple myeloma. Seventeen additional cases had electrophoretic analyses of the sera. Electrophoresis was carried out by the method of Tiselius as modified by Longsworth,1 using either phosphate buffer pH 7.8, ionic strength 0.16 fx, or barbiturate buffer, pH 8.6, ionic strength 0.1 pt. Ultracentrifuge studies were made in a cell holding 0.9 ml. of solution; a speed of 59.780 r.p.m. exerting a force equivalent to 254.500 times gravity was employed. The serum was dialyzed against 0.9 per cent sodium chloride, and the protein concentration adjusted to approximately 1 per cent, before centrifugation. The diagnosis of multiple myeloma was, in all cases, established by blood and bone marrow studies and physical examination. Clinical notes on 4 of the cases are included because of unusual findings in the protein studies or diffi- culty in the establishment of diagnosis. Results The electrophoretic serum protein pattern in multiple myeloma can be divided into four groups (table 1). In the first, which represented 7 of the 27 cases, there was a definite increase in the serum protein component with mobil- ity similar to that of normal jS-globulin. -
Hematology & Oncology
First Aid Express 2016 workbook: HEMATOLOGY & ONCOLOGY page 1 Hematology & Oncology How to Use the Workbook with the Videos Using this table as a guide, read the Facts in First Aid for the USMLE Step 1 2016, watch the corresponding First Aid Express 2016 videos, and then answer the workbook questions. Facts in First Aid for Corresponding First Aid Workbook the USMLE Step 1 2016 Express 2016 videos questions 378.1–381.1 Anatomy (2 videos) 1–10 381.2–385.2 Physiology (2 videos) 11–14 386.1–404.2 Pathology (9 videos) 15–30 405.1–413.4 Pharmacology (3 videos) 31–35 Copyright © 2016 by MedIQ Learning, LLC All rights reserved v1.0 page 2 First Aid Express 2016 workbook: HEMATOLOGY & ONCOLOGY Questions ANATOMY 1. Define the following terms. (p 378) A. Anisocytosis _______________________________________________________________ B. Poikilocytosis _______________________________________________________________ C. Thrombocytopenia __________________________________________________________ 2. What do the dense granules of platelets contain? (p 378) ________________________________ 3. What do the α-granules of platelets contain? (p 378) ____________________________________ 4. List the types of white blood cells in order of decreasing prevalence. (pp 378) ________________ ______________________________________________________________________________ 5. What conditions can cause hypersegmentation of neutrophils? (p 378) _____________________ ______________________________________________________________________________ 6. CD14 is a cell surface marker -
Plasmapheresis in Sepsis-Induced Thrombotic Microangiopathy
CASE REPORT Plasmapheresis in Sepsis-induced Thrombotic Microangiopathy: A Case Series Sushmita RS Upadhya1, Chakrapani Mahabala2, Jayesh G Kamat3, Jayakumar Jeganathan4, Sushanth Kumar5, Mayur V Prabhu6 ABSTRACT Introduction: Cytokines and granulocyte elastase produced in sepsis cleave a disintegrin and metalloprotease with thrombospondin type I motif 13 (ADAMTS13) and deplete its levels. By this mechanism, sepsis results in microangiopathic hemolytic anemia (MAHA) with thrombocytopenia. Hence, the hypothesis is that plasmapheresis may help in sepsis-induced thrombotic microangiopathy (sTMA), by removing the factors responsible for low levels of ADAMTS13. In tropical countries like India, the contribution of sepsis to intensive care unit (ICU) mortality is high; and hence, it is essential to look out for newer modalities of sepsis treatment. There is abundant literature on the use of plasmapheresis in sepsis but data on its use in sTMA are limited, thus necessitating further research in this field. Case description: This case series studies the outcomes of five patients admitted with sTMA in the ICU and attempts to evaluate the effectiveness of plasmapheresis in improving their outcomes. All patients diagnosed with sTMA and treated with plasmapheresis, between January 2016 and August 2018 at our tertiary care center, were selected for the study. The diagnosis of sepsis was based on sepsis-3 definition. Results: Four different gram-negative organisms were found to have caused MAHA, with the commonest source being either urinary tract infection (UTI) or lower respiratory tract infection. Three of five patients required hemodialysis and two had disseminated intravascular coagulation (DIC). All five had good outcome and recovered well from the acute episode post plasmapheresis.