Tuberculosis Induced Autoimmune Haemolytic Anaemia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hemolytic Disease of the Newborn
Intensive Care Nursery House Staff Manual Hemolytic Disease of the Newborn INTRODUCTION and DEFINITION: Hemolytic Disease of the Newborn (HDN), also known as erythroblastosis fetalis, isoimmunization, or blood group incompatibility, occurs when fetal red blood cells (RBCs), which possess an antigen that the mother lacks, cross the placenta into the maternal circulation, where they stimulate antibody production. The antibodies return to the fetal circulation and result in RBC destruction. DIFFERENTIAL DIAGNOSIS of hemolytic anemia in a newborn infant: -Isoimmunization -RBC enzyme disorders (e.g., G6PD, pyruvate kinase deficiency) -Hemoglobin synthesis disorders (e.g., alpha-thalassemias) -RBC membrane abnormalities (e.g., hereditary spherocytosis, elliptocytosis) -Hemangiomas (Kasabach Merritt syndrome) -Acquired conditions, such as sepsis, infections with TORCH or Parvovirus B19 (anemia due to RBC aplasia) and hemolysis secondary to drugs. ISOIMMUNIZATION A. Rh disease (Rh = Rhesus factor) (1) Genetics: Rh positive (+) denotes presence of D antigen. The number of antigenic sites on RBCs varies with genotype. Prevalence of genotype varies with the population. Rh negative (d/d) individuals comprise 15% of Caucasians, 5.5% of African Americans, and <1% of Asians. A sensitized Rh negative mother produces anti-Rh IgG antibodies that cross the placenta. Risk factors for antibody production include 2nd (or later) pregnancies*, maternal toxemia, paternal zygosity (D/D rather than D/d), feto-maternal compatibility in ABO system and antigen load. (2) Clinical presentation of HDN varies from mild jaundice and anemia to hydrops fetalis (with ascites, pleural and pericardial effusions). Because the placenta clears bilirubin, the chief risk to the fetus is anemia. Extramedullary hematopoiesis (due to anemia) results in hepatosplenomegaly. -
Section 8: Hematology CHAPTER 47: ANEMIA
Section 8: Hematology CHAPTER 47: ANEMIA Q.1. A 56-year-old man presents with symptoms of severe dyspnea on exertion and fatigue. His laboratory values are as follows: Hemoglobin 6.0 g/dL (normal: 12–15 g/dL) Hematocrit 18% (normal: 36%–46%) RBC count 2 million/L (normal: 4–5.2 million/L) Reticulocyte count 3% (normal: 0.5%–1.5%) Which of the following caused this man’s anemia? A. Decreased red cell production B. Increased red cell destruction C. Acute blood loss (hemorrhage) D. There is insufficient information to make a determination Answer: A. This man presents with anemia and an elevated reticulocyte count which seems to suggest a hemolytic process. His reticulocyte count, however, has not been corrected for the degree of anemia he displays. This can be done by calculating his corrected reticulocyte count ([3% × (18%/45%)] = 1.2%), which is less than 2 and thus suggestive of a hypoproliferative process (decreased red cell production). Q.2. A 25-year-old man with pancytopenia undergoes bone marrow aspiration and biopsy, which reveals profound hypocellularity and virtual absence of hematopoietic cells. Cytogenetic analysis of the bone marrow does not reveal any abnormalities. Despite red blood cell and platelet transfusions, his pancytopenia worsens. Histocompatibility testing of his only sister fails to reveal a match. What would be the most appropriate course of therapy? A. Antithymocyte globulin, cyclosporine, and prednisone B. Prednisone alone C. Supportive therapy with chronic blood and platelet transfusions only D. Methotrexate and prednisone E. Bone marrow transplant Answer: A. Although supportive care with transfusions is necessary for treating this patient with aplastic anemia, most cases are not self-limited. -
Evaluation of Anemia Survey (NHANES III) Data- 9 10-28% of Patients Over 65 Years Are Anemic Mark Wurster, M.D., F.A.C.P
Anemia - Definition • National Health and Nutrition Examination Evaluation of Anemia Survey (NHANES III) data- 9 10-28% of patients over 65 years are anemic Mark Wurster, M.D., F.A.C.P. 9 One third of these are due to iron, folate, B12 The Ohio State University deficiency alone or in combination 9 One third are due to renal disease, or other chronic inflammatory response 9 One third are due to various primary marrow disorders, malignancies or other disorders Anemia Anemia - Definition Classification Schemes • A simplified approach to anemia, • Most common hematologic disorder emphasizing information already included • Decrease from normal levels of Hgb, Hct, RBC: in the CBC: 9 FlFemales – MHb14/dlMean Hgb = 14 g/dl; -2SD = 12 g /dl • Mean Cellular Volume (MCV) 9 Males – Mean Hgb = 15.5 g/dl; -2SD = 13.5 g/dl • Red Cell Distribution Width (RDW) • Caveat – Anemia is a syndrome, not a disease. • Retic count An abnormal Hgb or Hct should ALWAYS be investigated if confirmed on repeat testing. 1 Anemia Anemia Classification Schemes Classification Schemes • Mean Cellular Volume (MCV) • Red blood cell Distribution Width (RDW) • Decreased MCV (microcytic); < 80 fL 9 A numerical expression of • Normal MCV (normocytic); 80 – 99 fL anisocytosis, or variation in RBC size • Increased MCV (macrocytic); > 100 fL Anemia Anemia Classification Schemes Classification Schemes • Red blood cell Distribution Width (RDW) 9 Normal RDW - representing a uniform population • Red blood cell Distribution Width (RDW) of RBCs with respect to size (actually the standard deviation of red blood cell volume divided by the mean volume) 9 Normal; < or = to app. -
Anemia and the QT Interval in Hypertensive Patients
2084 International Journal of Collaborative Research on Internal Medicine & Public Health Anemia and the QT interval in hypertensive patients Ioana Mozos 1*, Corina Serban 2, Rodica Mihaescu 3 1 Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania 2 Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania 3 1st Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania * Corresponding Author ; Email: [email protected] Abstract Introduction: A prolonged ECG QT interval duration and an increased QT dispersion (QTd) are predictors of sudden cardiac death. Anemia is known as a marker of adverse outcome in cardiovascular disease. Objective: The aim was to assess the relationship between anemia and QT intervals in hypertensive patients. Method: A total of 72 hypertensive patients underwent standard 12-lead ECG. QT intervals and QT dispersions were manually measured. Complete blood count was also assessed. Result: Linear regression analysis revealed significant associations between prolonged QTc and increased QTd and anemia and macrocytosis, respectively. Multiple regression analysis revealed a significant association between red cell distribution width (RDW) >15% and prolonged heart rate corrected maximal QT interval duration (QTc) and QT interval in lead DII (QTIIc). The most sensitive and specific predictor of prolonged QTc and QTIIc was anisocytosis. Anemia was the most sensitive predictor of -
SEED Haematology Sysmex Educational Enhancement and Development October 2012
SEED Haematology Sysmex Educational Enhancement and Development October 2012 The red blood cell indices The full blood count has been used in conjunction with the traditional red The complete blood count (CBC) is central to clinical deci- cell indices in order to narrow down the possible causes sion making. This makes it one of the commonest laboratory of anaemia in an individual patient. investigations performed worldwide. Whilst the definition of what constitutes an CBC is influenced by the number Impedance technology and type of parameters measured by different haematology The RBC, HCT and MCV are all closely interrelated as they analysers, the traditional red cell indices that are widely are derived from information obtained from the passage used to classify anaemias are common to all. of cells through the aperture of the impedance channel of an automated haematology analyser. The impedance The laboratory approach to anaemia technology is based on the principle that an electrical field, Anaemia is an extremely common global healthcare prob- created between two electrodes of opposite charge, can lem. However, anaemia is merely a symptom which can be used to count and determine the size of cells. Blood result from a multitude of causes. Effective treatment is cells are poor conductors of electricity. The diluent in which only possible if the underlying cause is correctly identified. they are suspended as they pass through the aperture To this end, several classification systems have been devis- during counting is an isotonic solution which is a good ed. The most useful and widely used classification system conductor of electricity. -
Complete Blood Count in Primary Care
Complete Blood Count in Primary Care bpac nz better medicine Editorial Team bpacnz Tony Fraser 10 George Street Professor Murray Tilyard PO Box 6032, Dunedin Clinical Advisory Group phone 03 477 5418 Dr Dave Colquhoun Michele Cray free fax 0800 bpac nz Dr Rosemary Ikram www.bpac.org.nz Dr Peter Jensen Dr Cam Kyle Dr Chris Leathart Dr Lynn McBain Associate Professor Jim Reid Dr David Reith Professor Murray Tilyard Programme Development Team Noni Allison Rachael Clarke Rebecca Didham Terry Ehau Peter Ellison Dr Malcolm Kendall-Smith Dr Anne Marie Tangney Dr Trevor Walker Dr Sharyn Willis Dave Woods Report Development Team Justine Broadley Todd Gillies Lana Johnson Web Gordon Smith Design Michael Crawford Management and Administration Kaye Baldwin Tony Fraser Kyla Letman Professor Murray Tilyard Distribution Zane Lindon Lyn Thomlinson Colleen Witchall All information is intended for use by competent health care professionals and should be utilised in conjunction with © May 2008 pertinent clinical data. Contents Key points/purpose 2 Introduction 2 Background ▪ Haematopoiesis - Cell development 3 ▪ Limitations of reference ranges for the CBC 4 ▪ Borderline abnormal results must be interpreted in clinical context 4 ▪ History and clinical examination 4 White Cells ▪ Neutrophils 5 ▪ Lymphocytes 9 ▪ Monocytes 11 ▪ Basophils 12 ▪ Eosinophils 12 ▪ Platelets 13 Haemoglobin and red cell indices ▪ Low haemoglobin 15 ▪ Microcytic anaemia 15 ▪ Normocytic anaemia 16 ▪ Macrocytic anaemia 17 ▪ High haemoglobin 17 ▪ Other red cell indices 18 Summary Table 19 Glossary 20 This resource is a consensus document, developed with haematology and general practice input. We would like to thank: Dr Liam Fernyhough, Haematologist, Canterbury Health Laboratories Dr Chris Leathart, GP, Christchurch Dr Edward Theakston, Haematologist, Diagnostic Medlab Ltd We would like to acknowledge their advice, expertise and valuable feedback on this document. -
Red Blood Cell Morphology in Patients with Β-Thalassemia Minor
J Lab Med 2017; 41(1): 49–52 Short Communication Carolin Körber, Albert Wölfler, Manfred Neubauer and Christoph Robier* Red blood cell morphology in patients with β-thalassemia minor DOI 10.1515/labmed-2016-0052 Keywords: β-thalassemia minor; erythrocytes; red blood Received July 11, 2016; accepted October 20, 2016; previously published cells; red blood cell morphology. online December 10, 2016 Abstract In β-thalassemias, the examination of a peripheral blood (PB) smear may provide relevant clues to initial diagnosis. Background: A systematic analysis of the occurrence of Complete laboratory investigation consists of the determina- red blood cell (RBC) abnormalities in β-thalassemia minor tion of the complete blood count, assessment of red blood has not been performed to date. This study aimed to iden- cell (RBC) morphology, high performance liquid chroma- tify and quantify the frequency of RBC abnormalities in tography (HPLC), hemoglobin electrophoresis and, where patients with β-thalassemia minor. necessary, DNA analysis [1]. Especially in the clinically Methods: We examined blood smears of 33 patients with severe forms referred to as β-thalassemia major and interme- β-thalassemia minor by light microscopy for the occur- dia, RBC abnormalities are often markedly apparent [2]. In rence of 15 defined RBC abnormalities. In the case of posi- β-thalassemia minor, also called β-thalassemia trait, the car- tivity, the abnormal cells/20 high power fields (HPF) at riers are usually clinically asymptomatic, showing persistent 1000-fold magnification were counted. microcytosis and hypochromia or mild microcytic anemia [1, Results: Anisocytosis, poikilocytosis and target cells 3]. The PB smear may show microcytosis, hypochromia and, (median 42/20 HPF) were observed in all, and ovalocytes infrequently, poikilocytosis [2]. -
Hematological Issues in Critical Care
HEMATOLOGICAL ISSUES IN ACUTE CARE: PART A- RBC DISORDERS Dheeraj Reddy, MD Objectives- Part A To understand how various blood cell types are produced from pluripotent hematopoietic stem cells and how hematopoiesis is regulated To appreciate the importance of a thorough history and physical exam in the diagnostic approach to hematologic abnormalities Basic interpretation of peripheral blood smear Approach to RBC disorders Anemia Polycythemia Hematopoesis Production of all types of blood cells including formation, development, and differentiation of all types of blood cells. 11 12 10 –10 new blood cells are produced daily in our body to maintain steady state levels in the peripheral circulation All types of new blood cells are derived from “pluripotent stem cells” 1 Sites of Hematopoesis in pre- and postnatal periods MUCH SIMPLER! 2 Key Elements in History Weight loss Fever, night sweats (B symptoms) Fatigue, malaise, and lassitude Weakness Drugs and Chemicals Exposure Family History Sexual History Lumps and Bumps Bone Pain Skin rash/pruritus Surgical History Key Elements in Physical Exam LYMPH NODES 3 Splenomegaly Increased function Abnormal blood flow Infiltration (Congestion) Immune hyperplasia - Liver Cirrhosis Malignant - Response to infection (viral, - hepatic vein obstruction - Leukemias (acute, chronic, bacterial, fungal, parasitic) - portal vein obstruction lymphoid, and myeloid) - Disordered immunoregulation - Budd-Chiari syndrome - Lymphomas (Hodgkins and (RA, SLE, autoimmune hemolytic (associated with classical -
A Study of the Neonatal Haematology of Children with Down Syndrome
A study of the neonatal haematology of children with Down syndrome Rebecca James submitted in accordance with the requirements for the degree of Doctor of Philosophy Department of Health Sciences University of York, March 2011 Abstract This thesis describes the establishment and initial findings of the Children with Down Syndrome Study, a birth cohort of children with DS. The Children with Down Syndrome Study was set up in order to characterise the haematology of neonates with Down syndrome and specifically to test the hypothesis that that this differed in this population. The study was carried out with the support of the Down Syndrome Association and the Down Syndrome Medical Interest Group, and through consultation with clinicians and families. Following a pilot study in the Yorkshire region it was established in over 60 hospitals across the north of England. The Children with Down Syndrome Study is the largest birth cohort of children with Down syndrome established to date, and this is the largest reported analysis of the haematology of neonates with Down syndrome. The results confirm that neonates with Down syndrome have a distinct haematological profile. Means and ranges for haematological parameters throughout the neonatal period are provided. The effects of gestational age, birth weight, postnatal age and the venepuncture to processing interval on the neonatal full blood count were examined, and this is the first report of factors that influence the haematological parameters in neonates with Down syndrome. In order to analyse the blood cell morphology a new approach to morphology was developed and validated. Morphological review of samples from neonates with Down syndrome demonstrated that blasts were common. -
2012 CKD Guideline
OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF NEPHROLOGY KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease VOLUME 3 | ISSUE 1 | JANUARY 2013 http://www.kidney-international.org KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease KDIGO gratefully acknowledges the following consortium of sponsors that make our initiatives possible: Abbott, Amgen, Bayer Schering Pharma, Belo Foundation, Bristol-Myers Squibb, Chugai Pharmaceutical, Coca-Cola Company, Dole Food Company, Fresenius Medical Care, Genzyme, Hoffmann-LaRoche, JC Penney, Kyowa Hakko Kirin, NATCO—The Organization for Transplant Professionals, NKF-Board of Directors, Novartis, Pharmacosmos, PUMC Pharmaceutical, Robert and Jane Cizik Foundation, Shire, Takeda Pharmaceutical, Transwestern Commercial Services, Vifor Pharma, and Wyeth. Sponsorship Statement: KDIGO is supported by a consortium of sponsors and no funding is accepted for the development of specific guidelines. http://www.kidney-international.org contents & 2013 KDIGO VOL 3 | ISSUE 1 | JANUARY (1) 2013 KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease v Tables and Figures vii KDIGO Board Members viii Reference Keys x CKD Nomenclature xi Conversion Factors & HbA1c Conversion xii Abbreviations and Acronyms 1 Notice 2 Foreword 3 Work Group Membership 4 Abstract 5 Summary of Recommendation Statements 15 Introduction: The case for updating and context 19 Chapter 1: Definition, and classification -
Hematological and Immune Changes in Piaractus Mesopotamicus in the Sepsis Induced by Aeromonas Hydrophila T
Fish and Shellfish Immunology 88 (2019) 259–265 Contents lists available at ScienceDirect Fish and Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Full length article Hematological and immune changes in Piaractus mesopotamicus in the sepsis induced by Aeromonas hydrophila T Gustavo S. Claudianoa,b,Jefferson Yunis-Aguinagac, Fausto A. Marinho-Netoa, Renata L. Mirandad, Isabela M. Martinsa, Fabrizia S. Otanib, Antonio V. Mundimd, ∗ Cleni M. Marzocchi-Machadoe, Julieta R.E. Moraesa,c, , Flávio Ruas de Moraesa,1 a Department of Veterinarian Pathology, Faculty of Agrarian and Veterinarian Sciences, São Paulo State University, Unesp, Brazil b Institute of Biodiversity and Forests, Federal University of Western Pará, UFOPA, Pará, Brazil c Aquaculture Center of UNESP, Jaboticabal, São Paulo, Brazil d Clinical Analysis Laboratory, Veterinary Hospital, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil e Department of Clinical, Toxicological and Bromatological Analyses, Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo (USP), Brazil ARTICLE INFO ABSTRACT Keywords: The pathogenesis of sepsis involves complex systems and multiple interrelationships between the host and pa- Leukocytes thogen producing high mortality rates in various animal species. In this study, hematological disturbances, Innate immunity innate immunity and survival during the septic process in Piaractus mesopotamicus inoculated with Aeromonas Blood hydrophila were studied. For this aim, fish blood samples were taken from control and infected groups 1, 3, 6, Pacu and 9 h post-inoculation (HPI). Leukogram showed reduction in the number of leukocytes and thrombocytes, Bacteria followed by cessation of leukocyte chemotaxis 6 HPI and severe morphological changes in leukocytes and er- ythrocytes. At 3 HPI production of reactive oxygen species increased and at 6 HPI decreased. -
Complete Blood Count
Print Entire Test Page 1 of 6 Close Window email this page print this page Complete Blood Count Also known as: CBC, Hemogram, CBC with differential Related tests: Blood smear, Hemoglobin, Hematocrit, Red blood cell (RBC) count, White blood cell (WBC) count, White blood cell differential count, Platelet count At A Glance Why get tested? To determine general health status and to screen for a variety of disorders, such as anemia and infection When to get tested? As part of a routine medical exam or as determined by your doctor Sample required? A blood sample drawn from a vein in the arm or a fingerstick or heelstick (newborns) The Test Sample What is being tested? The Complete Blood Count (CBC) test is an automated count of the cells in the blood. It provides information about the white blood cell (WBC), red blood cell (RBC), and platelet populations present. This information includes the number, type, size, shape, and some of the physical characteristics of the cells. In only a minute or two, the hematology instrument (the machine that is used to run the test) can measure thousands of RBCs, WBCs, and platelets and compare them against established normal ranges. Any abnormalities found are noted, and the clinical laboratory scientist (CLS) running the instrument then uses his or her expertise and experience to accept the automated findings and/or to target the sample for further analysis. In most cases, the automated CBC is very accurate and the test is complete at this point. If, however, there are significant abnormalities in one or more of the cell populations, a blood smear test may be performed.