Achievements of Banteng, Anoa and Babirusa Gsmps

Total Page:16

File Type:pdf, Size:1020Kb

Achievements of Banteng, Anoa and Babirusa Gsmps Achievements of Banteng, Anoa and Babirusa GSMPs James Burton Chair, IUCN SSC Asian Wild Cattle Specialist Group & Vice Chair, EAZA Cattle and Camelid TAG and Corinne Bailey Programme Officer, IUCN SSC Asian Wild Cattle Specialist Group Vision and Goals • Vision: Safe and stable in situ and ex situ populations of banteng, anoa and babirusa • Four main goals: 1. To reach a demographically and genetically healthy global ex situ population 2. To raise awareness among zoo visitors 3. To use zoo expertise to help in situ conservation 4. To prioritise and support in situ projects Key Activities Increasing population Improving husbandry Raising awareness Assessing status of and improving genetic skills and animal living about lesser known wild populations diversity conditions threatened species Five year progress: Increasing populations and improving genetic diversity in Indonesian zoo • Two cycles of breeding and transfer recommendations • Births following breeding recommendations: • 18 banteng • 8 anoa • 4 babirusa Raising awareness about lesser known threatened species • 2 Action Indonesia Days to raise global awareness about anoa, banteng and babirusa with 53 zoos participating • 67 practitioners from Indonesian zoos and other conservation institutions have been trained in conservation education • Toolkit of education resources developed to help raise awareness: https://www.actionindonesiagsmp.org/ educate Improving husbandry skills and animal living conditions 190 practitioners from Indonesian zoos and other conservation institutions have been trained in husbandry and transportation In 2020, we held 10 virtual husbandry training sessions for Indonesian zoo staff. Experts from AZA presented on topics and provided advice to participants from over 33 institutions. Assessing the status of wild populations • Project set up to monitor banteng populations through camera- trapping in Alas Purwo National Park, East Java • And support to rescue of anoa and babirusa in Sulawesi How you can become involved • Holding these species in your institution • Contribute skills in husbandry or education • Provide funding support for anoa and babirusa monitoring in Sulawesi or banteng monitoring in Alas Purwo National Park • Join Action Indonesia Day! on 15th August 2021 More information Contact us: [email protected] Telena Welsh, Steve Metzler, Joe Forys or Jeff Holland Thanks for your support: Sign up for our newsletter: www.actionindonesiagsmp.org.
Recommended publications
  • Boselaphus Tragocamelus</I>
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 2008 Boselaphus tragocamelus (Artiodactyla: Bovidae) David M. Leslie Jr. U.S. Geological Survey, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Leslie, David M. Jr., "Boselaphus tragocamelus (Artiodactyla: Bovidae)" (2008). USGS Staff -- Published Research. 723. https://digitalcommons.unl.edu/usgsstaffpub/723 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. MAMMALIAN SPECIES 813:1–16 Boselaphus tragocamelus (Artiodactyla: Bovidae) DAVID M. LESLIE,JR. United States Geological Survey, Oklahoma Cooperative Fish and Wildlife Research Unit and Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK 74078-3051, USA; [email protected] Abstract: Boselaphus tragocamelus (Pallas, 1766) is a bovid commonly called the nilgai or blue bull and is Asia’s largest antelope. A sexually dimorphic ungulate of large stature and unique coloration, it is the only species in the genus Boselaphus. It is endemic to peninsular India and small parts of Pakistan and Nepal, has been extirpated from Bangladesh, and has been introduced in the United States (Texas), Mexico, South Africa, and Italy. It prefers open grassland and savannas and locally is a significant agricultural pest in India. It is not of special conservation concern and is well represented in zoos and private collections throughout the world. DOI: 10.1644/813.1.
    [Show full text]
  • Vega Etal Procroyalsocb Synchronous Diversification
    Canterbury Christ Church University’s repository of research outputs http://create.canterbury.ac.uk Please cite this publication as follows: Frantz, Laurent A. F., Rudzinski, A., Mansyursyah Surya Nugraha, A., Evin, A., Burton, J., Hulme-Beaman, A., Linderholm, A., Barnett, R., Vega, R., Irving-Pease, E., Haile, J., Allen, R., Leus, K., Shephard, J., Hillyer, M., Gillemot, S., van den Hurk, J., Ogle, S., Atofanei, C., Thomas, M., Johansson, F., Haris Mustari, A., Williams, J., Mohamad, K., Siska Damayanti, C., Djuwita Wiryadi, I., Obbles, D., Mona, S., Day, H., Yasin, M., Meker, S., McGuire, J., Evans, B., von Rintelen, T., Hoult, S., Searle, J., Kitchener, A., Macdonald, A., Shaw, D., Hall, R., Galbusera, P. and Larson, G. (2018) Synchronous diversification of Sulawesi’s iconic artiodactyls driven by recent geological events. Proceedings of the Royal Society B: Biological Sciences. Link to official URL (if available): http://dx.doi.org/10.1098/rspb.2017.2566. This version is made available in accordance with publishers’ policies. All material made available by CReaTE is protected by intellectual property law, including copyright law. Any use made of the contents should comply with the relevant law. Contact: [email protected] Synchronous diversification of Sulawesi’s iconic artiodactyls driven by recent geological events Authors Laurent A. F. Frantz1,2,a,*, Anna Rudzinski3,*, Abang Mansyursyah Surya Nugraha4,c,*, , Allowen Evin5,6*, James Burton7,8*, Ardern Hulme-Beaman2,6, Anna Linderholm2,9, Ross Barnett2,10, Rodrigo Vega11 Evan K. Irving-Pease2, James Haile2,10, Richard Allen2, Kristin Leus12,13, Jill Shephard14,15, Mia Hillyer14,16, Sarah Gillemot14, Jeroen van den Hurk14, Sharron Ogle17, Cristina Atofanei11, Mark G.
    [Show full text]
  • Prion Protein Gene (PRNP) Variants and Evidence for Strong Purifying Selection in Functionally Important Regions of Bovine Exon 3
    Prion protein gene (PRNP) variants and evidence for strong purifying selection in functionally important regions of bovine exon 3 Christopher M. Seabury†, Rodney L. Honeycutt†‡, Alejandro P. Rooney§, Natalie D. Halbert†, and James N. Derr†¶ †Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843-4467; ‡Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX 77843-2258; and §National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604-3999 Communicated by James E. Womack, Texas A&M University, College Station, TX, September 1, 2004 (received for review December 19, 2003) Amino acid replacements encoded by the prion protein gene indel polymorphism has not been observed within the octapep- (PRNP) have been associated with transmissible and hereditary tide repeat region of ovine PRNP exon 3 (8, 10–20), whereas spongiform encephalopathies in mammalian species. However, an studies of cattle and other bovine species have yielded three indel association between bovine spongiform encephalopathy (BSE) and isoforms possessing five to seven octapeptide repeats (20–31). bovine PRNP exon 3 has not been detected. Moreover, little is Despite the importance of cattle both to agricultural practices currently known regarding the mechanisms of evolution influenc- worldwide and to the global economy, surprisingly little is known ing the bovine PRNP gene. Therefore, in this study we evaluated about PRNP allelic diversity for cattle collectively and͞or how the patterns of nucleotide variation associated with PRNP exon 3 this gene evolves in this lineage. In addition, although several for 36 breeds of domestic cattle and representative samples for 10 nondomesticated species of Bovinae contracted transmissible additional species of Bovinae.
    [Show full text]
  • Ungulate Tag Marketing Update Aza Midyear Conference 2015 Columbia, Sc
    UNGULATE TAG MARKETING UPDATE AZA MIDYEAR CONFERENCE 2015 COLUMBIA, SC Brent Huffman - Toronto Zoo Michelle Hatwood - Audubon Species Survival Center RoxAnna Breitigan - Cheyenne Mountain Zoo Species Marketing Original Goals Began in 2011 Goal: Focus institutional interest Need to stop declining trend in captive populations Target: Animal decision makers Easy accessibility 2015 Picked 12 priority species to specifically market for sustainability Postcards mailed to 212 people at 156 institutions Postcards Printed on recycled paper Program Leaders asked to provide feedback Interest Out of the 12 Species… . 8 Program Leaders were contacted by new interested parties in 2014 Sitatunga- posters at AZA meeting Bontebok- Word of mouth, facility contacted TAG Urial- Received Ungulate postcard Steenbok- Program Leader initiated contact Bactrian Wapiti- Received Ungulate postcard Babirusa- Program Leader initiated contact Warty Pigs- WPPH TAG website Arabian Oryx- Word of mouth Results Out of the 12 Species… . 4 Species each gained new facilities Bontebok - 1 Steenbok - 1 Warty Pig - 2 (but lost 1) Babirusa - 4 Moving Forward Out of the 12 Species… . Most SSP’s still have animals available . Most SSP’s are still looking for new institutions . Babirusa- no animals available . Anoa- needs help to work with private sector to get more animals . 170 spaces needed to bring these programs up to population goals Moving Forward Ideas for new promotion? . Continue postcards? Posters? Promotional items? Advertisements? Facebook? Budget? To be announced
    [Show full text]
  • NUTRITIONAL ANALYSIS of ANOA (Bubalus Depressicornis and Bubalus Quarlesi) FOOD PLANTS in TANJUNG PEROPA WILDLIFE RESERVE, SOUTHEAST SULAWESI
    Media Konservasi Vol. 16, No. 2 Agustus 2011 : 92 ± 94 NUTRITIONAL ANALYSIS OF ANOA (Bubalus depressicornis and Bubalus quarlesi) FOOD PLANTS IN TANJUNG PEROPA WILDLIFE RESERVE, SOUTHEAST SULAWESI (Analisis Kandungan Nutrisi Pakan Anoa Bubalus spp. di Suaka Margasatwa Tanjung Peropa Sulawesi Tenggara) ABDUL HARIS MUSTARI1) 1)Department of Forest Resources Conservation, Faculty of Forestry Bogor Agricultural University ([email protected]) Diterima 24 Jannuary 2011/Disetujui 27 Juli 2011 ABSTRAK Sebanyak 46 jenis tumbuhan dan dua jenis buah dikumpulkan dari habitat asli anoa (insitu) di Suaka Margasatwa Tanjung Peropa Sulawesi Tenggara. Analisis kandungan nutrisi makanan anoa diketahui dengan menggunakan metode Proximate Analyses. Hasil penelitian menunjukkan bahwa persentase kandungan nutrisi makanan anoa di habitat aslinya bervariasi. Kandungan protein bervariasi 5,58 -21,60 (rataan 12,70; SD 4,34), sementara kandungan serat kasar bervariasi dari 14,68 sampai 62,68 (rataan 36,93; SD 12,07). Persentase Ektrak Ether adalah 0,91-11,5 (rataan 2,38; SD 1,75). Persentase kandungan NFE (Nitrogen-Free Extractives) berkisar 0,76 dan 52,31 (rataan 24,64; SD 15,20), dan kandungan energi kasar adalah 2419-3583 kal/gram (rataan 3093; SD 282,82). Kata kunci: Anoa, Bubalus spp., kandungan nutrisi. INTRODUCTION METHODS Very little is known about the dietary ecology of Study site these animals in their natural habitats because of their This study was conducted in Kalobo Forest of secretive nature and their occupation of the most remote Tanjung Peropa wildlife reserve from 2000 to 2003. The tropical rain forests on the island including lowland wildlife reserve situated between 1220 45‘ ± 1220 45‘ forests, rocky-cliff forests and mountainous forests.
    [Show full text]
  • The Saola Or Spindlehorn Bovid Pseudoryx Nghetinhensis in Laos
    ORYX VOL 29 NO 2 APRIL 1995 The saola or spindlehorn bovid Pseudoryx nghetinhensis in Laos George B. Schaller and Alan Rabinowitz In 1992 the discovery of a new bovid, Pseudoryx nghetinhensis, in Vietnam led to speculation that the species also occurred in adjacent parts of Laos. This paper describes a survey in January 1994, which confirmed the presence of P. ngethinhensis in Laos, although in low densities and with a patchy distribution. The paper also presents new information that helps clarify the phylogenetic position of the species. The low numbers and restricted range ofP. ngethinhensis mean that it must be regarded as Endangered. While some admirable moves have been made to protect the new bovid and its habitat, more needs to be done and the authors recommend further conservation action. Introduction area). Dung et al. (1994) refer to Pseudoryx as the Vu Quang ox, but, given the total range of In May 1992 Do Tuoc and John MacKinnon the animal and its evolutionary affinities (see found three sets of horns of a previously un- below), we prefer to call it by the descriptive described species of bovid in the Vu Quang local name 'saola'. Nature Reserve of west-central Vietnam The village of Nakadok, where saola horns (Stone, 1992). The discovery at the end of the were found, lies at the end of the Nakai-Nam twentieth century of a large new mammal in a Theun National Biodiversity Conservation region that had been visited repeatedly by sci- Area (NNTNBCA), which at 3500 sq km is the entific and other expeditions (Delacour and largest of 17 protected areas established by Jabouille, 1931; Legendre, 1936) aroused in- Laos in October 1993.
    [Show full text]
  • Accounting for Intraspecific Variation Transforms Our Understanding of Artiodactyl Social Evolution
    ACCOUNTING FOR INTRASPECIFIC VARIATION TRANSFORMS OUR UNDERSTANDING OF ARTIODACTYL SOCIAL EVOLUTION By Monica Irene Miles Loren D. Hayes Hope Klug Associate Professor of UC Foundation Associate Professor of Biology, Geology, and Environmental Science Biology, Geology, and Environmental Science (Chair) (Committee Member) Timothy Gaudin UC Foundation Professor of Biology, Geology, and Environmental Science (Committee Member) ACCOUNTING FOR INTRASPECIFIC VARIATION TRANSFORMS OUR UNDERSTANDING OF ARTIODACTYL SOCIAL EVOLUTION By Monica Irene Miles A Thesis Submitted to the Faculty of the University of Tennessee at Chattanooga in Partial Fulfillment of the Requirements of the Degree of Master of Science: Environmental Science The University of Tennessee at Chattanooga Chattanooga, Tennessee December 2018 ii Copyright © 2018 By Monica Irene Miles All Rights Reserved iii ABSTRACT A major goal in the study of mammalian social systems has been to explain evolutionary transitions in social traits. Recent comparative analyses have used phylogenetic reconstructions to determine the evolution of social traits but have omitted intraspecific variation in social organization (IVSO) and mating systems (IVMS). This study was designed to summarize the extent of IVSO and IVMS in Artiodactyla and Perissodactyla, and determine the ancestral social organization and mating system for Artiodactyla. Some 82% of artiodactyls showed IVSO, whereas 31% exhibited IVMS; 80% of perissodactyls had variable social organization and only one species showed IVMS. The ancestral population of Artiodactyla was predicted to have variable social organization (84%), rather than solitary or group-living. A clear ancestral mating system for Artiodactyla, however, could not be resolved. These results show that intraspecific variation is common in artiodactyls and perissodactyls, and suggest a variable ancestral social organization for Artiodactyla.
    [Show full text]
  • Babirusa Nutrition Chapter
    Babirusa SSP Husbandry Manual NUTRITION Kristin Leus, Royal Zoological Society of Antwerp Koningin Astridplein 26 2018 Antwerp, Belgium Tel: +32 3 202 45 80, Fax: +32 3 202 45 47 Email: [email protected] C.A. Morgan, Scottish Agricultural College Animal Biology Division, Bush Estate Penicuik EH26 0PH Scotland, UK Tel: +44 131 535 3230, Fax: +44 131 535 3121 Email: [email protected] Ellen Dierenfeld, Wildlife Conservation Society Nutrition Department, 2300 Southern Boulevard Bronx, NY 10460 Tel: 718-220-7102, Fax: 718-220-7126 Email: [email protected] Dr Kristin Leus, Conservation Biologist Royal Zoological Society of Antwerp Koningin Astridplein 26 2018 Antwerp, Belgium Tel. +32 3 202 45 80,Fax. +32 3 202 45 47 Cite Reference: Leus, K., Morgan, C.A. and E.S. Dierenfeld (2001), Nutrition. In: Babirusa (Babyrousa babyrussa) Husbandry Manual. M. Fischer, Ed. American Association of Zoos and Aquariums Background Information to the Feeding Ecology Information from the Wild Information on the diet of wild babirusa is largely descriptive and qualitative in nature. A detailed review of all information available from the literature can be found in Leus (1996). The lack of quantitative information does not allow much more to be said than that babirusa appear to show a preference for fruits and seeds but that they also consume a variety of leaves, grasses, fungi, invertebrates and small vertebrates, and garden products. Very few wild food items are mentioned by name in the older literature: leaves of the "waringi" tree (most likely a fig species (Ficus sp.)), "canari" seeds (almond-like seeds of the fruits produced by trees of the genus Canarium) (Valentijn, 1726), Elatostema sp.
    [Show full text]
  • Mixed-Species Exhibits with Pigs (Suidae)
    Mixed-species exhibits with Pigs (Suidae) Written by KRISZTIÁN SVÁBIK Team Leader, Toni’s Zoo, Rothenburg, Luzern, Switzerland Email: [email protected] 9th May 2021 Cover photo © Krisztián Svábik Mixed-species exhibits with Pigs (Suidae) 1 CONTENTS INTRODUCTION ........................................................................................................... 3 Use of space and enclosure furnishings ................................................................... 3 Feeding ..................................................................................................................... 3 Breeding ................................................................................................................... 4 Choice of species and individuals ............................................................................ 4 List of mixed-species exhibits involving Suids ........................................................ 5 LIST OF SPECIES COMBINATIONS – SUIDAE .......................................................... 6 Sulawesi Babirusa, Babyrousa celebensis ...............................................................7 Common Warthog, Phacochoerus africanus ......................................................... 8 Giant Forest Hog, Hylochoerus meinertzhageni ..................................................10 Bushpig, Potamochoerus larvatus ........................................................................ 11 Red River Hog, Potamochoerus porcus ...............................................................
    [Show full text]
  • List of 28 Orders, 129 Families, 598 Genera and 1121 Species in Mammal Images Library 31 December 2013
    What the American Society of Mammalogists has in the images library LIST OF 28 ORDERS, 129 FAMILIES, 598 GENERA AND 1121 SPECIES IN MAMMAL IMAGES LIBRARY 31 DECEMBER 2013 AFROSORICIDA (5 genera, 5 species) – golden moles and tenrecs CHRYSOCHLORIDAE - golden moles Chrysospalax villosus - Rough-haired Golden Mole TENRECIDAE - tenrecs 1. Echinops telfairi - Lesser Hedgehog Tenrec 2. Hemicentetes semispinosus – Lowland Streaked Tenrec 3. Microgale dobsoni - Dobson’s Shrew Tenrec 4. Tenrec ecaudatus – Tailless Tenrec ARTIODACTYLA (83 genera, 142 species) – paraxonic (mostly even-toed) ungulates ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BOVIDAE (46 genera) - cattle, sheep, goats, and antelopes 1. Addax nasomaculatus - Addax 2. Aepyceros melampus - Impala 3. Alcelaphus buselaphus - Hartebeest 4. Alcelaphus caama – Red Hartebeest 5. Ammotragus lervia - Barbary Sheep 6. Antidorcas marsupialis - Springbok 7. Antilope cervicapra – Blackbuck 8. Beatragus hunter – Hunter’s Hartebeest 9. Bison bison - American Bison 10. Bison bonasus - European Bison 11. Bos frontalis - Gaur 12. Bos javanicus - Banteng 13. Bos taurus -Auroch 14. Boselaphus tragocamelus - Nilgai 15. Bubalus bubalis - Water Buffalo 16. Bubalus depressicornis - Anoa 17. Bubalus quarlesi - Mountain Anoa 18. Budorcas taxicolor - Takin 19. Capra caucasica - Tur 20. Capra falconeri - Markhor 21. Capra hircus - Goat 22. Capra nubiana – Nubian Ibex 23. Capra pyrenaica – Spanish Ibex 24. Capricornis crispus – Japanese Serow 25. Cephalophus jentinki - Jentink's Duiker 26. Cephalophus natalensis – Red Duiker 1 What the American Society of Mammalogists has in the images library 27. Cephalophus niger – Black Duiker 28. Cephalophus rufilatus – Red-flanked Duiker 29. Cephalophus silvicultor - Yellow-backed Duiker 30. Cephalophus zebra - Zebra Duiker 31. Connochaetes gnou - Black Wildebeest 32. Connochaetes taurinus - Blue Wildebeest 33. Damaliscus korrigum – Topi 34.
    [Show full text]
  • Babirusa ... a Unique Pig with Tusks Like No Other! and HIPPO TAG
    WILD PIG, PECCARY, Babirusa ... a unique pig with tusks like no other! AND HIPPO TAG Why exhibit babirusas? • Get involved with ACTION INDONESIA, the new Global Species Management Plan for babirusa, banteng, and anoa! This exciting collaborative effort combines the expertise of in situ experts and zoo professionals to save these flagship species. • Present a spokes-species for island endemism and biodiversity: babirusa are native to the island of Sulawesi, where they are threatened by habitat loss and bushmeat hunting. • Show off pigs in a green exhibit: babirusas do not root up vegetation like other suids do! • Amaze your visitors with bizarre dentistry: the tusks of males grow up THROUGH their snouts! • Connect with your local boxing club to raise awareness and funding: babirusas fight by rearing up and “boxing” with their front legs. MEASUREMENTS IUCN Length: 3 feet VULNERABLE Stewardship Opportunities Height: 2.5 feet CITES I Support the ACTION INDONESIA GSMP! at shoulder For more information, contact James Burton, Weight: 100-220 lbs <5,000 in IUCN Asian Wild Cattle Specialist Group Chair. Rainforest Indonesia (Sulawesi) the wild [email protected] Care and Husbandry YELLOW SSP: 30.25 (55) in 15 AZA institutions (2015) Species coordinator: Joe Forys, Audubon Zoo [email protected] ; (504)266-1163 Social nature: Typically housed individually, in pairs, or single-sex groups (including multiple males). Pregnant females require isolation, as other adults may injure piglets. Mixed species: Successfully mixed with anoa (juvenile), small-clawed otters, and gibbon species. Babirusa are usually not aggressive towards exhibit-mates. Housing: Not cold-tolerant. Mud wallows and/or pools are well-used.
    [Show full text]
  • Digestive Strategies in Ruminants and Nonruminants S.E. Van Wieren
    DIGESTIVE STRATEGIES IN RUMINANTS AND NONRUMINANTS S.E. VANWIERE N 0000 0714 3726 Promotoren: Dr. ir. S. Tamminga, buitengewoon hoogleraar op het vakgebied van de veevoeding in het bijzonder de voeding van herkauwers Dr. H.H.T. Prins, hoogleraar in het natuurbeheer in de tropen en oecologie van vertebraten WMoPûi , ZI 9 S.E. van Wieren DIGESTIVE STRATEGIES IN RUMINANTS AND NONRUMINANTS Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van de Landbouwuniversiteit Wageningen, dr. C.M. Karssen, in het openbaar te verdedigen op dinsdag 3 december 1996 des namiddags te vier uur in de Aula. aiqo?<? T CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG Van Wieren, S.E. Digestive strategies in ruminants and nonruminants / S.E. van Wieren. - Thesis Landbouw Universiteit Wageningen. - With réf. - With summary in Dutch. ISBN 90-5485-611-4 Subject headings: digestion / ruminants /nonruminants / feeding ecology cr.-::i n; . •Y.:r Cover and illustrations: Esther van Nie & Marjolein Wiersma STELLINGEN I De veelvuldig aangehangen gedachte dat paarden, wat betreft de dagelijkse opname van metaboliseerbare energie uit laagwaardig voedsel, superieur zijn aan runderen, wordt niet door alle onderzoek ondersteund en blijkt ook niet altijd uit praktijkervaringen. P. Duncan et al. (1990). Oecologia 84:411-418. R. Meydam. Evaluatie begrazing Meyendel. 1996. II Wilde zwijnen die op een dieet van uitsluitend mast leven, krijgen onherroepelijk eiwitgebrek. III Het concept van duurzame ontwikkeling leidt in de praktijk niet zozeer tot beperkingen aan de groei, maar meer tot de groei van de beperkingen. B. Willers. (1994). Conservation Biology (8):1146-1148 . IV De typisch nederlandse gedachte dat de mens verrijkend heeft gewerkt op de natuur, is een gevaarlijke misvatting.
    [Show full text]