Soils of the Tropics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
NRCS Keys to Soil Taxonomy
United States Department of Agriculture Keys to Soil Taxonomy Ninth Edition, 2003 Keys to Soil Taxonomy By Soil Survey Staff United States Department of Agriculture Natural Resources Conservation Service Ninth Edition, 2003 The United States Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, and marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326W, Whitten Building, 14th and Independence Avenue, SW, Washington, DC 20250-9410, or call 202-720-5964 (voice and TDD). USDA is an equal opportunity provider and employer. Cover: A natric horizon with columnar structure in a Natrudoll from Argentina. 5 Table of Contents Foreword .................................................................................................................................... 7 Chapter 1: The Soils That We Classify.................................................................................. 9 Chapter 2: Differentiae for Mineral Soils and Organic Soils ............................................... 11 Chapter 3: Horizons and Characteristics Diagnostic for the Higher Categories ................. -
Artificial Chinampas Soils of Mexico City
!"#$%&$'()Chinampas)*+$(,)+-) ./0$&+)1$#23)#4/$")5"+6/"#$/,) '78)*'($7$9'#$+7):'9'"8, Suelos artificiales de chinampas de la Ciudad de México: propiedades y riesgos de salinización Solos artificiais da cidade do México - Chinampas: propriedades e riscos de salinização AUTHORS Received: 24.03.2011 Revised: 02.06.2011 Accepted: 24.06.2011 1 Ramos Bello, R. ABSTRACT García Calderón, 1 N.E. !e chinampas agriculture is a traditional land use practice in the Valley of Mexico since Pre-Hispa- nic time. !e chinampas soils were constructed by excavation of lake sediments that resulted in the Ortega Escobar, 2 H.M. creation of a system of islands separated by channels. !e agricultural productivity of these artificial soils was high; also the land use practices included forestry, fish breeding and hunting. Nowadays, 3@ Krasilnikov, P. the chinampas soils are affected by excessive salinity. We studied 10 representative soil profiles in the pavel.krasilnikov@ gmail.com chinampas zone of Mexico City in order to characterize their properties and origin, to provide their classification, and to evaluate soil salinization, vertical distribution of the salts and their chemical composition. !e soils are characterized by a layered structure, uniform dark grey colour, irregular vertical distribution of organic carbon and clay, and high percentage of carbon. Some soils show an @ Corresponding Author increase in organic matter with depth, and other profiles have maximum organic matter content in the surficial layers and in the subsoil. !e dynamics of sedimentation resulted in the decrease in 1 Facultad de Ciencias, organic matter in the upper layers of lacustrine sediments, because of recent increase in erosion rate UNAM, México. -
A Sustainable Approach for Improving Soil Properties and Reducing N2O Emissions Is Possible Through Initial and Repeated Biochar Application
agronomy Article A Sustainable Approach for Improving Soil Properties and Reducing N2O Emissions Is Possible through Initial and Repeated Biochar Application Ján Horák 1,* , Tatijana Kotuš 1, Lucia Toková 1, Elena Aydın 1 , Dušan Igaz 1 and Vladimír Šimanský 2 1 Department of Biometeorology and Hydrology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, 949 76 Nitra, Slovakia; [email protected] (T.K.); [email protected] (L.T.); [email protected] (E.A.); [email protected] (D.I.) 2 Department of Soil Science, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, 949 76 Nitra, Slovakia; [email protected] * Correspondence: [email protected] Abstract: Recent findings of changing climate, water scarcity, soil degradation, and greenhouse gas emissions have brought major challenges to sustainable agriculture worldwide. Biochar application to soil proves to be a suitable solution to these problems. Although the literature presents the pros and cons of biochar application, very little information is available on the impact of repeated application. In this study, we evaluate and discuss the effects of initial and reapplied biochar (both in rates of 0, 10, and 20 t ha−1) combined with N fertilization (at doses of 0, 40, and 80 kg ha−1) on soil properties and N O emission from Haplic Luvisol in the temperate climate zone (Slovakia). Results showed that 2 biochar generally improved the soil properties such as soil pH(KCl) (p ≤ 0.05; from acidic towards Citation: Horák, J.; Kotuš, T.; Toková, moderately acidic), soil organic carbon (p ≤ 0.05; an increase from 4% to over 100%), soil water L.; Aydın, E.; Igaz, D.; Šimanský, V. -
A Review of Four Soil Amendments
Die Bodenkultur: Journal of Land Management, Food and Environment Volume 69, Issue 3, 141–153, 2018. 10.2478/boku-2018-0013 ISSN: 0006-5471 online, © De Gruyter, www.degruyter.com/view/j/boku Research Article Sustainable intensification of agricultural production: a review of four soil amendments Nachhaltige Intensivierung der landwirtschaftlichen Produktion: ein Überblick vier verschiedener Bodenzusätze Katharina Maria Keiblinger1,* Rosana Maria Kral2 1 University of Natural Resources and Life Sciences Vienna, Austria, Institute of Soil Research, Peter-Jordan-Straße 82, 1190 Vienna, Austria 2 University of Natural Resources and Life Sciences Vienna, Austria, Centre for Development Research, Peter-Jordan-Straße 82, 1190 Vienna, Austria * Corresponding author: [email protected] Received: 22 June 2018, received in revised form: 10 September 2018, accepted: 21 September 2018 Summary Dwindling natural resources, growing population pressure, climate change, and degraded soils threaten agricultural production. In order to feed the growing world population, we have to develop strategies to sustainably intensify current agricultural production while reducing the adverse effects of agriculture. Currently, a number of amendments have come into focus for improving structure and fertility of soils. Zeolites, biochar (BC), lime, and nitrification inhibitors (NIs) are reviewed for their properties. Zeolites and BC share many characteristics, such as a high cation exchange capacity (CEC), high specific surface area, and high porosity. Lime, on the other hand, works above all through its buffering capacity and can improve aggregate stability. Although the latter amend- ments change soil physicochemical characteristics, NIs do not act on soil properties but constrain a chemical/enzymatic reaction directly. These amendments are potential strategies to mitigate ongoing soil degradation and to secure soil fertility, under the global challenges. -
World Reference Base for Soil Resources 2014 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps
ISSN 0532-0488 WORLD SOIL RESOURCES REPORTS 106 World reference base for soil resources 2014 International soil classification system for naming soils and creating legends for soil maps Update 2015 Cover photographs (left to right): Ekranic Technosol – Austria (©Erika Michéli) Reductaquic Cryosol – Russia (©Maria Gerasimova) Ferralic Nitisol – Australia (©Ben Harms) Pellic Vertisol – Bulgaria (©Erika Michéli) Albic Podzol – Czech Republic (©Erika Michéli) Hypercalcic Kastanozem – Mexico (©Carlos Cruz Gaistardo) Stagnic Luvisol – South Africa (©Márta Fuchs) Copies of FAO publications can be requested from: SALES AND MARKETING GROUP Information Division Food and Agriculture Organization of the United Nations Viale delle Terme di Caracalla 00100 Rome, Italy E-mail: [email protected] Fax: (+39) 06 57053360 Web site: http://www.fao.org WORLD SOIL World reference base RESOURCES REPORTS for soil resources 2014 106 International soil classification system for naming soils and creating legends for soil maps Update 2015 FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2015 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. -
Keys to Soil Taxonomy
United States Department of Agriculture Keys to Soil Taxonomy Ninth Edition, 2003 Keys to Soil Taxonomy By Soil Survey Staff United States Department of Agriculture Natural Resources Conservation Service Ninth Edition, 2003 The United States Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, and marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326W, Whitten Building, 14th and Independence Avenue, SW, Washington, DC 20250-9410, or call 202-720-5964 (voice and TDD). USDA is an equal opportunity provider and employer. Cover: A natric horizon with columnar structure in a Natrudoll from Argentina. 5 Table of Contents Foreword .................................................................................................................................... 7 Chapter 1: The Soils That We Classify.................................................................................. 9 Chapter 2: Differentiae for Mineral Soils and Organic Soils ............................................... 11 Chapter 3: Horizons and Characteristics Diagnostic for the Higher Categories ................. -
Effects of Biochar Application on Nitrogen Leaching, Ammonia Volatilization and Nitrogen Use Efficiency in Two Distinct Soils
Journal of Soil Science and Plant Nutrition, 2017, 17 (2), 515-528 RESEARCH ARTICLE Effects of biochar application on nitrogen leaching, ammonia volatilization and nitrogen use efficiency in two distinct soils Zunqi Liu1,2 Tianyi He1,2 Ting Cao1,2 Tiexing Yang1,2 Jun Meng2*, and Wenfu Chen1,2 1Agronomy College, Shenyang Agricultural University, Shenyang, China. 2Liaoning Biochar Engineering & Technology Research Centre, Shenyang, China. *Corresponding author: [email protected] Abstract This study was conducted to determine the effect of biochar application on nitrogen (N) leaching, ammonia (NH3) volatilization, and fertilizer N use efficiency (NUE) in two soils with different properties (loamy and sandy). Ryegrass (Lolium perenne L.) incubation experiments (with 15N-enriched urea applied) and an N loss simulation study were conducted at biochar application rates of 2% and 4%. The results showed that 15N utilization increased by 8.83–9.06% following the addition of biochar to sandy soil during the first season compared with the control. However, this significant effect was not observed in the loamy soil, in which significantly more urea-N was retained in the soil following biochar application. Furthermore, based on the results of the N leaching and NH3 volatilization experiments, 29.19% and 28.65% NO3-N leaching reductions were induced by 2% and 4% biochar amendments in loamy soil, decreasing the total inorganic N that was leached (NH4+-N plus NO3-N) by 26.46% and 26.82%, respectively. However, although the amount of leached NH4+-N decreased in biochar-amended sandy soil, the cumulative NH3 volatilizations were 14.18–20.05% higher than in the control, and 22.55% more NO3--N was leached from biochar-amended sandy soil, resulting in a negative effect on N retention. -
Paleosols Can Promote Root Growth of Recent Vegetation – a Case Study from the Sandy Soil–Sediment Sequence Rakt, the Netherlands
SOIL, 2, 537–549, 2016 www.soil-journal.net/2/537/2016/ doi:10.5194/soil-2-537-2016 SOIL © Author(s) 2016. CC Attribution 3.0 License. Paleosols can promote root growth of recent vegetation – a case study from the sandy soil–sediment sequence Rakt, the Netherlands Martina I. Gocke1,2, Fabian Kessler1, Jan M. van Mourik3, Boris Jansen4, and Guido L. B. Wiesenberg1 1Department of Geography, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland 2Institute of Crop Science and Resource Conservation, University of Bonn, Nussallee 13, 53115 Bonn, Germany 3IBED-Paleoecology, University of Amsterdam, P.O. Box 94240, Amsterdam 1090 GE, the Netherlands 4IBED-Earth Surface Science, University of Amsterdam, P.O. Box 94240, Amsterdam 1090 GE, the Netherlands Correspondence to: Martina I. Gocke ([email protected]) Received: 3 November 2015 – Published in SOIL Discuss.: 14 December 2015 Accepted: 15 September 2016 – Published: 21 October 2016 Abstract. Soil studies commonly comprise the uppermost meter for tracing, e.g., soil development. However, the maximum rooting depth of various plants significantly exceeds this depth. We hypothesized that deeper parts of the soil, soil parent material and especially paleosols provide beneficial conditions in terms of, e.g., nutrient contents, thus supporting their utilization and exploitation by deep roots. We aimed to decipher the different phases of soil formation in Dutch drift sands and cover sands. The study site is located at Bedafse Bergen (south- eastern Netherlands) in a 200-year-old oak stand. A recent Podzol developed on drift sand covering a Plaggic Anthrosol that was piled up on a relict Podzol on Late Glacial eolian cover sand. -
ANTHROSOLS Profound Changes in Soil Properties (From the Greek, Meaning Soil)
JRC Soils Atlas 24/6/05 11:32 am Page 28 The soil of Europe The major soil types of Europe Soil with subsurface accumulation of low activity clay Acid soil with a bleached horizon penetrating a clay ACRISOLS minerals and low base saturation (from the Latin, acris, ALBELUVISOLS accumulation horizon (from the Latin, albus, meaning meaning very acid). white and eluere, meaning to wash out). An Acrisol is a highly weathered soil occurring in warm temperate regions and the wetter parts Albeluvisols have an accumulation of clay in the subsoil with an irregular or broken upper of the tropics and subtropics. Acrisols have poor chemical properties, low levels of plant boundary and deep penetrations or ‘tonguing’ of bleached soil material into the illuviation nutrients, high levels of aluminium and high susceptibility to erosion. These conditions are horizon. The typical “albeluvic tongues” are generally the result of freeze-thaw processes in strong limitations for agricultural use. Acrisols are similar to the Red-Yellow Podzolic soil of periglacial conditions and often show a polygonal network in horizontal cuts. Albeluvisols occur Indonesia), Red and Yellow Earths and are related to several subgroups of Alfisols and Ultisols mainly in the moist and cool temperate regions. Also known as Podzoluvisols (FAO), Ortho- (Soil Taxonomy). podzolic soil (Russia) and several suborders of the Alfisols (Soil Taxonomy). Left: Sheet and rill erosion on Left: Albeluvisols develop Acrisols; mostly under forest vegetation; Below: a natural Acrisol profile Below: Albeluvic tongues are exposed by deep gully erosion; clearly visible penetrating the The map shows the location of bleached illuvial horizon; The areas in Europe where Acrisols map shows the location of are the dominant soil type. -
This File Was Created by Scanning the Printed Publication
This file was created by scanning the printed publication. Text errors identified by the software have been corrected; however, some errors may remain. Editors SHARON E. CLARKE is a geographer and GIS analyst, Department of Forest Science, Oregon State University, Corvallis, OR 97331; and SANDRA A. BRYCE is a biogeographer, Dynamac Corporation, Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Western Ecology Division, Corvallis, OR 97333. This document is a product of cooperative research between the U.S. Department of Agriculture, Forest Service; the Forest Science De- partment, Oregon State University; and the U.S. Environmental Protection Agency. Cover Artwork Cover artwork was designed and produced by John Ivie. Abstract Clarke, Sharon E.; Bryce, Sandra A., eds. 1997. Hierarchical subdivisions of the Columbia Plateau and Blue Mountains ecoregions, Oregon and Washington. Gen. Tech. Rep. PNW-GTR-395. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 114 p. This document presents two spatial scales of a hierarchical, ecoregional framework and provides a connection to both larger and smaller scale ecological classifications. The two spatial scales are subregions (1:250,000) and landscape-level ecoregions (1:100,000), or Level IV and Level V ecoregions. Level IV ecoregions were developed by the Environmental Protection Agency because the resolution of national-scale ecoregions provided insufficient detail to meet the needs of state agencies for estab- lishing biocriteria, reference sites, and attainability goals for water-quality regulation. For this project, two ecoregions—the Columbia Plateau and the Blue Mountains— were subdivided into more detailed Level IV ecoregions. -
Classification of Soil Systems on the Basis of Transfer Factors of Radionuclides from Soil to Reference Plants
IAEA-TECDOC-1497 Classification of soil systems on the basis of transfer factors of radionuclides from soil to reference plants Proceedings of a final research coordination meeting organized by the Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture and held in Chania, Crete, 22–26 September 2003 June 2006 IAEA-TECDOC-1497 Classification of soil systems on the basis of transfer factors of radionuclides from soil to reference plants Report of the final research coordination meeting organized by the Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture held in Chania, Crete, 22–26 September 2003 June 2006 The originating Section of this publication in the IAEA was: Food and Environmental Protection Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria CLASSIFICATION OF SOIL SYSTEMS ON THE BASIS OF TRANSFER FACTORS OF RADIONUCLIDES FROM SOIL TO REFERENCE PLANTS IAEA, VIENNA, 2006 IAEA-TECDOC-1497 ISBN 92–0–105906–X ISSN 1011–4289 © IAEA, 2006 Printed by the IAEA in Austria June 2006 FOREWORD The IAEA Basic Safety Standards for Radiation Protection include the general requirement to keep all doses as low as reasonably achievable, taking account of economic and social considerations, within the overall constraint of individual dose limits. National and Regional authorities have to set release limits for radioactive effluent and also to establish contingency plans to deal with an uncontrolled release following an accident or terrorist activity. It is normal practice to assess radiation doses to man by means of radiological assessment models. In this context the IAEA published (1994), in cooperation with the International Union of Radioecologists (IUR), a Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Temperate Environments to facilitate such calculations. -
Geochronology of Soils and Landforms in Cultural
5 Geochronology of Soils and Landforms in Cultural Landscapes on Aeolian Sandy Substrates, Based on Radiocarbon and Optically Stimulated Luminescence Dating (Weert, SE-Netherlands) J.M. van Mourik, A.C. Seijmonsbergen and B. Jansen University of Amsterdam, Institute for Biodiversity and Ecosystem Dynamics (IBED), Netherlands 1. Introduction The landscape of the study area (fig. 1,2) is underlain by coversand, deposited during the Late Glacial of the Weichselian. In the Preboreal, aeolian processes reduced soil formation (Stichting voor Bodemkaratering, 1972) and from the Preboreal to the Atlantic a deciduous climax forest developed (Janssen, 1974). The geomorphology was a coversand landscape, composed of ridges (umbric podzols), coversand plains (gleyic podzols), coversand depressions (histic podzols) and small valleys (gleysols). The area was used by hunting people during the Late Paleolithic and Mesolithic (Nies, 1999). Analysis of the urnfield ‘Boshoverheide’, indicated that the population increased during the Bronze Age between 1000 and 400 BC to a community of several hundreds of people, living from forest grazing, shifting cultivation and trade (Bloemers, 1988). The natural deciduous forests gradually degraded into heath land. The deforestation accelerated soil acidification and affected the hydrology, which is reflected in drying out of ridges and wetting of depressions, promoting the development of histosols and histic podzols. Sustainable productivity on chemically poor sandy substrates required application of organic fertilizers, composed of a mixture of organic litter with animal manure with a very low mineral compound (Van Mourik et al., 2011a), produced in shallow stables (Vera, 2011). The unit plaggic anthrosol on the soil map of 1950 AD identifies the land surface, which was used for plaggen agriculture.