STUDENT UNDERSTANDING of SOIL CLASSIFICATION USING the SIMPLIFIED GUIDE to SOIL TAXONOMY by KIM KERSCHEN B.S., Kansas State Univ
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
NRCS Keys to Soil Taxonomy
United States Department of Agriculture Keys to Soil Taxonomy Ninth Edition, 2003 Keys to Soil Taxonomy By Soil Survey Staff United States Department of Agriculture Natural Resources Conservation Service Ninth Edition, 2003 The United States Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, and marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326W, Whitten Building, 14th and Independence Avenue, SW, Washington, DC 20250-9410, or call 202-720-5964 (voice and TDD). USDA is an equal opportunity provider and employer. Cover: A natric horizon with columnar structure in a Natrudoll from Argentina. 5 Table of Contents Foreword .................................................................................................................................... 7 Chapter 1: The Soils That We Classify.................................................................................. 9 Chapter 2: Differentiae for Mineral Soils and Organic Soils ............................................... 11 Chapter 3: Horizons and Characteristics Diagnostic for the Higher Categories ................. -
Keys to Soil Taxonomy
United States Department of Agriculture Keys to Soil Taxonomy Ninth Edition, 2003 Keys to Soil Taxonomy By Soil Survey Staff United States Department of Agriculture Natural Resources Conservation Service Ninth Edition, 2003 The United States Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, and marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326W, Whitten Building, 14th and Independence Avenue, SW, Washington, DC 20250-9410, or call 202-720-5964 (voice and TDD). USDA is an equal opportunity provider and employer. Cover: A natric horizon with columnar structure in a Natrudoll from Argentina. 5 Table of Contents Foreword .................................................................................................................................... 7 Chapter 1: The Soils That We Classify.................................................................................. 9 Chapter 2: Differentiae for Mineral Soils and Organic Soils ............................................... 11 Chapter 3: Horizons and Characteristics Diagnostic for the Higher Categories ................. -
The Sharpshooter the Chetco Effect
1 The Sharpshooter Oregon Society of Soil Scientists Quarterly Newsletter Summer 2019 The Chetco Effect Table of Contents OSSS Summer Tour Page 1 September 12-13th Summer Tour Page 2 The Oregon Society of Soil Scientists is Note from the Editor making an excursion to Oregon’s Scholarships “Banana Belt “ for our summer field Poem tour, hosted in cooperation with our friends at the Northwest Forest Soils Pages 3 Council! Spend two days with fellow Soilweb! soils professionals and enthusiasts as we explore diverse landscapes on the Page 4-5 Rogue River-Siskiyou National For- Arctic Soil Survey est. We’ll hear from members of the Forest’s Burned Area Emergency Re- Pages 7-8 sponse (BAER) Team to learn about Featured Article how soils are affected by fire and drive watershed response. We’ll also learn how local land managers are re- sponding to a diverse array of resource concerns in the wake of the fire. Potential field topics include soil burn severity mapping, salvage log- ging, protection of critical infrastructure, management of noxious weeds and rare plant communities, and forest management for insects and dis- ease. And, of course there will be soil profiles! We will camp out along the stunning Chetco River at Alfred Loeb State Park. We will see and discuss impacts of the Chetco Bar fire on soils and ecosystems and the strategies land managers employ to reduce the im- pacts of wildfire. We will also see some absolutely glorious flora, geology, and soils; including coastal redwoods, peridotites, and serpentinitic soils. Visit the Oregon Society of Registration is currently live and can be found at Soil Scientists @ https:// https://www.oregonsoils.org/upcoming-meetings/event-registration/ www.oregonsoils.org/ contact/ 1 Editors note - Sharpshooter Annals By Vance Almquist A poem by Randy Hinson, Spring ed. -
Soil Lacquer Peel DIY: Simply Capturing Beauty Cathelijne R
SOIL Discuss., https://doi.org/10.5194/soil-2018-27 Manuscript under review for journal SOIL Discussion started: 1 November 2018 c Author(s) 2018. CC BY 4.0 License. Soil lacquer peel DIY: simply capturing beauty Cathelijne R. Stoof1, Jasper H.J. Candel1, Laszlo van der Wal1, Gert Peek1 1 Soil Geography and Landscape Group, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands Correspondence to: Cathelijne R. Stoof ([email protected]) 5 Abstract. Visualization can greatly benefit understanding of concepts and processes, which in soil science and geology can be done using real life snapshots of soils and sediments in lacquer peels and glue peels. While it may seem complicated, anyone can make such a soil peel for use in classrooms, public places, homes and offices for teaching, outreach, decoration and awareness. Technological development has considerably simplified the making of soil peels, but this methodological innovation has not been described in the literature. Here, we report on a thoroughly tested and simple method for taking peels 10 of sandy soils using readily available tools and materials. Our method follows the main previously published steps of preparing a soil face, impregnating the soil face with a fixation agent in the field, extracting the resulting peel and mounting it on a wooden panel. Yet instead of using lacquers and thinning agents, we use strong though flexible contact adhesive (glue), which has the major advantage that it no longer requires use and mixing of toxic chemicals in the field or reinforcement of the peel to prevent breaking. Moreover, the preservation potential is much higher than with the old method. -
The Dokuchaev Hypothesis As a Basis for Predictive Digital Soil Mapping (On the 125Th Anniversary of Its Publication) I
ISSN 10642293, Eurasian Soil Science, 2012, Vol. 45, No. 4, pp. 445–451. © Pleiades Publishing, Ltd., 2012. Original Russian Text © I.V. Florinsky, 2012, published in Pochvovedenie, 2012, No. 4, pp. 500–506. HISTORY OF SCIENCE The Dokuchaev Hypothesis as a Basis for Predictive Digital Soil Mapping (On the 125th Anniversary of Its Publication) I. V. Florinsky Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Pushchino, Moscow oblast, 142290 Russia Email: [email protected] Received June 16, 2011; in final form, September 25, 2011 Abstract—Predictive digital soil mapping is widely used in soil science. Its objective is the prediction of the spatial distribution of soil taxonomic units and quantitative soil properties via the analysis of spatially distrib uted quantitative characteristics of soilforming factors. Western pedometrists stress the scientific priority and principal importance of Hans Jenny’s book (1941) for the emergence and development of predictive soil mapping. In this paper, we demonstrate that Vasily Dokuchaev explicitly defined the central idea and state ment of the problem of contemporary predictive soil mapping in the year 1886. Then, we reconstruct the his tory of the soil formation equation from 1899 to 1941. We argue that Jenny adopted the soil formation equa tion from Sergey Zakharov, who published it in a wellknown fundamental textbook in 1927. It is encouraging that this issue was clarified in 2011, the anniversary year for publications of Dokuchaev and Jenny. DOI: 10.1134/S1064229312040047 INTRODUCTION additional soil formers may be included in Eq. (2). In soil science, predictive digital soil mapping has McBratney et al. -
John Day Fossil Beds NM: Geology and Paleoenvironments of the Clarno Unit
John Day Fossil Beds NM: Geology and Paleoenvironments of the Clarno Unit JOHN DAY FOSSIL BEDS Geology and Paleoenvironments of the Clarno Unit John Day Fossil Beds National Monument, Oregon GEOLOGY AND PALEOENVIRONMENTS OF THE CLARNO UNIT John Day Fossil Beds National Monument, Oregon By Erick A. Bestland, PhD Erick Bestland and Associates, 1010 Monroe St., Eugene, OR 97402 Gregory J. Retallack, PhD Department of Geological Sciences University of Oregon Eugene, OR 7403-1272 June 28, 1994 Final Report NPS Contract CX-9000-1-10009 TABLE OF CONTENTS joda/bestland-retallack1/index.htm Last Updated: 21-Aug-2007 http://www.nps.gov/history/history/online_books/joda/bestland-retallack1/index.htm[4/18/2014 12:20:25 PM] John Day Fossil Beds NM: Geology and Paleoenvironments of the Clarno Unit (Table of Contents) JOHN DAY FOSSIL BEDS Geology and Paleoenvironments of the Clarno Unit John Day Fossil Beds National Monument, Oregon TABLE OF CONTENTS COVER ABSTRACT ACKNOWLEDGEMENTS CHAPTER I: INTRODUCTION AND REGIONAL GEOLOGY INTRODUCTION PREVIOUS WORK AND REGIONAL GEOLOGY Basement rocks Clarno Formation John Day Formation CHAPTER II: GEOLOGIC FRAMEWORK INTRODUCTION Stratigraphic nomenclature Radiometric age determinations CLARNO FORMATION LITHOSTRATIGRAPHIC UNITS Lower Clarno Formation units Main section JOHN DAY FORMATION LITHOSTRATIGRAPHIC UNITS Lower Big Basin Member Middle and upper Big Basin Member Turtle Cove Member GEOCHEMISTRY OF LAVA FLOW AND TUFF UNITS Basaltic lava flows Geochemistry of andesitic units Geochemistry of tuffs STRUCTURE OF CLARNO -
This File Was Created by Scanning the Printed Publication
This file was created by scanning the printed publication. Text errors identified by the software have been corrected; however, some errors may remain. Editors SHARON E. CLARKE is a geographer and GIS analyst, Department of Forest Science, Oregon State University, Corvallis, OR 97331; and SANDRA A. BRYCE is a biogeographer, Dynamac Corporation, Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Western Ecology Division, Corvallis, OR 97333. This document is a product of cooperative research between the U.S. Department of Agriculture, Forest Service; the Forest Science De- partment, Oregon State University; and the U.S. Environmental Protection Agency. Cover Artwork Cover artwork was designed and produced by John Ivie. Abstract Clarke, Sharon E.; Bryce, Sandra A., eds. 1997. Hierarchical subdivisions of the Columbia Plateau and Blue Mountains ecoregions, Oregon and Washington. Gen. Tech. Rep. PNW-GTR-395. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 114 p. This document presents two spatial scales of a hierarchical, ecoregional framework and provides a connection to both larger and smaller scale ecological classifications. The two spatial scales are subregions (1:250,000) and landscape-level ecoregions (1:100,000), or Level IV and Level V ecoregions. Level IV ecoregions were developed by the Environmental Protection Agency because the resolution of national-scale ecoregions provided insufficient detail to meet the needs of state agencies for estab- lishing biocriteria, reference sites, and attainability goals for water-quality regulation. For this project, two ecoregions—the Columbia Plateau and the Blue Mountains— were subdivided into more detailed Level IV ecoregions. -
History of East European Chernozem Soil Degradation; Protection and Restoration by Tree Windbreaks in the Russian Steppe
Sustainability 2015, 7, 705-724; doi:10.3390/su7010705 OPEN ACCESS sustainability ISSN 2071-1050 www.mdpi.com/journal/sustainability Article History of East European Chernozem Soil Degradation; Protection and Restoration by Tree Windbreaks in the Russian Steppe Yury G. Chendev 1, Thomas J. Sauer 2,*, Guillermo Hernandez Ramirez 3 and Charles Lee Burras 4 1 Department of Natural Resources Management and Land Cadastre, Belgorod State University, Belgorod 308015, Russia; E-Mail: [email protected] 2 USDA-ARS, National Laboratory for Agriculture and the Environment, Ames, IA 50011, USA 3 Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2R3, Canada; E-Mail: [email protected] 4 Department of Agronomy, Iowa State University, Ames, IA 50011, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-515-294-3416; Fax: +1-515-294-8125. Academic Editor: Marc A. Rosen Received: 30 October 2014 / Accepted: 29 December 2014 / Published: 8 January 2015 Abstract: The physiographic region of the Central Russian Upland, situated in the Central part of Eastern Europe, is characterized by very fertile grassland soils—Chernozems (Mollisols in the USDA taxonomy). However, over the last several centuries this region has experienced intense land-use conversion. The most widespread and significant land-use change is the extensive cultivation of these soils. As a result, Chernozems of the region that were some of the most naturally fertile soils in the world with thick A horizons had become, by the second half of the 19th century, weakly productive, with decreased stocks of organic matter. -
Edifisols—A New Soil Unit of Technogenic Soils
J Soils Sediments DOI 10.1007/s11368-014-0983-4 SOILS AND SEDIMENTS IN URBAN AND MINING AREAS Edifisols—a new soil unit of technogenic soils Przemysław Charzyński & Piotr Hulisz & Renata Bednarek & Agnieszka Piernik & Marta Winkler & Marcin Chmurzyński Received: 7 January 2014 /Accepted: 10 September 2014 # The Author(s) 2014. This article is published with open access at Springerlink.com Abstract contamination. The results of the statistical analysis Purpose A very specific type of urban soils forms on build- showed that climate was not a key factor in differenti- ings. They are developed from or on technogenic substrates. ation of the studied soils. The properties of Edifisols are This work was conducted to assess properties of Edifisols linked to their position on the buildings. Edifisols in occurring in different regions of Europe and northwest concave forms differ from those located on vertical and Africa. Proposals are made for the terminology used and the horizontal surfaces. Stages of the development of systematic position of the investigated soils in the World Edifisols are presented taking into account the function- Reference Base for Soil Resources. ing of the building in the course of time. Materials and methods The research was carried out in 2009– Conclusions Edifisols are formed as a result of initial, 2012 in seven countries. Samples (23 in total) were acciden- relatively natural soil-forming processes occurring on tally collected from 15 municipalities of different size and man-made substrates. Therefore, they may be considered function ranging from villages, small tourist resorts through as technogenic analogues of natural initial or weakly medium-sized regional centres to metropolises. -
Soil and Environment
Open Access Journal of Environmental and Soil Sciences DOI: 10.32474/OAJESS.2019.03.000161 ISSN: 2641-6794 Mini Review Soil and Environment Dustin J Welbourne* Department of Wildlife Ecology and Conservation, University of Florida, USA *Corresponding author: Dustin J Welbourne, Department of Wildlife Ecology and Conservation, University of Florida, USA Received: July 17, 2019 Published: July 26, 2019 Mini Review previous term explicitly to uprooted soil [15]. life forms that together help life. Earth’s collection of soil, called some logical definitions separate earth from soil by limiting the Soil is a blend of natural issue, minerals, gases, fluids, and plant development; as a method for water stockpiling, supply and an assortment of reasons. Right off the bat, it is utilized to watch The companion survey procedure is significant in science for the pedosphere, has four significant capacities: as a vehicle for that the creator has not appropriated their work. For instance, by beings. These capacities, in their turn, alter the dirt, and you duplicate gluing from Wikipedia, which, I should include, is quite cleaning; as a modifier of Earth’s air; and, as a territory for living would have known this in the event that you read Wikipedia. The great. Actually, I Figure I may complete this article with another pedosphere interfaces with the lithosphere, the hydrosphere, the air, and the biosphere [1]. The term pedolith, utilized regularly to (Figure 1). On a side note, on the off chance that you are perusing duplicate glue from Wikipedia and incorporate a couple of figures allude to the dirt, means ground stone in the sense “key stone”[2]. -
Soil Climate Regimes of Pennsylvania
Penn State Agricultural Experiment Station Bulletin 873 Soil Climate Regimes of Pennsylvania College of Agricultural Sciences Soil Climate Regimes of Pennsylvania William J. Waltman, Edward J. Ciolkosz, Maurice J. Mausbach, Mark D. Svoboda, Douglas A. Miller, and Philip J. Kolb Penn State Agricultural Experiment Station Bulletin 873 April 1997 A cooperative project of the NRCS Soil Quality Institute and the Penn State Agricultural Experiment Station Soil Quality Institute, Natural Resources Conservation Service, Iowa State University, Ames, IA National Soil Survey Center, Natural Resources Conservation Service, Lincoln, NE ii SOIL CLIMATE REGIMES OF PENNSYLVANIA Correct Citation: Waltman, W.J., E.J. Ciolkosz, M. J. Mausbach, M.D. Svoboda, D. A. Miller, and P.J. Kolb. 1997. Soil Climate Regimes of Pennsylvania. Bulletin No. 873, Pennsylvania State University Agricultural Experiment Station, University Park, PA 16802. About the Authors William J. Waltman is GIS Specialist, Northern Plains Regional Office, Natural Resources Conservation Service, Lincoln, NE. Edward J. Ciolkosz is Professor of Soil Genesis, Agronomy Department, The Pennsylvania State University, University Park, PA. Maurice J. Mausbach is Director, Soil Quality Institute, Natural Resources Conservaton Service, Iowa State University, Ames, IA. Mark D. Svoboda is Climate Resources Specialist, National Drought Mitigation Center, Department of Agricultural Meteorology, University of Nebraska, Lincoln, NE. Douglas A. Miller is Research Associate, Earth System Science Center, The Pennsylvania State University, University Park, PA. Phlip J. Kolb is Research Assistant, Earth System Science Center, The Pennsylvania State University, University Park, PA. The United States Department of Agriculture (USDA) prohibits discrimination in its programs on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, and marital or familial status. -
Proceedings-Management and Productivity of Western-Montane Forest Soils
This file was created by scanning the printed publication. Errors identified by the software have been corrected; however, some errors may remain. DO~SOaFORMATION PROCESSES AND PROPERTIES IN WESTERN-MONTANE FOREST TYPES AND LANDSCAPES-SOME IMPLICATIONS FOR PRODUCTIVITY AND MANAGEMENT Robert T. Meurisse Wayne A. Robbie Jerry Niehoff Gary Ford ABSTRACT Soil is the primary medium for regulating movement and storage of energy and water and for regulating The principal soil orders in western-montane forests cycles and availability of plant nutrients. Soil also pro are Inceptisols, Alfisols, Andisols, and Mollisols. Soil vides anchorage, aeration, heat for roots, and is home moisture and temperature regimes strongly influence for many decomposers and element-transforming organ forest type distribution and productivity. The most pro isms. Informed inquiry and understanding are critical ductive and resilient forests are on soils with udic mois for making sound decisions about effective and efficient ture and frigid temperature regimes. Soils with low use and management of these vital resources. The objec water-holding capacity in us tic, xeric, and aridic mois tives of this paper are to: (1) characterize the dominant ture regimes and those with cryic temperature regimes soil-formation processes and properties in the principal are least productive and resilient. Soil organic carbon western-montane forest types and landscapes; (2) illus and nitrogen contents range from about 20,000 to more trate the major soil moisture and temperature regime than 100,000 and 1,200 to 9,000 pounds per acre. gradients of these forest types; and (3) discuss some implications for ecosystem function, productivity, and INTRODUCTION management.