Soil Research in Denmark

Total Page:16

File Type:pdf, Size:1020Kb

Soil Research in Denmark FOLIA GEOGRAPHICA DANICA ∙ TOM. XIX SOIL RESEARCH IN DENMARK Editors J.P. MØBERG H. BREUNING MADSEN dr. agro dr. scient KØBENHAVN C.A. REITZELS FORLAG ROSENDAHLS BOGTRYKKERI ∙ ESBJERG 1991 FOLIA GEOGRAPHICA DANICA . TOM. XIX SOIL RESEARCH IN DENMARK Editors J.P. MØBERG H. BREUNING MADSEN dr. agro dr. scient KØBENHAVN C. A. REITZELS FORLAG ROSENDAHLS BOGTRYKKERI . ESBJERG 1991 The Royal Danish Geographical Society congratulates Professor, Dr.phil. Niels Kingo Jacobsen, Secretary General and Vice-President of the Society, and Professor, Dr.agro. Kjeld Rasmussen, Member of the Board, on their 70th birthdays. S. Thostrup Vice-President Contents Niels Kingo Jacobsen............................................................................. 5 Kjeld Rasmussen................................................................................... 7 Leif Petersen: Pedological Research in Denmark................................ 9 Jens Peter Møberg: Formation and Development of the Clay Fraction in Danish Soils.................................................................... 50 Henrik Breuning Madsen & Niels H. Jensen: Potential acidity in relation to soil characteristics............................................................ 62 Karsten Raulund-Rasmussen: Soil acidity and soil acidification - Fundamental concepts and status for five Danish forest soils......... 70 Ole K. Borggaard & Birgitte Raben-Lange: Iron Oxides and Organic Matter in Danish Spodosols in relation to Phosphate Adsorption 83 C. Bender Koch: Genesis of placic horizons in spodosols................... 93 Søren Storgaard Jørgensen: Mobility of Metals in Soils...................... 104 Hans Christian Bruun Hansen: Cation ordering in stichtite, a chromium(III) bearing hydroxy-carbonate of the pyroaurite group 115 Thomas H. Christensen & Jens Chr. Tjell: Cadmium in Danish agri­ cultural soils...................................................................................... 123 Vibeke Ernstsen: Initial soil formation in a salt marsh area of the Margrethe polder.............................................................................. 130 Kristian Dalsgaard, Mogens H. Greve & Peter Sørensen: Soil variation in a sandy till landscape of Weichselian age in the northern part of Jutland, Denmark.................................................... 139 Bjarne Holm Jakobsen: Aspects of soil geography in South Greenland.......................................................................................... 155 Peter Frederiksen: Dystric Cambisol from Tierra del Fuego - the contribution of soil micromorphology................................................. 165 Leif Petersen: Soils of Kalimantan, Indonesia....................................... 173 Merete Styczen: A study of crusts and their effect on water balance of some Nigerian soils....................................................................... 188 This volume of Folia Geographica Danica is sponsored by Dronning Margrethes og Prins Henriks Fond Fonden til Fædrelandets Vel Augustinus Fonden Tuborgfondet Kemira Danmark A/S A/S Det Østasiatiske Kompagni Layout and technical arrangement: Inge Primstad, Jørgen Ulrich, Kr. M. Jensen. 5 Niels Kingo Jacobsen Niels Kingo Jacobsen was born on June 13,1921, sistant at the Skalling Laboratory. Under the in Copenhagen, but spent all his childhood at the leadership of Niels Nielsen the Wadden Sea west coast of Jutland, in the township of Esbjerg. studies gradually developed into the project "The Here he finished High School in 1939 and, in­ Danish Wadden and Salt-Marsh Investigations". spired by Professor Niels Nielsen and his Wad- From 1953 Kingo Jacobsen was head of the den Sea investigations, he started to study natural Tønder Section of this project, and he conducted sciences and geography, first in Aarhus and later numerous investigations in the Tønder salt­ in Copenhagen where he got his M.Sc. Degree in marsh region; his research was mainly concen­ 1947. The following years N. Kingo Jacobsen de­ trated on the geomorphology and soil of the area. veloped a keen interest in two main disciplines: The investigations resulted in maps and morpho­ the arctic environment and the Wadden Sea area genetic interpretations of the whole Tønder salt­ in western Jutland. marsh area, covering its surface topography, the For 25 years he was a member of the editorial geest surface, the extension and thickness of the board of "Meddelelser om Grønland". In 1950 his single layers of silt, sand, clay, and peat, which publication on "Erhverv og Kultur langs Polar­ had built up this marshland. Moreover, the land kredsen" (Economy and Culture along the Polar use and ownership relations were also covered. Circle) appeared. During these years a cooperation to last for From 1948 Kingo Jacobsen worked as an as­ life with Kjeld Rasmussen developed, and they 6 even stayed for quite a long time together work­ during the Danish natural science expedition to ing on their doctoral theses at the then newly Patagonia and Tierra del Fuego. established Skalling Laboratory at Ho. In 1964 In recent years Kingo Jacobsen has resumed Kingo Jacobsen defended his thesis entitled: his activities in Greenland and initiated various "Træk af Tøndermarskens Naturgeografi med soil studies in cooperation with the Greenland særligt Henblik på Morfogenesen" (The Natural Home Rule and Ministry of Greenland; to men­ Geographical Conditions within the Tønder Salt- tion some, studies at Holsteinborg in West Marsh). In October the same year he succeeded Greenland and, supported by the Knud Rasmus­ Niels Nielsen as professor in geography at Uni­ sen Foundation, expeditions in the Thule District. versity of Copenhagen, where he had worked as In Southern Greenland the effects of sheep- assistant professor since 1958. breeding on the environment has been investi­ Along with his activities in the Tønder salt­ gated, e.g. how much the impact of grazing may marsh region Kingo Jacobsen has investigated the aggravate erosion. Rejsby salt-marsh and the peninsula of Skallin­ Throughout the last 25 years Kingo Jacobsen gen. In the mid-60s Kingo Jacobsen established has represented the discipline geography in many the Skalling Laboratory in Esbjerg, which has boards and committees, e.g. as President of the since been the center for a great number of Danish National Committee of Geography, as a scientific investigations of waddens and marsh­ member of the National Committee of Interna­ land. During the last decade Kingo Jacobsen has tional Association for Quaternary Research, and been the leader of a large-scale ecological pro­ of the National Committees of Climatology, ject focussing upon the west coast of Jutland, Oceanography, and Cartography. During the COST 647. 1960s Kingo Jacobsen helped to establish the One of Kingo Jacobsen's greatest merits as Section on Environment under the Nordic Soil professor has been to expand the field of geogra­ Researchers Union where he has been the Dan­ phy within the disciplines: soil, hydrology and ish representative for several periods. Moreover, climatology. Especially the first one became his he has taken great interest in nature conservation specific field of research in a close cooperation matters both in Denmark and in Greenland. with professor Kjeld Rasmussen at the Royal To this should be added Kingo Jacobsen's im­ Veterinary and Agricultural University. Thus pressive personal achievements throughout the Kingo Jacobsen initiated a great number of soil years in the Board of the Royal Danish Geogra­ studies with subjects ranging from pure pedolo­ phical Society, from 1972 as Secretary General gical studies over soil erosion to more stratigra- and recently also as Vice President. With an un­ phic investigations of sediment types in the failing optimism Kingo Jacobsen has arranged Wadden Sea region. and prepared the many activities taking place in Together with Kjeld Rasmussen he partici­ the Society, and together with the other members pated in the expert committee which in 1975 of the board raised funds for these activities. The established the guidelines for the Danish soil greatest work load in this connection has been as classification. They submitted a minority recom­ chief editor of the Society's publications, espe­ mendation as they wished a more pedologically cially Geografisk Tidsskrift, where so many of oriented mapping than the majority did. Kingo Kingo Jacobsen's students have presented the re­ Jacobsen - together with among others Kjeld sults of their research. In the mid-70s he resum­ Rasmussen - initiated studies of soil profiles in ed the publication "Atlas over Danmark" with connection with the trench dug for the main gas Series II and is currently planning publication of pipeline system across the country. This meant another volume on soil conditions in Denmark in the start of a nationwide pedological data base. the original series I. In the late 1970s, thanks to Kingo Jacobsen's efforts, a number of soil studies were carried out Kr. M. Jensen and Henrik Breuning Madsen 7 Kjeld Rasmussen On June 17, 1921, Kjeld Rasmussen was born in tural University. As a Professor he has been in­ Sønder Vissing, a village west of Skanderborg in volved in a multitude of activities within and Eastern Jutland. After finishing school in 1935, outside the University. He has given more than he worked on his parents' farm, and in 1939-40 2350 scheduled lectures to students at the Uni­ he attended a course at Asmildkloster Agricul­ versity and he has conducted an unknown num­ tural School. In 1943
Recommended publications
  • Threats to the Kujataa UNESCO World Heritage Site
    Threats to the Kujataa UNESCO World Heritage Site Niels Henrik Hooge, NOAH Friends of the Earth Denmark’s Uranium Group 9th International NGO Forum on World Heritage | 24 February 2021 The site • One of three WHS in Greenland. • Inscribed on UNESCO’s world heritage list in 2017 under Criterion V in the WH Convention as “an outstanding example of a traditional human settlement, land-use, or sea-use which is representative of a culture (or cultures), or human interaction with the environment especially when it has become vulnerable under the impact of irreversible change”. • It comprises a sub-arctic farming landscape consisting of five components representing key elements of the Norse Greenlandic and modern Inuit farming cultures. They are both distinct and both pastoral farming cultures located on the climatic edges of viable agriculture, depending on a combination of farming, pastoralism and marine mammal hunting. • It is the earliest introduction of farming to the Arctic. • Source: UNESCO, Kujataa Greenland: Norse and Inuit Farming at the Edge of the Ice Cap (2017), https://whc.unesco.org/en/list/1536/ Threats to the Kujataa UNESCO World Heritage Site 2 The site Source: UNESCO World Heritage Centre Threats to the Kujataa UNESCO World Heritage Site 3 The site Kujataa Greenland: Norse and Inuit Farming at the Edge of the Ice Cap. Photo: Kommune Kujalleq, Birger Lilja Kristoffersen Threats to the Kujataa UNESCO World Heritage Site 4 General concerns • Still less respect for environmental protection in Greenland • Greenland has some of the largest undiscovered oil and gas resources and some of the largest mineral resources in the world.
    [Show full text]
  • Marine and Terrestrial Investigations in the Norse Eastern Settlement, South Greenland
    Marine and terrestrial investigations in the Norse Eastern Settlement, South Greenland Naja Mikkelsen,Antoon Kuijpers, Susanne Lassen and Jesper Vedel During the Middle Ages the Norse settlements in included acoustic investigations of possible targets Greenland were the most northerly outpost of European located in 1998 during shallow-water side-scan sonar Christianity and civilisation in the Northern Hemisphere. investigations off Igaliku, the site of the Norse episco- The climate was relatively stable and mild around A.D. pal church Gardar in Igaliku Fjord (Fig. 2). A brief inves- 985 when Eric the Red founded the Eastern Settlement tigation of soil profiles was conducted in Søndre Igaliku, in the fjords of South Greenland. The Norse lived in a once prosperous Norse settlement that is now partly Greenland for almost 500 years, but disappeared in the covered by sand dunes. 14th century. Letters in Iceland report on a Norse mar- riage in A.D. 1408 in Hvalsey church of the Eastern Settlement, but after this account all written sources remain silent. Although there have been numerous stud- Field observations and preliminary ies and much speculation, the fate of the Norse settle- results ments in Greenland remains an essentially unsolved question. Sandhavn Sandhavn is a sheltered bay that extends from the coast north-north-west for approximately 1.5 km (Fig. 2). The entrance faces south-east and it is exposed to waves Previous and ongoing investigations and swells from the storms sweeping in from the Atlantic The main objective of the field work in the summer of around Kap Farvel, the south point of Greenland.
    [Show full text]
  • Jakobshavn Isbræ,West Greenland: the 2002–2003 Collapse and Nomination for the UNESCO World Heritage List
    Jakobshavn Isbræ,West Greenland: the 2002–2003 collapse and nomination for the UNESCO World Heritage List Anker Weidick, Naja Mikkelsen, Christoph Mayer and Steffen Podlech Jakobshavn Isbræ (also known as Sermeq Kujalleq or Ilulissat Isbræ) is situated at about 69°10′N and 50°00′W in West Nomination of ‘Ilulissat Icefjord’ and Greenland. This major outlet from the Inland Ice has an Sermeq Kujalleq extremely high rate of movement (nearly 1 m/hour) and thus The Eskimo ruins and archaeological sites in the region a high production of icebergs, which via the icefjord float around the modern Greenland township of Ilulissat include westwards through Disko Bugt to Davis Strait (Fig. 1). representatives of all the cultural phases since the first Eskimo Estimates of the iceberg production are in the range of 35 ± settlement of Greenland. The association with Greenland’s 10 km3 ice per year, more than 10% of the entire calf-ice pro- most productive glacier makes the ‘Ilulissat Icefjord’ area a duction of the Inland Ice (e.g. Bauer l968; Bindschadler strong candidate for inclusion in the UNESCO World 1984). The icefjord into which Sermeq Kujalleq calves is Heritage List. In December 2000 the Government of Kangia, best known in glaciological literature as Jakobshavn Greenland decided to nominate ‘Ilulissat Icefjord’, and the Isfjord. Spectacular changes of the glacier were observed dur- Geological Survey of Denmark and Greenland (GEUS) was ing 2002 and 2003 at the same time as it was nominated for given the task of preparing the nomination document (Fig. 1; inclusion in the UNESCO World Heritage List under the Mikkelsen & Ingerslev 2003).
    [Show full text]
  • The Veterinary and Food Authority of Greenland
    Aalisarnermut, Piniarnermut Nunalerinermullu Naalakkersuisoqarfik Departementet for Fiskeri, Fangst og Landbrug Uumasunik Nakorsaqarfik Inuussutissalerinermullu Oqartussaaffik (UNIO) Veterinær- og Fødevaremyndigheden i Grønland (VFMG) The Veterinary and Food Authority of Greenland (VFMG) under the Ministry of Fisheries, Hunting and Agriculture has issued the following guidelines for bringing dogs and/or cats into Greenland. The guidelines also cover travelling with these animals within Greenland. In order to protect the Greenlandic Sled Dog as a breed Act no. 18 of 30 October 1998 establishes a so called sled dog district. The territory is defined as follows: th ● North of Greenland on the West Coast from north of 66 ​ northern degree of latitude, ​ th ● The entire East Coast down to Kap Farvel, east of the 44 ​ western degree of longitude. ​ Within this district, only Greenlandic Sled Dogs may be kept and it is strictly prohibited to bring other dogs into these areas. This concerns both dogs travelling onboard cruise ships with tourists and local dogs travelling within Greenland. In accordance to Article 19, subsection 2 of Act no. 18 of 30th October 1998 by Greenland´s Home Rule regarding sled dogs, it is prohibited to introduce dogs of any race into the sled dog districts. The same Article states that it is prohibited to reintroduce Greenlandic Sled Dogs once they have left the sled dog district. Working dogs and service dogs for disabled people may be permitted admittance to the sled dog district, but only after receiving a permit from the Government of Greenland. Working dogs are solely defined as the dogs used by police or by the authorities in relation to border control.
    [Show full text]
  • Soil Acidification
    viti-notes [grapevine nutrition] Soil acidifi cation Viti-note Summary: Characteristics of acidic soils • Soil pH Calcium and magnesium are displaced • Soil acidifi cation in by aluminium (Al3+) and hydrogen (H+) vineyards and are leached out of the soil. Acidic soils below pH 6 often have reduced • Characteristics of acidic populations of micro-organisms. As soils microbial activity decreases, nitrogen • Acidifying fertilisers availability to plants also decreases. • Effect of soil pH on Sulfur availability to plants also depends rate of breakdown of on microbial activity so in acidic soils, ammonium to nitrate where microbial activity is reduced, Figure 1. Effect of soil pH on availability of minerals sulfur can become unavailable. (Sulfur • Management of defi ciency is not usually a problem for acidifi cation Soil pH vineyards as adequate sulfur can usually • Correction of soil pH All plants and soil micro-organisms have be accessed from sulfur applied as foliar with lime preferences for soil within certain pH fungicides). ranges, usually neutral to moderately • Strategies for mature • Phosphorus availability is reduced at acid or alkaline. Soil pH most suitable vines low pH because it forms insoluble for grapevines is between 5.5 and 8.5. phosphate compounds with In this range, roots can acquire nutrients aluminium, iron and manganese. from the soil and grow to their potential. As soils become more acid or alkaline, • Molybdenum is seldom defi cient in grapevines become less productive. It is neutral to alkaline soils but can form important to understand the impacts of insoluble compounds in acid soils. soil pH in managing grapevine nutrition, • In strongly acidic soil (pH <5), because the mobility and availability of aluminium may become freely nutrients is infl uenced by pH (Figure 1).
    [Show full text]
  • [BA] COUNTRY [BA] SECTION [Ba] Greenland
    [ba] Validity date from [BA] COUNTRY [ba] Greenland 26/08/2013 00081 [BA] SECTION [ba] Date of publication 13/08/2013 [ba] List in force [ba] Approval [ba] Name [ba] City [ba] Regions [ba] Activities [ba] Remark [ba] Date of request number 153 Qaqqatisiaq (Royal Greenland Seagfood A/S) Nuuk Vestgronland [ba] FV 219 Markus (Qajaq Trawl A/S) Nuuk Vestgronland [ba] FV 390 Polar Princess (Polar Seafood Greenland A/S) Qeqertarsuaq Vestgronland [ba] FV 401 Polar Qaasiut (Polar Seafood Greenland A/S) Nuuk Vestgronland [ba] FV 425 Sisimiut (Royal Greenland Seafood A/S) Nuuk Vestgronland [ba] FV 4406 Nataarnaq (Ice Trawl A/S) Nuuk Vestgronland [ba] FV 4432 Qeqertaq Fish ApS Ilulissat Vestgronland [ba] PP 4469 Akamalik (Royal Greenland Seafood A/S) Nuuk Vestgronland [ba] FV 4502 Regina C (Niisa Trawl ApS) Nuuk Vestgronland [ba] FV 4574 Uummannaq Seafood A/S Uummannaq Vestgronland [ba] PP 4615 Polar Raajat A/S Nuuk Vestgronland [ba] CS 4659 Greenland Properties A/S Maniitsoq Vestgronland [ba] PP 4660 Arctic Green Food A/S Aasiaat Vestgronland [ba] PP 4681 Sisimiut Fish ApS Sisimiut Vestgronland [ba] PP 4691 Ice Fjord Fish ApS Nuuk Vestgronland [ba] PP 1 / 5 [ba] List in force [ba] Approval [ba] Name [ba] City [ba] Regions [ba] Activities [ba] Remark [ba] Date of request number 4766 Upernavik Seafood A/S Upernavik Vestgronland [ba] PP 4768 Royal Greenland Seafood A/S Qeqertarsuaq Vestgronland [ba] PP 4804 ONC-Polar A/S Alluitsup Paa Vestgronland [ba] PP 481 Upernavik Seafood A/S Upernavik Vestgronland [ba] PP 4844 Polar Nanoq (Sigguk A/S) Nuuk Vestgronland
    [Show full text]
  • Excavations at the Churchyard in Igaliku, the Norse Bishop See at Garðar, July 2019
    Work Package 3.1: Human Experiences: health, well-being and trade-offs Excavations at the churchyard in Igaliku, the Norse bishop see at Garðar, July 2019 KNK 4201 JANUARY 15 2020 Work Package 3.1: Human Experiences: health, well-being and trade-offs Authored by: Jette Arneborg, National Museum of Denmark; Hans Harmsen, Greenland National Museum & Archives; Dorthe Dangvard Pedersen, National Museum of Denmark & Laboratory of Forensic Anthropology 1 Work Package 3.1: Human Experiences: health, well-being and trade-offs Table of Contents 1. Introduction .............................................................................................................................. 3 2. Participants .............................................................................................................................. 4 3. Field diary ................................................................................................................................ 5 4. Background ............................................................................................................................. 5 4.1. Previous investigations in Igaliku and Garðar cemetery .................................................... 6 5. 2019 Investigations .................................................................................................................. 9 5.1. Surveying ....................................................................................................................... 11 5.2. Test trench 1 .................................................................................................................
    [Show full text]
  • Ilulissat Icefjord
    World Heritage Scanned Nomination File Name: 1149.pdf UNESCO Region: EUROPE AND NORTH AMERICA __________________________________________________________________________________________________ SITE NAME: Ilulissat Icefjord DATE OF INSCRIPTION: 7th July 2004 STATE PARTY: DENMARK CRITERIA: N (i) (iii) DECISION OF THE WORLD HERITAGE COMMITTEE: Excerpt from the Report of the 28th Session of the World Heritage Committee Criterion (i): The Ilulissat Icefjord is an outstanding example of a stage in the Earth’s history: the last ice age of the Quaternary Period. The ice-stream is one of the fastest (19m per day) and most active in the world. Its annual calving of over 35 cu. km of ice accounts for 10% of the production of all Greenland calf ice, more than any other glacier outside Antarctica. The glacier has been the object of scientific attention for 250 years and, along with its relative ease of accessibility, has significantly added to the understanding of ice-cap glaciology, climate change and related geomorphic processes. Criterion (iii): The combination of a huge ice sheet and a fast moving glacial ice-stream calving into a fjord covered by icebergs is a phenomenon only seen in Greenland and Antarctica. Ilulissat offers both scientists and visitors easy access for close view of the calving glacier front as it cascades down from the ice sheet and into the ice-choked fjord. The wild and highly scenic combination of rock, ice and sea, along with the dramatic sounds produced by the moving ice, combine to present a memorable natural spectacle. BRIEF DESCRIPTIONS Located on the west coast of Greenland, 250-km north of the Arctic Circle, Greenland’s Ilulissat Icefjord (40,240-ha) is the sea mouth of Sermeq Kujalleq, one of the few glaciers through which the Greenland ice cap reaches the sea.
    [Show full text]
  • Soil Acidification
    Soil Acidification and Pesticide Management pH 5.1 November 14, 2018 MSU Pesticide Education Program pH 3.8 Image courtesy Rick Engel Clain Jones [email protected] 406-994-6076 MSU Soil Fertility Extension What happened here? Image by Sherrilyn Phelps, Sask Pulse Growers Objectives Specifically, I will: 1. Show prevalence of acidification in Montana (similar issue in WA, OR, ID, ND, SD, CO, SK and AB) 2. Review acidification’s cause and contributing factors 3. Show low soil pH impact on crops 4. Explain how this relates to efficacy and persistence of pesticides (specifically herbicides) 5. Discuss steps to prevent or minimize acidification Prevalence: MT counties with at least one field with pH < 5.5 Symbol is not on location of field(s) 40% of 20 random locations in Chouteau County have pH < 5.5. Natural reasons for low soil pH . Soils with low buffering capacity (low soil organic matter, coarse texture, granitic rather than calcareous) . Historical forest vegetation soils < pH than historical grassland . Regions with high precipitation • leaching of nitrate and base cations • higher yields, receive more N fertilizer • often can support continuous cropping and N each yr Agronomic reasons for low soil pH • Nitrification of ammonium-based N fertilizer above plant needs - + ammonium or urea fertilizer + air + H2O→ nitrate (NO3 ) + acid (H ) • Nitrate leaching – less nitrate uptake, less root release of basic - - anions (OH and HCO3 ) to maintain charge balance • Crop residue removal of Ca, Mg, K (‘base’ cations) • No-till concentrates acidity where N fertilizer applied • Legumes acidify their rooting zone through N-fixation. Perennial legumes (e.g., alfalfa) more than annuals (e.g., pea), but much less than fertilization of wheat.
    [Show full text]
  • Report on the Availability of Whale Meat in Greenland
    1 Greenland survey: 77% of restaurants served whale meat in 2011/2012 Greenland claims that its current Aboriginal Subsistence Whaling (ASW) quota of 175 minke whales, 16 fin whales, nine humpback whales and two bowhead whales a year is insufficient to meet the nutritional needs of Greenlanders (people born in Greenland). It claims in its 2012 Needs Statement that West Greenland alone now requires 730 tonnes of whale meat annually. Greenland has around 50 registered restaurants used by tourists, including several in hotels, plus another 25 smaller "cafeterias, hot dog stands, grill bars, ice cream shops, etc.” which are licensed separately.1 WDCS, the Whale and Dolphin Conservation Society, visited Greenland in May 2011 to assess the availability of whale meat in registered restaurants. In September 2011, WDCS and the Animal Welfare Institute (AWI) visited again. In June 2012, AWI conducted (i) a telephone and email survey of all restaurants (31) for which contact information (phone/email) was available and (ii) extensive internet research in multiple languages of web entries referencing whale meat in Greenland’s restaurants in 2011/2012. Whale meat, including fin, bowhead and minke whale, was available to tourists at 24 out of 31 (77.4%) restaurants visited, contacted, and/or researched online in Greenland in 2011/2012. In addition, one other restaurant for which there was no online record of it serving whale meat indicated, when contacted, that though it did not currently have whale meat on the menu it could be provided if requested in advance for a large enough group. Others that did not have whale meat said that they could provide an introduction to a local family that would.
    [Show full text]
  • Nitrogen Deposition Contributes to Soil Acidification in Tropical Ecosystems
    Global Change Biology Global Change Biology (2014), doi: 10.1111/gcb.12665 Nitrogen deposition contributes to soil acidification in tropical ecosystems XIANKAI LU1 , QINGGONG MAO1,2,FRANKS.GILLIAM3 ,YIQILUO4 and JIANGMING MO 1 1Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China, 2University of Chinese Academy of Sciences, Beijing 100049, China, 3Department of Biological Sciences, Marshall University, Huntington, WV 25755-2510, USA, 4Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA Abstract Elevated anthropogenic nitrogen (N) deposition has greatly altered terrestrial ecosystem functioning, threatening eco- system health via acidification and eutrophication in temperate and boreal forests across the northern hemisphere. However, response of forest soil acidification to N deposition has been less studied in humid tropics compared to other forest types. This study was designed to explore impacts of long-term N deposition on soil acidification pro- cesses in tropical forests. We have established a long-term N-deposition experiment in an N-rich lowland tropical for- À1 À1 est of Southern China since 2002 with N addition as NH4NO3 of 0, 50, 100 and 150 kg N ha yr . We measured soil acidification status and element leaching in soil drainage solution after 6-year N addition. Results showed that our study site has been experiencing serious soil acidification and was quite acid-sensitive showing high acidification < < (pH(H2O) 4.0), negative water-extracted acid neutralizing capacity (ANC) and low base saturation (BS, 8%) through- out soil profiles. Long-term N addition significantly accelerated soil acidification, leading to depleted base cations and decreased BS, and further lowered ANC.
    [Show full text]
  • Lowering Soil Ph for Horticulture Crops
    PURDUE EXTENSION HO-241-W Commercial Greenhouse and Nursery Production Lowering Soil pH for Horticulture Crops Purdue Horticulture and Michael V. Mickelbart and Kelly M. Stanton, Landscape Architecture Purdue Horticulture and Landscape Architecture www.ag.purdue.edu/HLA Steve Hawkins and James Camberato, Purdue Agronomy Purdue Agronomy www.ag.purdue.edu/AGRY The pH scale measures the acidity or alkalinity of a solution. The scale extends from 0 (a very strong acid) to 14 (a very strong base or highly alkaline). The middle of the scale, 7, is neutral, neither acidic nor basic. Soil pH is important because it affects the availability of nutrients in the rooting zone. This publication explains when lowering soil pH is important for commercial producers and recommends practices to safely and effectively lower soil pH. For more about soil pH, see Purdue Extension publication HO-240-W, Commercial Greenhouse and Nursery Production: Soil pH (available from the Purdue Extension Education Store, www. the-education-store.com). When it comes to soil pH, an accurate diagnosis is essential. Before making any changes, test your soil pH. Purdue Extension provides a list of commercial soil testing labs at: www.ag.purdue.edu/agry/extension/Pages/soil-testing-labs.aspx Why Lower Soil pH? Some plants (such as blueberries or azaleas) are adapted to grow in acid soils — even as low as pH 4.5. If you are trying to grow them you may want a soil pH less than 6, but remember that even acid-loving plants have their limits. Table 1. Effects of soil amendments on pH.
    [Show full text]