Soil Moisture and Temperature Regimes in Soil Taxonomy S

Total Page:16

File Type:pdf, Size:1020Kb

Soil Moisture and Temperature Regimes in Soil Taxonomy S 9 duripan. These horizons occur mostly in soils of arid and Co., New York, 1956. and semiarid regions and indicate the depth of water 2. Soil Taxonomy: A Basic System of Soil Classification movement. In soils rich in carbonates, the calcic hori­ for Making and Interpreting Soil Surveys. Soil Con­ zon tends in time to become plugged with carbonates servation Service, U.S. Department of Agriculture, and cemented into a hard, massive, continuous horizon U.S. Government Printing Office, USDA Handbook that is called petrocalcic. In engineering behavior this 436, 1975. horizon simulates hard country rock. 3. L. J. Bartelli and T. A. Weems. Formation and The diagnostic horizons may not have a direct bearing Classification of Soils. Soil Survey of Tensas Parish, on soil behavior, but they are important building blocks Louisiana, U.S. Government Printing Office, 1968, of the system. They are used to group together soils pp. 58-62. that have something in common that is eventually ex­ 4. G. D. Smith. Objectives and Basic Assumptions of pressed in the unique behavior of the soil. For example, the New Classification System. Soil Science, Vol. 96, ai·gillic horizons indicate an accumulation of transported No. 1, July 1963, pp. 6-16. clay; they do not reflect kind and amount of clay, which 5. R. W. Simonson. Lessons From the First Half of · strongly influence engineering behavior. Kind and Soil Survey? I. Classification of Soils. Soil Science, amount of clay aJ'e reflected in the lower categories of Vol. 74, No. 3, Sept. 1952, pp. 240-257. the system, namely, family and series. Thus, there ru:e many kinds of soils that have different engineering properties but that all have argillic horizons. REFERENCES Publication of this paper sponsored by Committee on Exploration and 1. J. S. Mill. A System of Logic. Longmans, Green Classification of Earth Materials. Soil Moisture and Temperature Regimes in Soil Taxonomy S. W. Buol, North Carolina State University at Raleigh Soil moisture and temperature regimes have been used as criteria for the lation was no more indirect than, for example, the asso­ classification of soils in the United States since the Notional Cooperative ciation of sandy so!ls to sandy parent materials, i.e., Soil Survey adopted Soil Taxonomy in 1965. The quantitative criteria sandstones and sandy alluvial sediments. F\lrthermore, used to define soil moisture regimes are based on the depth, probable soil tempe1·ature and moisture could be measured. It duration, and seasonality of soil saturation and vegetation-restricting soil dryness. Soils with morphological evidence of frequent surface was well known that these parameters of a soil varied flooding are identified. Soils with eJ<tremely low bearing strength be· with time of day and from day to day, season to season, cause of the interaction of their mineral and organic components with and year to year. It was thus apparent that the use of ambient high moisture contents are also taxonomically identified. Crite· soil temperature and moisture data in a soil taxo11omic ria for soil temperature regimes encompass the mean annual soil temp.er· system would require criteria based on absolute ranges ature and the amplitude of the change in soil temperature from summer and probability (3). to winter. Permafrost conditions are identified. Limited ranges for each One of the roles of the National Cooperative Soil Sur­ of these soil temperature and moisture properties are defined and readily identified by connotative formative elements in the formal taxonomic vey is to provide an inventory of the possible uses of land name of each soil classified in modern soil surveys. in the United States. Because much of oUl· land is used for the growth of food and fiber, the soil moisture and temperature criteria used to classify the soil must have some direct inteq,retation for the growth of plants. Much Historically, the study of temperature and moisture con­ of ow· land is also used for buildings and roads, and ditions affecting plant growth has been ascribed to the moistui·e and temperature conditions at any given site science of climatology or meteorology. Earlier, and are au integral part of the planning fo1· such condition (1). some current, attempts to classify soils did not deal di­ Flooding, bearing strength, and permafrost are some Of rectly with soil temperatw·e or moisture content except the features of direct concern. as they related to the chemical or mineralogical proper­ ties of soil. Soil scientists have recognized since the SOIL TEMPERATURE CRITERIA late 1800s that temperature and moistw·e regimes are closely related to soil properties. In 1965, the U.S. Temperatures near the surface of the soil fluctuate di­ National Cooperative Soil Survey officially began to use umally, seasonally, with tJ1e amount and tYPe of plant direct criteria of soil moisture and temperature in its cove1· and the amount of water present in the soil. The taxonomic criteria. Although this was a break with the magnitude of the fluctuations decreases with depth. How­ long-standing tradition of not using soil moisture and ever, at a given site, the mean annual temperatures at temperature data for classification, it could be logically all soil depths, and even below the soil profile, differ argued that a given soil, or given site, had distinct tem­ only slightly (6). The mean annual soil temperature perature and moisture regimes. Even though these fac­ (MAST) is related most directly to the mean annual air tors were closely related to climatic conditions, the re- temperature. Daily temperature variations are detect- 10 able to a depth of about 50 cm (20 in). To avoid time­ ranges drastically depending on particle-size distribution of-day variations, measurements of soil temperature are and natural aggregation of the solid pal'licles. The ten­ taken at this depth. Because short-term weather events sion with which water ls retained in the soil voids is the may influence soil temperatures at 50 cm (20in), anteced­ basis for classifying the various states of soil water. ent weather is considered for individual measurements. In Soil Taxonomy three states of soil water are con­ One major distinction is made with respect to soil sidered. At the dryer end of the range is unavailable temperature: Those soils for which the mean soil tem­ water; when soil moisture tension is greater than 1. 5 perature of the three warmest months differs from the MPa (15 bars) and water is largely not available for plant mean soi~ temperature of the tlu•ee coldest months by less growth. This soil moisture state is considered dry. The than 5°C (9°F) are .referred to as iso and are separated saturated state occurs when there is no tension on the from those soils for which the temperature difference is water and all the void space is filled with water. Avail­ greater than 5°C(9°F). Except for small areas where the able water is that water held in the soil at water tensions climate is greatly modified by tile oceans, these iso areas between 0 ru.1d 1.5 MPa (O and 15 bars) (Table 1). Part are confined to the intertroplcal zone. ln the United States of this water [about 0 to 0.03 MPa (Oto 0.3 bars)] drains iso-temperature soils are found in Puerto Rico, Hawaii, under the force of gravity and is sometimes referred to and some coastal areas of California. as gravitational water. The duration and depth at which Soil temperature regimes in noniso areas and their each of these soil water states occurs in a given soil are limits a1·e given in the tables below. The following table then used to define the various moisture regimes in Soil gives the characteristics of regimes for which mean Taxonomy. winter and summer soil tempera1.ui·es vary by more than 5°C (9°F). Moisture Control Section Regime MAST The depths in the soil at which soil moisture c1·iteria are established are definen by the concept of the moisture Hyperthermic >22°C (> 72°F) Thermic 15 to 22°C (59 to 72°F) control section. The upper boundary of the moisture con­ Mesic B to 15°C (47 to 59°F) trol section is the depth to which a dry soil will be moist­ Frigid < B°C (< 47° F) but not cryic or pergelic ened in 24 h after a 2.5-cm (1-in) rain. The lower bound­ Cryic Oto B°C (32 to 47°F) ary of the moisture control section is the depth to which Pergelic <0°C (<32°F) and permafrost present 7.5 cm (3 in) of water, introduced through the soil sur­ face, will moisten a dry soil in 48 h or the depth to a Mean annual soil temperatures cited above for soils of root-restricting layer such as hard rock, whichever is the cryic regime depend on the following conditions: shallower. Because of the general relation of void size (a) not water-saturated [with leaf cover mean summer to particle-size distribution, rough estimates of the temperature <8°C (<47°F)]; (b) not water-saturated [with­ control-section depths are (a) between 10 and 30 cm (4 out leaf cover mean summer temperature <15"C (<59°F)]; and 12 in) in soil material with either more than 18 per­ (c) water-satu.rated in summer [without leaf cover mean cent clay or more then 50 percent silt and less than 15 summer temperature <13°C C<55°F)J; (d) water-saturated percent sand, or both; (b) between 20 and 60-cm (8 and in summer [with leaf cover mean summer temperature 24-in) depths in textures coarser than those given above <6°C C<43°F)]; (e) organic soils frozen at some depth 2 but less than 70 pe1·cent sand if there is no clay or less months after summer solstice or influenced by ocean water.
Recommended publications
  • Study of Soil Moisture in Relation to Soil Erosion in the Proposed Tancítaro Geopark, Central Mexico: a Case of the Zacándaro Sub-Watershed
    Study of soil moisture in relation to soil erosion in the proposed Tancítaro Geopark, Central Mexico: A case of the Zacándaro sub-watershed Jamali Hussein Mbwana Baruti March, 2004 Study of soil moisture in relation to soil erosion in the proposed Tancítaro Geopark, Central Mexico: A case of the Zacándaro sub-watershed by Jamali Hussein Mbwana Baruti Thesis submitted to the International Institute for Geo-information Science and Earth Observation in partial fulfilment of the requirements for the degree of Master of Science in Geo-information Science and Earth Observation, Land Degradation and Conservation specialisation Degree Assessment Board Dr. D. Rossiter (Chairman) ESA Department, ITC Dr. D. Karssenberg (External examiner) University of Utrecht Dr. D. P. Shrestha (Supervisor) ESA Department, ITC Dr. A. Farshad (Co supervisor and students advisor) ESA Department, ITC Dr. P. Van Dijk (Programm Director, EREG), ITC INTERNATIONAL INSTITUTE FOR GEO-INFORMATION SCIENCE AND EARTH OBSERVATION ENSCHEDE, THE NETHERLANDS Disclaimer This document describes work undertaken as part of a programme of study at the International Institute for Geo-information Science and Earth Observation. All views and opinions expressed therein remain the sole responsibility of the author, and do not necessarily represent those of the institute. Abstract A study on soil moisture in relation to soil erosion was conducted in the proposed Tancítaro Geopark, Central Mexico with special attention to the Zacándaro sub-watershed. The study aims at applying a simple water balance and an erosion model as conservation planning tools. Two methods i.e. Thorn- thwaite and Mather (1955) and the Revised Morgan-Morgan-Finney (2001) were applied in a GIS environment to model available soil moisture and soil loss rates.
    [Show full text]
  • NRCS Keys to Soil Taxonomy
    United States Department of Agriculture Keys to Soil Taxonomy Ninth Edition, 2003 Keys to Soil Taxonomy By Soil Survey Staff United States Department of Agriculture Natural Resources Conservation Service Ninth Edition, 2003 The United States Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, and marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326W, Whitten Building, 14th and Independence Avenue, SW, Washington, DC 20250-9410, or call 202-720-5964 (voice and TDD). USDA is an equal opportunity provider and employer. Cover: A natric horizon with columnar structure in a Natrudoll from Argentina. 5 Table of Contents Foreword .................................................................................................................................... 7 Chapter 1: The Soils That We Classify.................................................................................. 9 Chapter 2: Differentiae for Mineral Soils and Organic Soils ............................................... 11 Chapter 3: Horizons and Characteristics Diagnostic for the Higher Categories .................
    [Show full text]
  • Water Content Concepts and Measurement Methods Suat Irmak, Professor, Soil and Water Resources and Irrigation Engineering
    EC3046 December 2019 Soil- Water Potential and Soil- Water Content Concepts and Measurement Methods Suat Irmak, Professor, Soil and Water Resources and Irrigation Engineering Soil- water status is a critical and rapidly changing tion management. In addition, it is important for studying variable that determines and impacts numerous important soil- water movement, chemical transport, crop water stress, factors in production fields such as crop emergence and evapotranspiration, hydrologic and crop modeling, soil phys- growth, water management, water and crop yield productiv- ics, water resources management, climate change impacts ity relationships, and within- field hydrologic balances. Thus, on agricultural water management and crop productivity, its accurate determination dictates and impacts the success of meteorological studies, yield forecasting, water run- off and water management and related agricultural operations. This, run- on, infiltration studies, field traffic and within- field work in turn, affects the attainment of potential yield, as well as the ability and soil- compaction studies, aridity indices, and other reduction of water losses and chemical leaching. Maintaining agricultural and ecosystem functions and practices. Effective optimum soil moisture in the crop root zone also strongly in- irrigation management requires the knowledge of “when” fluences optimum nitrogen (N) uptake by plants, which helps and “how much” water to apply to optimize crop production. to reduce N leaching. Numerous soil moisture measurement Some of the most effective irrigation management decisions technologies are available. None of the methods, however, also include “how” to apply the irrigation water for most are perfectly suited to all operational conditions as each has effective productivity under different climate, soil, crop, and drawbacks and advantages, depending on the application management practices to reduce unbeneficial water losses conditions.
    [Show full text]
  • Assessing Drought Regions and Vulnerability Through Soil Climate Regimes
    Assessing Drought Regions and Vulnerability Through Soil Climate Regimes William J. Waltman University of Nebraska, Lincoln, NE 68583-0915., Stephen Goddard, Gang Gu, Stephen E. Reichenbach, Mark D. Svoboda, and Jeffrey S. Peake. Abstract The agricultural landscapes of the Great Plains reflect a complex pattern of soil climate regimes (Soil Taxonomy, Soil Survey Staff, 1999) and inherent variability that influence the cropping systems and behavior of farmers. The historical crop yields and acreage harvested of crops were compared with climatic events through time to describe the trends and adaptations of farmers and changes in agroecology. The USDA National Agricultural Statistics Service and Risk Management Agency's county-level databases were coupled with soil climate regimes derived from the Enhanced Newhall Simulation Model to explain spatial relationships of crop yields and identifying growing environments favorable to corn, soybeans, sorghum, and wheat. In addition, these geospatial databases can be used to characterize shifts in growing environments through time and space. Comparisons were generated at the county level between irrigated and nonirrigated yields, yield ratios (corn:soybean) to identify favored environments, shifts in crop acreages reflecting past climatic events and changes in genetics, and dominant "cause-of-loss" processes for specific crops. The Enhanced Newhall Simulation Model was used to derive probabilities of soil climate regimes and differentiate agroecological zones. This study also addresses the changes in the agroecology and behavior of soil climate regimes in the Great Plains and connections to El Nino/La Nina events. Introduction Drought is the dominant process of crop loss nationally and within Nebraska. As Table 1 illustrates, on a statewide basis for Nebraska, nearly two-thirds of the 18.6 million harvested acres are covered by crop insurance.
    [Show full text]
  • Keys to Soil Taxonomy
    United States Department of Agriculture Keys to Soil Taxonomy Ninth Edition, 2003 Keys to Soil Taxonomy By Soil Survey Staff United States Department of Agriculture Natural Resources Conservation Service Ninth Edition, 2003 The United States Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, and marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326W, Whitten Building, 14th and Independence Avenue, SW, Washington, DC 20250-9410, or call 202-720-5964 (voice and TDD). USDA is an equal opportunity provider and employer. Cover: A natric horizon with columnar structure in a Natrudoll from Argentina. 5 Table of Contents Foreword .................................................................................................................................... 7 Chapter 1: The Soils That We Classify.................................................................................. 9 Chapter 2: Differentiae for Mineral Soils and Organic Soils ............................................... 11 Chapter 3: Horizons and Characteristics Diagnostic for the Higher Categories .................
    [Show full text]
  • Sustaining the Pedosphere: Establishing a Framework for Management, Utilzation and Restoration of Soils in Cultured Systems
    Sustaining the Pedosphere: Establishing A Framework for Management, Utilzation and Restoration of Soils in Cultured Systems Eugene F. Kelly Colorado State University Outline •Introduction - Its our Problems – Life in the Fastlane - Ecological Nexus of Food-Water-Energy - Defining the Pedosphere •Framework for Management, Utilization & Restoration - Pedology and Critical Zone Science - Pedology Research Establishing the Range & Variability in Soils - Models for assessing human dimensions in ecosystems •Studies of Regional Importance Systems Approach - System Models for Agricultural Research - Soil Water - The Master Variable - Water Quality, Soil Management and Conservation Strategies •Concluding Remarks and Questions Living in a Sustainable Age or Life in the Fast Lane What do we know ? • There are key drivers across the planet that are forcing us to think and live differently. • The drivers are influencing our supplies of food, energy and water. • Science has helped us identify these drivers and our challenge is to come up with solutions Change has been most rapid over the last 50 years ! • In last 50 years we doubled population • World economy saw 7x increase • Food consumption increased 3x • Water consumption increased 3x • Fuel utilization increased 4x • More change over this period then all human history combined – we are at the inflection point in human history. • Planetary scale resources going away What are the major changes that we might be able to adjust ? • Land Use Change - the world is smaller • Food footprint is larger (40% of land used for Agriculture) • Water Use – 70% for food • Running out of atmosphere – used as as disposal for fossil fuels and other contaminants The Perfect Storm Increased Demand 50% by 2030 Energy Climate Change Demand up Demand up 50% by 2030 30% by 2030 Food Water 2D View of Pedosphere Hierarchal scales involving soil solid-phase components that combine to form horizons, profiles, local and regional landscapes, and the global pedosphere.
    [Show full text]
  • Modeling Soil Nitrate Accumulation and Leaching in Conventional and Conservation Agriculture Cropping Systems
    water Article Modeling Soil Nitrate Accumulation and Leaching in Conventional and Conservation Agriculture Cropping Systems Nicolò Colombani 1 , Micòl Mastrocicco 2,*, Fabio Vincenzi 3 and Giuseppe Castaldelli 3 1 SIMAU-Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche 12, 60131 Ancona, Italy; [email protected] 2 DiSTABiF-Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Campania University “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy 3 SVeB-Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; [email protected] (F.V.); [email protected] (G.C.) * Correspondence: [email protected]; Tel.: +39-0823-274-609 Received: 25 January 2020; Accepted: 29 May 2020; Published: 31 May 2020 Abstract: Nitrate is a major groundwater inorganic contaminant that is mainly due to fertilizer leaching. Compost amendment can increase soils’ organic substances and thus promote denitrification in intensively cultivated soils. In this study, two agricultural plots located in the Padana plain (Ferrara, Italy) were monitored and modeled for a period of 2.7 years. One plot was initially amended with 30 t/ha of compost, not tilled, and amended with standard fertilization practices, while the other one was run with standard fertilization and tillage practices. Monitoring was performed continuously via soil water probes (matric potential) and discontinuously via auger core profiles (major nitrogen species) before and after each cropping season. A HYDRUS-1D numerical model was calibrated and validated versus observed matric potential and nitrate, ammonium, and bromide (used as tracers). Model performance was judged satisfactory and the results provided insights on water and nitrogen balances for the two different agricultural practices tested here.
    [Show full text]
  • Effects of Climatic Change on Soil Hydraulic Properties During
    water Article Effects of Climatic Change on Soil Hydraulic Properties during the Last Interglacial Period: Two Case Studies of the Southern Chinese Loess Plateau Tieniu Wu 1,2 , Henry Lin 2, Hailin Zhang 1,*, Fei Ye 1, Yongwu Wang 1, Muxing Liu 1, Jun Yi 1 and Pei Tian 1 1 Key Laboratory for Geographical Process Analysis & Simulation, Hubei Province, Central China Normal University, Wuhan 430079, China; [email protected] (T.W.); [email protected] (F.Y.); [email protected] (Y.W.); [email protected] (M.L.); [email protected] (J.Y.); [email protected] (P.T.) 2 Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA 16802, USA; [email protected] * Correspondence: [email protected]; Tel.: +86-27-6786-7503 Received: 16 January 2020; Accepted: 10 February 2020; Published: 12 February 2020 Abstract: The hydraulic properties of paleosols on the Chinese Loess Plateau (CLP) are closely related to agricultural production and are indicative of the environmental evolution during geological and pedogenic periods. In this study, two typical intact sequences of the first paleosol layer (S1) on the southern CLP were selected, and soil hydraulic parameters together with basic physical and chemical properties were investigated to reveal the response of soil hydraulic properties to the warm and wet climate conditions. The results show that: (1) the paleoclimate in the southern CLP during the last interglacial period showed a pattern of three warm and
    [Show full text]
  • Ground, Proximal, and Satellite Remote Sensing of Soil Moisture
    REVIEW ARTICLE Ground, Proximal, and Satellite Remote Sensing 10.1029/2018RG000618 of Soil Moisture Key Points: Ebrahim Babaeian1 , Morteza Sadeghi2 , Scott B. Jones2 , Carsten Montzka3 , • Recent soil moisture measurement 3 1 and monitoring techniques and Harry Vereecken , and Markus Tuller estimation models from the point to 1 2 the global scales and their Department of Soil, Water and Environmental Science, The University of Arizona, Tucson, AZ, USA, Department of limitations are presented Plants, Soils and Climate, Utah State University, Logan, UT, USA, 3Forschungszentrum Jülich GmbH, Institute of Bio‐ • The importance and application of and Geosciences: Agrosphere (IBG‐3), Jülich, Germany soil moisture information for various Earth and environmental sciences disciplines such as fi forecasting weather and climate Abstract Soil moisture (SM) is a key hydrologic state variable that is of signi cant importance for variability, modeling hydrological numerous Earth and environmental science applications that directly impact the global environment and processes, and predicting and human society. Potential applications include, but are not limited to, forecasting of weather and climate monitoring extreme events and their impacts on the environment and variability; prediction and monitoring of drought conditions; management and allocation of water human society are presented resources; agricultural plant production and alleviation of famine; prevention of natural disasters such as wild fires, landslides, floods, and dust storms; or monitoring of ecosystem response to climate change. Because of the importance and wide‐ranging applicability of highly variable spatial and temporal SM fi Correspondence to: information that links the water, energy, and carbon cycles, signi cant efforts and resources have been M. Tuller, devoted in recent years to advance SM measurement and monitoring capabilities from the point to the global [email protected] scales.
    [Show full text]
  • Soil Moisture Sands Is Presented by Smith [ 1967] Who Uses Conventional Concepts of Capillary Forces and Gravity
    A simplified picture of the infiltration of water into Soil Moisture sands is presented by Smith [ 1967] who uses conventional concepts of capillary forces and gravity. L. L. Boersma, D. Kirkham, D. Norum, The soil water profiles after the cessation of infiltration, R. Ziemer, J. C. Guitjens, J. Davidson, both with and without evaporation from the soil surface, and J. N. Luthin have been investigated in the field by Davidson et al. [1969] and compared with theory. Similar work is Infiltration continues to occupy the attention of soil reported by Gardner et al. [ 1970] , Staple [ 1969] , physicists and engineers. A theoretical and experimental Rubin [ 1967] , Rose [ 1968a, 1968b, 1969c] , Remson analysis of the effect of surface sealing on infiltration by [1967 ] , and Ibrahim and Brutsaert [ 1967 ] . Edwards and Larson [ 1969] showed that raindrops The applicability of Darcy's law to unsaturated flow reduced the infiltration rate by as much as 50% for a continues to receive attention in an experiment two-hour period of infiltration. The effect of raindrops on performed by Thames and Evans [ 1968 ] . They found the surface infiltration rate of soils has been investigated a linear relationship between flux and gradient only by Seginer and Morin [ 1970] who used an infiltration during the early stages of infiltration. Nonlinearity model based on the Horton equation. The effect of appeared at low gradients over a wide range of water antecedent moisture on infiltration rate was shown by contents. Bondarenko [1968] found that capillary flow Powell and Beasley [ 1967] to be dependent on crop velocity at low pressure gradients is not proportional to cover, degree of aggregation, and bulk density.
    [Show full text]
  • Plant-Water Demand Characteristics in the Alfisol, Zaria Nigeria
    Plant-Water demand Characteristics in the Alfisol, Zaria Nigeria Dim, L.A.1 – Odunze, A.C. – Heng, L.K. – Ajuji, S. Centre for Energy Research and Training, Ahmadu Bello University, P M B 1014, Zaria, Nigeria Email: [email protected]; Tel: 08023635501 Corresponding Author’s E-mail: [email protected] Abstract The Nigeria Guinea Savanna zone currently witness increasing intensification of agricultural production activities. The soils are said to have ustic moisture and isohyperthermic temperature regimes implying that rainfalls during the cropping season are limited, irregular or during the dry seasons crop production would be strongly affected by available soil water inadequacy for crop use and production. Supplemental or total water supply by irrigation would therefore be necessary to avert crop failure. Also physical restriction to root elongation can reduce soil water and nutrients uptake as well as plant growth irrespective of water and nutrient supply. This study therefore evaluated soil characteristics and water extraction depth by maize (test crop) in the Northern Guinea Savanna zone Alfisol in Zaria (110 10¹N and 7035¹E) Nigeria. Results show that minimal soil water was extracted by maize at seedling and crop maturity phases, and optimal at crop establishment to grain filling phases. Zone of active soil water extraction shown by the study is 10 to 20 Cm soil depth. Water rather accumulated at the shallow depths of 30 Cm and below following the presence of such sub soil free drainage obstructions as clay and plinthic layers. 1. Introduction Tropical semi-arid regions usually have large variations in physical conditions, both over time (variation in weather among years) and location (climate and edaphic conditions).
    [Show full text]
  • Genesis of Mollisols Under Douglas-Fir
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1983 Genesis of Mollisols under Douglas-fir Mark E. Bakeman The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Bakeman, Mark E., "Genesis of Mollisols under Douglas-fir" (1983). Graduate Student Theses, Dissertations, & Professional Papers. 2434. https://scholarworks.umt.edu/etd/2434 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. COPYRIGHT ACT OF 1976 THIS IS AN UNPUBLISHED MANUSCRIPT IN WHICH COPYRIGHT SUB­ SISTS, ANY FURTHER REPRINTING OF ITS CONTENTS MUST BE APPROVED BY THE AUTHOR, MANSFIELD LIBRARY UNIVERSITY OF MONTANA DATE : 19 83 THE GENESIS OF MOLLISOLS UNDER DOUGLAS-FIR by MARK E. BAKEMAN B.S., S.U.N.Y. College of Environmental Science and Forestry, Syracuse, 1978 Presented in partial fulfillment of the requirements for the degree of Master of Science UNIVERSITY OF MONTANA 1983 Approved by: Chairman, B6ard of Examiners rh, Graduate Schoor Date UMI Number: EP34103 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent on the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted.
    [Show full text]