Late-Quarternary Stratigraphy, Pedology

Total Page:16

File Type:pdf, Size:1020Kb

Late-Quarternary Stratigraphy, Pedology AN ABSTRACT OF THE THESIS OF Dustin White for the degree of Master of Arts in Interdisciplinary Studies in Anthropology, Geology, and Anthropology presented on May 27, 1998. Title: Late-Quaternary Stratigraphy, Pedology and Paleoclimatic Reconstruction of the Cremer Site (24SW264), South-Central Montana: A Geoarchaeological Case Study. Abstract approved: Redacted for Privacy Robson Bonnichsen This study utilizes a multidisciplinary research approach integrating the sciences of archaeology, geology, pedology and paleoclimatology. Deeply stratified and radiocarbon dated sedimentary sequences spanning the last 10,000 yr B.P. are reported for the Cremer site (24SW264), south-central Montana. Previous investigations at the site revealed an archaeological assemblage with Early Plains Archaic through Late Prehistoric period affiliations. Expanded testing of the site integrates the existing cultural record with new data pertaining to Holocene environmental changes at this northwestern Great Plains locality. Detailed pedological descriptions were made along three trenches excavated at the site. The combined soil-stratigraphic record indicates that distinct intervals of relative landscape stability and soil development occurred at the site at ca. 10,000 yr B.P., 7,500 yr B.P. and intermittently throughout the last ca. 6,000 yr B.P. Periods of significant landscape instability (upland erosion and valley deposition) occurred immediately following each of the early Holocene soil forming intervals identified above, and episodically throughout the middle to late Holocene. The impetus for early Holocene environmental instability is attributed to generally increased aridity on the northwestern Great Plains. Comparative analyses of site data with both regional environmental proxy records and numerical models of past climates (General Circulation and Archaeoclimatic models) are made to test the findings from the Cremer site. The collective paleoenvironmental evidence indicates that the period of maximum post-glacial warming and aridity occurred at the Cremer site during the early Holocene period (prior to ca. 6,000 yr B.P.). These data also indicate that the existing archaeological assemblage from the site is younger than ca. 6,000 yr B.P., although future excavations may reveal cultural sequences associated with the earliest dated soils at the site. This geoarchaeological study of the Cremer site should contribute to a much needed research base in this sparsely studied region. ©Copyright by Dustin White May 27, 1998 All Rights Reserved Late-Quaternary Stratigraphy, Pedology and Paleoclimatic Reconstruction of the Cremer Site (24SW264), South-Central Montana: A Geoarchaeological Case Study by Dustin White A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Arts in Interdisciplinary Studies Presented May 27, 1998 Commencement June 1999 Master of Arts in Interdisciplinary Studies thesis of Dustin White presented on May 27., 1998 APPROVED: Redacted for Privacy Major Professor, representing Anthropology Redacted for Privacy Committee Member, representing Geology Redacted for Privacy yommittee Member, representing Geology Redacted for Privacy Committee Member, representing Anthropology Redacted for Privacy Chair o Department of Redacted for Privacy can of Grad ate School I understand that my thesis will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my thesis to any reader upon request. Redacted for Privacy Dustin White, Author ACKNOWLEDGMENTS I would like to acknowledge a number of people who made important contributions to this thesis project. I thank Robson Bonnichsen for orchestrating the field investigations at the Cremer site and for providing material and financial support. Landowner George Cremer and family also provided material, financial and logistical support. Fellow O.S.U. graduate student Kevin Goodrich and Earthwatch volunteers were also of great assistance during the two field seasons at the Cremer site. Special thanks is given to Lucinda McWeeney for her efforts in identifying plant and charcoal remains. Additionally, staff at the Sweetgrass County Soil Survey kindly provided yet unpublished soil data for the study area and David Lopez from the Montana Bureau of Mines and Geology provided information on local bedrock and structural geology. I extend my thanks to Herb Huddleston for providing both financial support and access to the O.S.U. soil laboratories. Roberta Hall was also a source of encouragement, as were staff at the Center for the Study of the First Americans. I also want to thank Bob and Reid Bryson for discussing their climate modeling technique with me and kindly generating the archaeoclimatic data for the Cremer site. Additionally, staff at the Center for Climatic Research at the University of Wisconsin-Madison assisted me in accessing data from the Community Climate Model and staff at the University of Wisconsin Soil and Plant Analysis Laboratory provided results from a number of soil tests. And finally, much appreciation is extended to my family and Misty Weitzel for their unconditional support. Special recognition is also given to Mary Beatty, who has been both mentor and friend throughout all stages of this research. TABLE OF CONTENTS Page CHAPTER 1- INTRODUCTION .1 Problem Statement 1 Previous Work at the Cremer Site 2 Objectives of Study 9 Organization of Study 10 CHAPTER 2- PHYSICAL SETTING OF THE STUDY AREA .13 Site Location 13 Geologic Structure and Bedrock 13 Topography and Drainage .22 Springs 26 Climate .27 Climate of the North American Great Plains 27 Modern Climate of the Study Area 30 Site Conditions During the 1995 and 1996 Field Seasons 35 Soils .40 Flora .42 CHAPTER 3- RESEARCH METHODOLOGY .45 Introduction 45 Field Methods 45 TABLE OF CONTENTS (continued) Page Interdisciplinary Research Objectives of the 1995-1996 Cremer Site Project 46 Trench Excavations 46 Site Stratigraphy and Soil Profile Descriptions 49 Laboratory Methods .49 Particle Size Analysis 49 Organic Carbon Analyses and Soil pH 50 Charcoal Identification .51 Radiocarbon Samples 53 Paleoclimate Modeling .55 CHAPTER 4- SITE STRATIGRAPHY AND PEDOLOGY 56 Introduction 56 Site Stratigraphy and Pedology: An Overview .58 Trench 1 and the Northeast Streamface 59 Landform Morphology .59 Stratigraphy and Pedology: Trench 1 and the Northeast Streamface 61 Soil-Stratigraphic Profile # 1 (Northeast Streamface) .63 Soil-Stratigraphic Profile # 2 (Trench 1 at 24.0 m) .70 Soil-Stratigraphic Profile # 3 (Trench 1 at 8.0 m) 85 Evolutionary History of the Trench 1/Northeast Streamface Landform..102 Trench 2 109 Landform Morphology 109 Stratigraphy and Pedology: Trench 2 .111 Soil-Stratigraphic Profile # 4 (Trench 2 at 3.0 m) .112 Soil-Stratigraphic Profile # 5 (Trench 2 at 20.0 m) and Profile # 6 (Trench 2 at 32.5 m) 126 Evolutionary History of the Trench 2 Landform 126 TABLE OF CONTENTS (continued) Page Trench 3 .135 Landform Morphology 135 Stratigraphy and Pedology: Trench 3 .136 Soil-Stratigraphic Profile # 7 (Trench 3 at 10.0 m) 137 Soil-Stratigraphic Profile # 8 (Trench 3 at 28.0 m) 146 Evolutionary History of the Trench 3 Landform 154 Significance of Site Stratigraphy to Paleoclimatic Reconstructions of Central Montana .156 CHAPTER 5- REGIONAL PALEOCLIMATE HISTORY 158 Introduction 158 Regional Climate Research in Areas Surrounding the Cremer Site 158 Paleoclimate Modeling 166 General Circulation Model (GCM) Results 167 Archaeoclimatic (Site-Specific) Model Results .172 Discussion 177 CHAPTER 6- CONCLUSIONS 183 Paleoenvironmental Summary of the Cremer Site 183 The Cremer Site Archaeological Record Re-visited 187 Recommendations for Future Research 190 REFERENCES 194 APPENDICES 203 TABLE OF CONTENTS (continued) Page Appendix A View of the Cremer Site Looking North 204 Appendix B View of the Cremer Site Looking South 205 Appendix C View of the Trench 1/Northeast Streamface Landform Looking Northeast 206 Appendix D View of the Trench 2 Landform Looking Southeast 207 LIST OF FIGURES Figure Page 1.1 Northwestern Plains chronological chart.. 3 1.2 Summary of the natural and cultural stratigraphy of the Cremer site identified in 1979/1980 5 2.1 Physiographic map of Montana 14 2.2 Physiographic divisions of central Montana 16 2.3 Crazy Mountains Basin and Tertiary intrusives east of the Rocky Mountain Front 17 2.4 Bedrock geology of the Cremer site region 20 2.5 Topographic map of the Cremer site (20 feet contour interval) .24 2.6 Melville, Montana seasonal distribution of precipitation ...29 2.7 Cremer site study area average monthly temperature 34 2.8 Cremer site study area average monthly precipitation 36 2.9 Melville, Montana mean precipitation: 1961-1990, 1995 and 1996 39 2.10 Vegetation map of the central North American grasslands and adjacent areas 43 4.1 Plan view and topographic map of the Cremer site (50 cm contour interval) 57 4.2 Soil-Stratigraphic Profile # 1 (Northeast Streamface) 64 4.3 Soil-Stratigraphic Profile # 2 (Trench 1 at 24.0 m) 72 4.4 Fine-earth (< 2.0 mm in diameter) percentages by soil horizon at Profile # 2 (Trench 1 at 24.0 m) 75 4.5 Lithic coarse fragment (> 2.0 mm in diameter) percentages by soil horizon at Profile # 2 (Trench 1 at 24.0 m) .76 4.6 Total organic carbon (Walkley-Black) percentages by soil horizon at Profile # 2 (Trench 1 at 24.0 m) 77 LIST OF FIGURES (continued) Figure Page 4.7 Soil-Stratigraphic Profile # 3 (Trench 1 at 8.0 m) 86 4.8 Fine-earth (< 2.0 mm in diameter) percentages
Recommended publications
  • Nichols Arboretum: Soil Types
    Nichols Arboretum: Soil Types Not Present in Arboretum Boyer Sandy Loam 0-6% Slopes Fox Sandy Loam 6-12% Slopes Miami Loam 2-6% Slopes Miami Loam 6-12% Slopes Miami Loam 12-18% Slopes Miami Loam 18-25% Slopes Miami Loam 25-35% Slopes Sloan Silt Loam, Wet Water Wasepi Sandy Loam 0-4% Slopes Mary Hejna : September 2012 0 0.125 0.25 Miles Data from NRCS Soil Survey t Soil Series Descriptions BOYER SERIES The Boyer series consists of very deep, well drained soils formed in USE AND VEGETATION sandy and loamy drift underlain by sand or gravelly sand outwash at Soils are cultivated in most areas. Principal crops are corn, small depths of 51 to 102 cm (20 to 40 inches). grain, soybeans, field beans, and alfalfa hay. A few areas remain in GEOGRAPHIC SETTING permanent pasture or forest. The dominant forest trees are oaks, hickories, and maples. Boyer soils are on outwash plains, valley trains, kames, beach ridges, river terraces, lake terraces, deltas, and moraines of Wisconsinan age. TYPICAL PEDON The slope gradients are dominantly 0 to 12 percent, but range from 0 Boyer loamy sand, on a 4 percent slope in a cultivated field. (Colors to 50 percent. Boyer soils formed in sandy and loamy drift underlain are for moist soil unless otherwise stated.) by sand or gravelly sand outwash at depths of 51 to 102 cm (20 to 40 inches). Quartz is the dominant mineral in the 3C horizon, which Ap--0 to 18 cm (7 inches); dark grayish brown (10YR 4/2) loamy contains, in addition, varying amounts of material from igneous and sand, light brownish gray (10YR 6/2) dry; weak fine granular metamorphic rocks, limestone, and dolomite.
    [Show full text]
  • Assessing Drought Regions and Vulnerability Through Soil Climate Regimes
    Assessing Drought Regions and Vulnerability Through Soil Climate Regimes William J. Waltman University of Nebraska, Lincoln, NE 68583-0915., Stephen Goddard, Gang Gu, Stephen E. Reichenbach, Mark D. Svoboda, and Jeffrey S. Peake. Abstract The agricultural landscapes of the Great Plains reflect a complex pattern of soil climate regimes (Soil Taxonomy, Soil Survey Staff, 1999) and inherent variability that influence the cropping systems and behavior of farmers. The historical crop yields and acreage harvested of crops were compared with climatic events through time to describe the trends and adaptations of farmers and changes in agroecology. The USDA National Agricultural Statistics Service and Risk Management Agency's county-level databases were coupled with soil climate regimes derived from the Enhanced Newhall Simulation Model to explain spatial relationships of crop yields and identifying growing environments favorable to corn, soybeans, sorghum, and wheat. In addition, these geospatial databases can be used to characterize shifts in growing environments through time and space. Comparisons were generated at the county level between irrigated and nonirrigated yields, yield ratios (corn:soybean) to identify favored environments, shifts in crop acreages reflecting past climatic events and changes in genetics, and dominant "cause-of-loss" processes for specific crops. The Enhanced Newhall Simulation Model was used to derive probabilities of soil climate regimes and differentiate agroecological zones. This study also addresses the changes in the agroecology and behavior of soil climate regimes in the Great Plains and connections to El Nino/La Nina events. Introduction Drought is the dominant process of crop loss nationally and within Nebraska. As Table 1 illustrates, on a statewide basis for Nebraska, nearly two-thirds of the 18.6 million harvested acres are covered by crop insurance.
    [Show full text]
  • Keys to Soil Taxonomy
    United States Department of Agriculture Keys to Soil Taxonomy Ninth Edition, 2003 Keys to Soil Taxonomy By Soil Survey Staff United States Department of Agriculture Natural Resources Conservation Service Ninth Edition, 2003 The United States Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, and marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326W, Whitten Building, 14th and Independence Avenue, SW, Washington, DC 20250-9410, or call 202-720-5964 (voice and TDD). USDA is an equal opportunity provider and employer. Cover: A natric horizon with columnar structure in a Natrudoll from Argentina. 5 Table of Contents Foreword .................................................................................................................................... 7 Chapter 1: The Soils That We Classify.................................................................................. 9 Chapter 2: Differentiae for Mineral Soils and Organic Soils ............................................... 11 Chapter 3: Horizons and Characteristics Diagnostic for the Higher Categories .................
    [Show full text]
  • Soil Survey of Walworth County, Wisconsin
    Issued February 1971 . SOIL SURVEY . .W alworthCounty I Wisconsin UNITED STATES DEPARTMENT OF AGRICULTURE Soil Conservation Service In cooperation with -- .. UNIVERSITY OF WISCONSIN Wisconsin Geological and Natural History Survey Soils Department, and Wisconsin Agricultural Experiment Station Major fieldwork for this soil survey was done in the period 1959-64. Soil names and descriptions were approved in 1966. Unless otherwise indicated, statements in this publication refer- to conditions in the county in 1966. This survey was made cooperatively by the Soil Conservation Service and the Wisconsin Geological and Natural History Survey, Soils Department, and the Wisconsin Agricultural Experiment Station, University of Wisconsin. It is part of the technical assistance furnished to the Walworth County Soil and Water Conservation District. The fieldwork that is the basis for this soil survey was partly financed. by the Southeastern Wisconsin Regional Planning Commission; by a joint planning grant from the State Highway Commission of Wisconsin; by the U.S. Department of Commerce, Bureau of Public Roads; and by the Department of Housing and Urban Development under the provisions of the Federal Aid to Highways legislation and section 701 of the Housing Act of 1954, as amended. Either enlarged or reduced copies of the soil map in this publication can be made by commercial photographers, or they can be purchased on individual order from the Cartographic Division, Soil Conservation Service, U.S. Department of Agriculture, Washington, D.C. 20250. HOW TO USE THIS SOIL SURVEY HIS SOIL SURVEY contains informa- an oved.ay over the soil map an? ?olo!,ed to Ttion that can be applied in managing farms sh?w ?(:nls that have ,bhe sal!le hm~tatIOn or .
    [Show full text]
  • Plant-Water Demand Characteristics in the Alfisol, Zaria Nigeria
    Plant-Water demand Characteristics in the Alfisol, Zaria Nigeria Dim, L.A.1 – Odunze, A.C. – Heng, L.K. – Ajuji, S. Centre for Energy Research and Training, Ahmadu Bello University, P M B 1014, Zaria, Nigeria Email: [email protected]; Tel: 08023635501 Corresponding Author’s E-mail: [email protected] Abstract The Nigeria Guinea Savanna zone currently witness increasing intensification of agricultural production activities. The soils are said to have ustic moisture and isohyperthermic temperature regimes implying that rainfalls during the cropping season are limited, irregular or during the dry seasons crop production would be strongly affected by available soil water inadequacy for crop use and production. Supplemental or total water supply by irrigation would therefore be necessary to avert crop failure. Also physical restriction to root elongation can reduce soil water and nutrients uptake as well as plant growth irrespective of water and nutrient supply. This study therefore evaluated soil characteristics and water extraction depth by maize (test crop) in the Northern Guinea Savanna zone Alfisol in Zaria (110 10¹N and 7035¹E) Nigeria. Results show that minimal soil water was extracted by maize at seedling and crop maturity phases, and optimal at crop establishment to grain filling phases. Zone of active soil water extraction shown by the study is 10 to 20 Cm soil depth. Water rather accumulated at the shallow depths of 30 Cm and below following the presence of such sub soil free drainage obstructions as clay and plinthic layers. 1. Introduction Tropical semi-arid regions usually have large variations in physical conditions, both over time (variation in weather among years) and location (climate and edaphic conditions).
    [Show full text]
  • Genesis of Mollisols Under Douglas-Fir
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1983 Genesis of Mollisols under Douglas-fir Mark E. Bakeman The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Bakeman, Mark E., "Genesis of Mollisols under Douglas-fir" (1983). Graduate Student Theses, Dissertations, & Professional Papers. 2434. https://scholarworks.umt.edu/etd/2434 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. COPYRIGHT ACT OF 1976 THIS IS AN UNPUBLISHED MANUSCRIPT IN WHICH COPYRIGHT SUB­ SISTS, ANY FURTHER REPRINTING OF ITS CONTENTS MUST BE APPROVED BY THE AUTHOR, MANSFIELD LIBRARY UNIVERSITY OF MONTANA DATE : 19 83 THE GENESIS OF MOLLISOLS UNDER DOUGLAS-FIR by MARK E. BAKEMAN B.S., S.U.N.Y. College of Environmental Science and Forestry, Syracuse, 1978 Presented in partial fulfillment of the requirements for the degree of Master of Science UNIVERSITY OF MONTANA 1983 Approved by: Chairman, B6ard of Examiners rh, Graduate Schoor Date UMI Number: EP34103 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent on the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • Custom Soil Resource Report for Miami-Dade County Area, Florida
    United States A product of the National Custom Soil Resource Department of Cooperative Soil Survey, Agriculture a joint effort of the United Report for States Department of Agriculture and other Federal agencies, State Miami-Dade Natural agencies including the Resources Agricultural Experiment County Area, Conservation Stations, and local Service participants Florida July 12, 2018 Preface Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment. Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations. Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/ portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).
    [Show full text]
  • Morphology and Composition of Some Soils of the Miami Family and the Miami Catena
    TECHJDacAi. BULLETIN NO. 834 • September 1942 Morphology and Composition of Some Soils of the Miami Family and the Miami Catena By IKVIN C. BROWN Associate Chemist Oivisii»! of Soil and Fertilizer Inyestigatioas and JAMES THORP Soil Scientist Division of Soil Survey Bureau of Plant Industry UNITED STATES DEPARTMENT OF AGRICULTURE, WASHINGTON, D. C. For sale by the Superintendent of Doeumeuts, Washiugton« D. C. • Priée 10 eents Technical Bulletin No. 834 • 1942 ¡■¡HilHt^^H^^^^Hlllill^^^^HMIIMSH Morphology and Composition of Some Soils of the Miami Family and the Miami Catena ' By IRVIN C. BROWN, associate chemist, Division of Soil and Fertilizer Investiga- tions, and JAMES THOEP, soil scientist, Division of Soil Survey, Bureau of Plant Industry CONTENTS Page Introduction 1 Analytical results—Continued. Status of soil classification 2 Chemical analyses of the colloids 32 What is a soil family? 2 Organic matter 37 What is a soil catena? 4 Derived data 41 The relationships between soil fam- The clay minerals 44 ily and soil catena 0 General discussion __ 45 Collection of samples 10 The parent rock 45 Description of soils sampled 10 Climate and vegetation 46 Methods of examination 18 Lay of the land and natural drain- Analytical results : 19 age 46 Mechanical analyses of the soils 19 Summary 52 Chemical analyses of the soils 25 Literature cited 53 INTRODUCTION As several thousand soil types have been recognized in the United States, it is now possible to establish their systematic classification. Soils may be grouped in many different ways according to the ob- jectives sought in the classification, but for convenience two systems have been followed in the United States.
    [Show full text]
  • Report III - 3 Agro-Ecology
    WEC-10-2001 Report III - 3 Agro-Ecology 1 WEC-10-2001 Table of Contents 1. Introduction _________________________________________________________________ 4 2. Agricultural Land ____________________________________________________________ 5 2.1 Land Holdings ___________________________________________________________ 5 2.2 Agricultural Regions______________________________________________________ 6 2.3 Available Land __________________________________________________________ 6 2.3.1 Cultivable VS pasture land _____________________________________________ 9 2.3.2 Available cultivable land _______________________________________________ 9 2.3.3 Irrigated areas expansion _______________________________________________ 9 3. Soils ______________________________________________________________________ 12 3.1 Background ____________________________________________________________ 12 3.2 An Overview of Soil Genesis ______________________________________________ 13 3.2.1 Soil forming factors __________________________________________________ 13 3.2.1.1 Climate __________________________________________________________ 13 3.2.1.2 Topography _______________________________________________________ 14 3.2.1.3 Vegetation ________________________________________________________ 14 3.2.1.4 Parent material ____________________________________________________ 14 3.2.1.5 Time ____________________________________________________________ 14 3.2.2 Soil formation processes _______________________________________________ 15 3.3 Brief Description of Soils _________________________________________________
    [Show full text]
  • Chapter 8 Section 2 Exhibit
    Soil Series Characteristics Updated 6/25/2020 Water Pedological Pedalogical DGI Frost Index K Factor Drainage Hydrologic Bedrock Table Description Cross-Reference Name Symbol Factor Group Depth B C D B C D B C D Depth Abbaye Absco Absocta MI0082 - 2 - F-2 - 250 MW SANDY ALLUVIUM > 5 FEET THICK CAREYVILLE Ackmore IA0188 20 16 F-4 F-4 75 100 SP 24 B Silty clay loam, silt loam WASHTENAW Adder Adolph MN0188 14 14 F-3 F-3 125 125 P-VP WET SILTY CLAY AND SILT OVER TILL AUBURNDALE Adrian MI0028 Muck over sand PEAT Aftad Ahmeek MN0157 12 2 F-4 F-2 150 300 MW BOULDERY SAND WITH FINES SILTY ALLUVIUM OVER LAC. SLT & Akan WI0260 14 F-4 125 P-VP ORION CLY LOAMY DEPOSITS OVER SILT AND Alban WI0010 12 12 F-4 F-4 150 150 MW EAUPLEINE SAND Alcona MI0177 14 14 F-4 F-4 125 125 W LOAMY SOLA OVER SILT AND SAND BOHEMIAN Algansee MI0123 2 2 F-2 F-2 250 250 SP SANDY ALLUVIUM > 5 FEET THICK BREMS Allendale MI0185 12 12 F-3 F-4 150 150 SP 12 C Fine sandy loam over silty clay TUSTIN Allouez 4 0 F-2 F-0 250 300 W LOAMY GRAVELLY BEACH DEPOSITS PENCE SILT OVER SAND WITH COHERENT Almena WI0262 14 14 14 F-4 F-3 F-3 125 125 125 SP FINES Alpena MI0124 0 F-0 250 E - A Stratified extremely gravelly sand to sand Alstad WI0218 10 10 F-3 F-3 200 200 SP SILTY CLAY TILL Water Pedological Pedalogical DGI Frost Index K Factor Drainage Hydrologic Bedrock Table Description Cross-Reference Name Symbol Factor Group Depth B C D B C D B C D Depth WET SILTY CLAY AND SILT OVER Altdorf WI0031 14 14 F-3 F-3 125 125 P-VP RESIDUUM Altoona WI0263 12 0 F-3 F-0 155 300 SP LOAMY DEPOSIT OVER SANDSTONE
    [Show full text]
  • The Natural Soil Drainage Index: an Ordinal Estimate of Long-Term Soil Wetness
    THE NATURAL SOIL DRAINAGE INDEX: AN ORDINAL ESTIMATE OF LONG-TERM SOIL WETNESS Randall J. Schaetzl Department of Geography 128 Geography Building Michigan State University East Lansing, Michigan 48824-1117 Frank J. Krist, Jr. GIS and Spatial Analysis, Forest Health Technology Enterprise Team USDA Forest Service 2150 Centre Avenue Bldg. A, Suite 331 Fort Collins, Colorado 80525-1891 Kristine Stanley Department of Geography University of Wisconsin Madison, Wisconsin 53706-1491 Christina M. Hupy Department of Geography and Anthropology University of Wisconsin Eau Claire, Wisconsin 54702-4004 Abstract: Many important geomorphic and ecological attributes center on soil water content, especially over long timescales. In this paper we present an ordinally based index, intended to generally reflect the amount of water that a soil supplies to plants under natural conditions, over long timescales. The Natural Soil Drainage Index (DI) ranges from 0 for the driest soils (e.g., those shallow to bedrock in a desert) to 99 (open water). The DI is primarily derived from a soil’s taxonomic subgroup classification, which is a reflection of its long-term wetness. Because the DI assumes that soils in drier climates and with deeper water tables have less plant-useable water, taxonomic indicators such as soil mois- ture regime and natural drainage class figure prominently in the “base” DI formulation. Additional factors that can impact soil water content, quality, and/or availability (e.g., tex- ture), when also reflected in taxonomy, are quantified and added to or subtracted from the base DI to arrive at a final DI value. In GIS applications, map unit slope gradient can be added as an additional variable.
    [Show full text]
  • Soil and Water Relationships of Florida Ecological Communities
    One of the documents mentioned in Rule 62-340, F.A.C. is Soil and Water Relationships of Florida’s Ecological Communities by the Florida’s Soil Survey Staff, USDA-NRCS. With their permission we have adapted the document for our website. SOIL AND WATER July, 1992 Adapted RELATIONSHIPS OF FLORIDA’S ECOLOGICAL COMMUNITIES Page 2 SOIL AND WATER July, 1992 Adapted RELATIONSHIPS OF FLORIDA’S ECOLOGICAL COMMUNITIES Contents Page Ecological Communities of Florida 1 Field Identification of Ecological Communities 3 Hydric Soils of Florida 9 Field Identification of Hydric Soils 10 Hydric Soil Indicators: Indicator and User Notes 12 Estimating the Seasonal High Water Table 20 References 22 Forward: This material has been produced and is provided by Florida Soil Conservation Service Soil Survey Staff, G. Wade Hurt, State Soil Scientist, in consultation with soil scientists from other agencies as well as the private sector. The sections Field Identification of Hydric Soils, Hydric Soil Indicator, and Estimating the Seasonal High Water Table have been updated by Florida Department of Environmental Protection Submerged Lands and Environmental Resources Coordination staff in accordance with the Field Indicators of Hydric Soils in the United States, Version 7.0. The purpose of this material is to present an understanding of soil and water relationships by soil scientists in Florida and to promote an appreciation and understanding of these soil and water relationships among others. The ecological community concept is used because only after a thorough understanding of natural systems such as ecological communities can we understand the implication of any soil attribute such as the water table to any proposed land use change.
    [Show full text]