Categorization of County Soil Survey Data Within the SFWMD Including Natural Soils Landscape Positions

Total Page:16

File Type:pdf, Size:1020Kb

Categorization of County Soil Survey Data Within the SFWMD Including Natural Soils Landscape Positions Soil Classification Database: Categorization of County Soil Survey Data within the SFWMD Including Natural Soils Landscape Positions Technical Publication WS-06 by John Zahina, Ken Liudahl (NRCS), Tim Liebermann, Kurt Saari, Jerry Krenz, and Victor Mullen October 2001 South Florida Water Management District Soil Classification Database Table of Contents TABLE OF CONTENTS Table of Contents i List of Tables iii List of Figures v Abstract vii Acknowledgements ix Introduction 1 General Methods 3 Classification by Depth and Duration of the SHWT ...............................................3 Classification by Ecological Community Type.......................................................9 Classification by NSLP Type ................................................................................15 Use of the Soil Classifications 23 Summary 25 References 27 Glossary and List of Abbreviations 29 Appendix A: SHWT Classification Codes A-1 Appendix B: Ecological Community Category Definitions B-1 Appendix C: Landscape Classification Categories C-1 Appendix D: Selected Ecological Communities D-1 South Florida Coastal Strand .............................................................................. D-1 Sand Pine Scrub .................................................................................................. D-3 South Florida Flatwoods i Table of Contents Soil Classification Database Scrub Cypress ..................................................................................................... D-7 Cypress Swamp................................................................................................... D-8 Salt Marsh ......................................................................................................... D-10 Sawgrass Marsh ................................................................................................ D-12 Freshwater Marsh and Ponds............................................................................ D-13 Slough ............................................................................................................... D-15 Appendix E: Natural Soil Landscape Positions Classification Database E-1 ii Soil Classification Database List of Tables LIST OF TABLES Table 1. Classification Codes Used to Classify Soils by Depth and Duration of the SHWT. ...............................................................................................................5 Table 2. Ecological Community Category Definitions..................................................10 Table 3. Sorting Criteria for Soils Data by NSLP Type. ...............................................16 Table 4. Dates of Publication of County Soil Surveys by NRCS..................................24 Table A-1. Category Codes and Associated Ranges for the SHWT Used in the Categorization of Duration. .......................................................................... A-2 Table B-1. Category Definitions for the Ecological Community Categories..................B-1 Table C-1. Soil Series within Each NSLP Category with the Largest Aerial Extent. .....C-1 Table C-2. Range of Map Unit Values within the NSLP Categories. ...........................C-2 Table E-1. Three Digit Map Unit Symbols Used in the MUID.......................................E-2 Table E-2. LSPOS Codes. ...............................................................................................E-3 Table E-3. Surface Soil Texture Codes. ..........................................................................E-4 Table E-4. Hydrological Group Codes. ...........................................................................E-5 Table E-5. Soil Drainage Class Codes.............................................................................E-5 iii List of Tables Soil Classification Database iv Soil Classification Database List of Figures LIST OF FIGURES Figure 1. Map Extent of the Soils Classification Database, Indicated by the Shaded Counties. ............................................................................................................4 Figure 2. Map of the Level 1 SHWT Categories for a Sample Area on the West Side of Lake Okeechobeee.............................................................................................6 Figure 3. Map of the Ecological Community Categories for a Sample Area on the West Side of Lake Okeechobeee. .............................................................................11 Figure 4. Poster of NSLP (pullout) v List of Figures Soil Classification Database vi Soil Classification Database Abstract ABSTRACT Keywords: landscape position, soils, SSURGO, GIS An updated single soil database of soil map units in South Florida, based on groups of similar morphologic characteristics, has improved the ability to visualize the spatial patterns of soils and to extract quantitative data for modeling and other hydrologic analyses. Soil characteristics reflect the complex interaction among topography, climate, vegetation, hydrology, and parent material. In South Florida, very small changes in topography can greatly affect hydrologic response. Soil survey maps compiled by the Natural Resources Conservation Service (NRCS) contain a wealth of spatial and analytical data but have been difficult to apply because of the large size, use of different names, and complexity of the database for each county. As part of a previous cooperative effort by NRCS and staff at the South Florida Water Management District, spatial layers of county-level soil surveys (Soil Survey Geographic Data Base, or SSURGO) were edgematched and corrected to create a seamless Geographic Information System (GIS) database. The overall database included detailed soils for 19 counties, containing 195,000 polygons, with 909 soil mapping units and 220 distinct soil types. A set of 34 data fields (such as slope, hydric, and surface texture) was developed and checked and corrected for each mapping unit and is identified in the Natural Soils Lnadscape Positions (NSLP) database. Three classifications of the soil database were conducted, categorizing the large soils database into a relatively small number of categories (12 or less). These three classifications are based on depth and duration of the seasonal high water table, ecological community types, and NSLP types. The NSLP is a more complex classification based on the depth of the seasonal high-water table, soil morphological characteristics, and geographical location. These parameters were used to define 10 natural landscape positions that are significant to South Florida (water, tidal, marl and rocky, Everglades peat, muck depressions, sand depression, flats, flatwoods, knolls, Central Ridge & Dunes, and urban or made lands). The initial criteria were adjusted and evaluated until a consistent and useful classification was obtained. vii Abstract Soil Classification Database viii Soil Classification Database Acknowledgements ACKNOWLEDGEMENTS This project was a cooperative effort between the South Florida Water Management District (SFWMD) and the Natural Resources Conservation Service (formerly Soil Conservation Service). The SFWMD provided Geographical Information System (GIS), graphical, and planning support. Dale Woodruff provided technical assistance in analysis of the data base and map production. Steve Traver and Rick Miessau provided technical support on the creation the website. Ellen Negley and Debra Case provided graphical support for the production of the poster and some graphical aspects of this technical publication. We would like to recognize the members of the Planning and Water Resource Evaluation Departments who converted the soils maps into digital form and updated and improved the SSURGO databases under SFWMD contract C-3119. Supporting staff includes Ed Biggs, Joe Chapa, Tim Scharff, Tim Liebermann, and Mike Rose. These coverages and databases form the foundation of the work described here. This project has been funded in part by the United States Environmental Protection Agency (USEPA) under Assistance Agreement ID Number X9948864-96-0 to the South Florida Wetlands Conservation Strategy. The contents of this document do not necessarily reflect the views and policies of the USEPA, nor does mention of trade names or commercial product constitute endorsement or recommendation for use. ix Acknowledgements Soil Classification Database x Soil Classification Database Introduction INTRODUCTION The Soil Classification Database is a reclassification of county soil survey data published by the Natural Resources Conservation Service (NRCS), formerly the Soil Conservation Service (SCS). A total of 907 soil map units were sorted by similar hydrological, morphological, and vegetation characteristics. New classification fields resulting from this process were added to the database to allow the user to group soils data into categories based upon specific characteristics. The purpose of developing these new classification fields was to bring the large digital county soil database into a single user-friendly database, and to provide a clearer understanding of the relationships that exist between soil, hydrology, and the vegetation community. The resulting data offers a simplified soil landscape layer within the South Florida Water Management District’s (SFWMD) Geographical Information System (GIS) that contains 34 fields. The Soil Classification Database provides modelers, planners, and resource managers with an interpretation of the natural landscape not available from existing sources. Because the
Recommended publications
  • Nichols Arboretum: Soil Types
    Nichols Arboretum: Soil Types Not Present in Arboretum Boyer Sandy Loam 0-6% Slopes Fox Sandy Loam 6-12% Slopes Miami Loam 2-6% Slopes Miami Loam 6-12% Slopes Miami Loam 12-18% Slopes Miami Loam 18-25% Slopes Miami Loam 25-35% Slopes Sloan Silt Loam, Wet Water Wasepi Sandy Loam 0-4% Slopes Mary Hejna : September 2012 0 0.125 0.25 Miles Data from NRCS Soil Survey t Soil Series Descriptions BOYER SERIES The Boyer series consists of very deep, well drained soils formed in USE AND VEGETATION sandy and loamy drift underlain by sand or gravelly sand outwash at Soils are cultivated in most areas. Principal crops are corn, small depths of 51 to 102 cm (20 to 40 inches). grain, soybeans, field beans, and alfalfa hay. A few areas remain in GEOGRAPHIC SETTING permanent pasture or forest. The dominant forest trees are oaks, hickories, and maples. Boyer soils are on outwash plains, valley trains, kames, beach ridges, river terraces, lake terraces, deltas, and moraines of Wisconsinan age. TYPICAL PEDON The slope gradients are dominantly 0 to 12 percent, but range from 0 Boyer loamy sand, on a 4 percent slope in a cultivated field. (Colors to 50 percent. Boyer soils formed in sandy and loamy drift underlain are for moist soil unless otherwise stated.) by sand or gravelly sand outwash at depths of 51 to 102 cm (20 to 40 inches). Quartz is the dominant mineral in the 3C horizon, which Ap--0 to 18 cm (7 inches); dark grayish brown (10YR 4/2) loamy contains, in addition, varying amounts of material from igneous and sand, light brownish gray (10YR 6/2) dry; weak fine granular metamorphic rocks, limestone, and dolomite.
    [Show full text]
  • Pocket Guide to Hydric Soils for Wetland Delineations In
    The Buzzards Bay National Estuary Program Buzzards Bay National Estuary Program 2870 Cranberry Highway East Wareham, MA 02538 Pocket Guide to Hydric Soils #508-291-3625 x 14 www.buzzardsbay.org for Wetland Delineations in Massachusetts Version 2.1 The Buzzards Bay National Estuary Program November, 2014 This document is a compilation of material taken from Delineating Bordering Vegetated Appendix G – Observing and Recording Hue, Value and Chroma Wetlands under the Wetlands Protection Act, published by the Massachusetts Department of Environmental Protection, Division of Wetlands, and Waterways and the Regional All colors noted in this Booklet refer to moist Munsell® colors (Gretag/Macbeth 2000). Do not attempt to determine colors while wearing sunglasses or tinted lenses. Colors must be determined Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and under natural light and not under artificial light. Northeast Region (Version 2.0), published by the U.S. Army Engineer Research and Development Center. Chroma Soil colors specified in the ACOE indicators do not have decimal points (except for indicator A12); This document also includes excerpts from the Field Indicators of Hydric Soils in the however, intermediate colors do occur between Munsell chips. Soil color should not be rounded to United States, A Guide for Identifying and Delineation Hydric Soils, Version 7.0, qualify as meeting an indicator. For example, a soil matrix with a chroma between 2 and 3 should including the 2013 Errata, as well as Field Indicators for Identifying Hydric Soils in New be recorded as having a chroma of 2+. This soil material does not have a chroma of 2 and would England, 3rd ed.
    [Show full text]
  • Field Indicators of Hydric Soils in the United States Natural Resources a Guide for Identifying and Delineating Conservation Service Hydric Soils, Version 7.0, 2010
    United States In cooperation with Department of the National Technical Agriculture Committee for Hydric Soils Field Indicators of Hydric Soils in the United States Natural Resources A Guide for Identifying and Delineating Conservation Service Hydric Soils, Version 7.0, 2010 Field Indicators of Hydric Soils in the United States A Guide for Identifying and Delineating Hydric Soils, Version 7.0, 2010 United States Department of Agriculture, Natural Resources Conservation Service, in cooperation with the National Technical Committee for Hydric Soils Edited by L.M. Vasilas, Soil Scientist, NRCS, Washington, DC; G.W. Hurt, Soil Scientist, University of Florida, Gainesville, FL; and C.V. Noble, Soil Scientist, USACE, Vicksburg, MS ii The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. Copies of this publication can be obtained from: NRCS National Publications and Forms Distribution Center LANDCARE 1-888-LANDCARE (888-526-3227) [email protected] Information contained in this publication and additional information concerning hydric soils are maintained on the Web site at http://soils.usda.gov/use/hydric/.
    [Show full text]
  • Field Indicators of Hydric Soils
    United States Department of Field Indicators of Agriculture Natural Resources Hydric Soils in the Conservation Service United States In cooperation with A Guide for Identifying and Delineating the National Technical Committee for Hydric Soils Hydric Soils, Version 8.2, 2018 Field Indicators of Hydric Soils in the United States A Guide for Identifying and Delineating Hydric Soils Version 8.2, 2018 (Including revisions to versions 8.0 and 8.1) United States Department of Agriculture, Natural Resources Conservation Service, in cooperation with the National Technical Committee for Hydric Soils Edited by L.M. Vasilas, Soil Scientist, NRCS, Washington, DC; G.W. Hurt, Soil Scientist, University of Florida, Gainesville, FL; and J.F. Berkowitz, Soil Scientist, USACE, Vicksburg, MS ii In accordance with Federal civil rights law and U.S. Department of Agriculture (USDA) civil rights regulations and policies, the USDA, its Agencies, offices, and employees, and institutions participating in or administering USDA programs are prohibited from discriminating based on race, color, national origin, religion, sex, gender identity (including gender expression), sexual orientation, disability, age, marital status, family/parental status, income derived from a public assistance program, political beliefs, or reprisal or retaliation for prior civil rights activity, in any program or activity conducted or funded by USDA (not all bases apply to all programs). Remedies and complaint filing deadlines vary by program or incident. Persons with disabilities who require alternative means of communication for program information (e.g., Braille, large print, audiotape, American Sign Language, etc.) should contact the responsible Agency or USDA’s TARGET Center at (202) 720-2600 (voice and TTY) or contact USDA through the Federal Relay Service at (800) 877-8339.
    [Show full text]
  • Soil Survey of Walworth County, Wisconsin
    Issued February 1971 . SOIL SURVEY . .W alworthCounty I Wisconsin UNITED STATES DEPARTMENT OF AGRICULTURE Soil Conservation Service In cooperation with -- .. UNIVERSITY OF WISCONSIN Wisconsin Geological and Natural History Survey Soils Department, and Wisconsin Agricultural Experiment Station Major fieldwork for this soil survey was done in the period 1959-64. Soil names and descriptions were approved in 1966. Unless otherwise indicated, statements in this publication refer- to conditions in the county in 1966. This survey was made cooperatively by the Soil Conservation Service and the Wisconsin Geological and Natural History Survey, Soils Department, and the Wisconsin Agricultural Experiment Station, University of Wisconsin. It is part of the technical assistance furnished to the Walworth County Soil and Water Conservation District. The fieldwork that is the basis for this soil survey was partly financed. by the Southeastern Wisconsin Regional Planning Commission; by a joint planning grant from the State Highway Commission of Wisconsin; by the U.S. Department of Commerce, Bureau of Public Roads; and by the Department of Housing and Urban Development under the provisions of the Federal Aid to Highways legislation and section 701 of the Housing Act of 1954, as amended. Either enlarged or reduced copies of the soil map in this publication can be made by commercial photographers, or they can be purchased on individual order from the Cartographic Division, Soil Conservation Service, U.S. Department of Agriculture, Washington, D.C. 20250. HOW TO USE THIS SOIL SURVEY HIS SOIL SURVEY contains informa- an oved.ay over the soil map an? ?olo!,ed to Ttion that can be applied in managing farms sh?w ?(:nls that have ,bhe sal!le hm~tatIOn or .
    [Show full text]
  • Data Collection Requirements and Procedures for Mapping Wetland, Deepwater, and Related Habitats of the United States (Version 3)
    Data Collection Requirements and Procedures for Mapping Wetland, Deepwater, and Related Habitats of the United States (version 3) U.S. FISH & WILDLIFE SERVICE - ECOLOGICAL SERVICES DIVISION OF BUDGET AND TECHNICAL SUPPORT BRANCH OF GEOSPATIAL MAPPING AND TECHNICAL SUPPORT FALLS CHURCH, VA 2204 REVISED JULY 2020 1 Acknowledgements The authors would like to acknowledge the following individuals for their support and contributions: Bill Kirchner, USFWS, Region 1, Portland, OR; Elaine Blok, USFWS, Region 8, Portland, OR Brian Huberty, USFWS, Region 3, Twin Cities, MN; Ralph Tiner, USFWS, Region 5, Hadley, MA: Kevin Bon, USFWS, Region 6, Denver, CO; Jerry Tande, USFWS, Region 7, Anchorage, AK; Julie Michaelson, USFWS, Region 7, Anchorage, AK; Norm Mangrum, USFWS, St. Petersburg, FL; Dennis Fowler, USFWS, St. Petersburg, FL; Jim Terry, USFWS, St. Petersburg, FL; Martin Kodis, USFWS, Chief - Branch of Resources and Mapping Support, Washington, D.C. and David J. Stout, USFWS, Chief - Division of Habitat and Resource Conservation, Washington, D.C. Peer review was provided by the following subject matter experts: Dr. Shawna Dark and Danielle Bram, California State University - Northridge. Robb Macleod, Ducks Unlimited, Great Lakes and Atlantic Regional Office, Ann Arbor, MI; Michael Kjellson, Dept. Wildlife and Fisheries, South Dakota State University, Brookings, SD; and Deborah (Jane) Awl, Tennessee Valley Authority, Knoxville, TN. This document may be referenced as: Dahl, T.E., J. Dick, J. Swords, and B.O. Wilen. 2020. Data Collection Requirements and Procedures for Mapping Wetland, Deepwater and Related Habitats of the United States. Division of Habitat and Resource Conservation (version 3), National Wetlands Inventory, Madison, WI. 91 p.
    [Show full text]
  • The Light Microscopist's Diatom Glossary by D
    The Light Microscopist’s Diatom Glossary 2nd Ed. The Light Microscopist's Diatom Glossary by D. S. Gill 1st Ed. August 2006 2nd Ed. June 2011 All rights reserved Preface to 2nd Edition The previous Edition of this publication contained a number of formatting errors for which I apologise. Most, if not all, of these have been corrected in this edition. It has been determined that two new term categories should be introduced – Hydrological terms and Oceanographic terms - as references to both these disciplines are frequently found in publications and also associated with samples. There is also a growing tendency in papers to include words or terms under the banner of Ecology. These terms have been included where it is felt appropriate. Some readers have also pointed out that the plethora of older texts in languages other than English cause some problems to those of us who are monolingual. Thus, a section relating to German and French terms is to be included in later editions, but will not be as extensive as the current English Glossary. It has become increasingly clear that whilst many of the the relatively older terms have fallen into disuse they were used more or less consistently throughout texts of their time. The same, however, cannot be said for more modern terms where usage and interpretation are sometimes at significant variance one with another. This being the case I have included the disparate descriptions where such seems appropriate. Modern academic papers relating to the Diatomaceae use less of the older terms but have introduced other ‘vogue’ terms, equally confusing to those outside academia or not steeped in a specific discipline.
    [Show full text]
  • Sedimentation of Nebraska's Playa Wetlands
    SEDIMENTATION OF NEBRASKA’S PLAYA WETLANDS A Review of Current Knowledge and Issues “Soil erosion is as old as agriculture. It began when the first heavy rain struck the first furrow turned by a crude implement of tillage in the hands of prehistoric man. It has been going on ever since, wherever man’s culture of the earth has bared the soil to rain and wind.” -H.H. Bennett and W.C. Lowdermilk, circa 1930s 2 SEDIMENTATION OF NEBRASKA’S PLAYA WETLANDS A Review of Current Knowledge and Issues By: Ted LaGrange, Wetland Program Manager Nebraska Game & Parks Commission Wetlands Program 2200 N 33rd Street Lincoln, NE 68503 Randy Stutheit, Wetland Biologist Nebraska Game & Parks Commission Wetlands Program 2200 N 33rd Street Lincoln, NE 68503 Michael Gilbert, Wetland Ecologist U.S. Army Corps of Engineers - Omaha District 1616 Capitol Ave. Omaha, NE 68102 Dan Shurtliff, Assistant State Soil Scientist USDA, Natural Resources Conservation Service Nebraska State Office 100 Centennial Mall North Lincoln, NE 68508 P. Michael Whited, Senior Regional Soil Scientist Region 10 Soil Survey USDA, Natural Resources Conservation Service 375 Jackson Street, Ste 600 St Paul, MN 55101 August 2011 Published by Nebraska Game & Parks Commission (NGPC), Lincoln Suggested Citation: LaGrange, T.G., R. Stutheit, M. Gilbert, D. Shurtliff, and P.M. Whited. 2011. Sedimentation of Nebraska’s Playa Wetlands: A Review of Current Knowledge and Issues. Nebraska Game and Parks Commission, Lincoln. 62 pages. Cover Photo: Sediment washed into the temporary zone of a wetland 3 miles east and 1 north of Harvard, Neb. after a spring thunderstorm, April 2008.
    [Show full text]
  • Custom Soil Resource Report for Miami-Dade County Area, Florida
    United States A product of the National Custom Soil Resource Department of Cooperative Soil Survey, Agriculture a joint effort of the United Report for States Department of Agriculture and other Federal agencies, State Miami-Dade Natural agencies including the Resources Agricultural Experiment County Area, Conservation Stations, and local Service participants Florida July 12, 2018 Preface Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment. Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations. Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/ portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).
    [Show full text]
  • Morphology and Composition of Some Soils of the Miami Family and the Miami Catena
    TECHJDacAi. BULLETIN NO. 834 • September 1942 Morphology and Composition of Some Soils of the Miami Family and the Miami Catena By IKVIN C. BROWN Associate Chemist Oivisii»! of Soil and Fertilizer Inyestigatioas and JAMES THORP Soil Scientist Division of Soil Survey Bureau of Plant Industry UNITED STATES DEPARTMENT OF AGRICULTURE, WASHINGTON, D. C. For sale by the Superintendent of Doeumeuts, Washiugton« D. C. • Priée 10 eents Technical Bulletin No. 834 • 1942 ¡■¡HilHt^^H^^^^Hlllill^^^^HMIIMSH Morphology and Composition of Some Soils of the Miami Family and the Miami Catena ' By IRVIN C. BROWN, associate chemist, Division of Soil and Fertilizer Investiga- tions, and JAMES THOEP, soil scientist, Division of Soil Survey, Bureau of Plant Industry CONTENTS Page Introduction 1 Analytical results—Continued. Status of soil classification 2 Chemical analyses of the colloids 32 What is a soil family? 2 Organic matter 37 What is a soil catena? 4 Derived data 41 The relationships between soil fam- The clay minerals 44 ily and soil catena 0 General discussion __ 45 Collection of samples 10 The parent rock 45 Description of soils sampled 10 Climate and vegetation 46 Methods of examination 18 Lay of the land and natural drain- Analytical results : 19 age 46 Mechanical analyses of the soils 19 Summary 52 Chemical analyses of the soils 25 Literature cited 53 INTRODUCTION As several thousand soil types have been recognized in the United States, it is now possible to establish their systematic classification. Soils may be grouped in many different ways according to the ob- jectives sought in the classification, but for convenience two systems have been followed in the United States.
    [Show full text]
  • Pocket Guide to Hydric Soils for Wetland Delineations in Massachusetts
    The Buzzards Bay National Estuary Program Pocket Guide to Hydric Soils for Wetland Delineations in Massachusetts Version 4.1 The Buzzards Bay National Estuary Program June, 2019 This document is a compilation of material taken from Delineating Bordering Vegetated Wetlands under the Wetlands Protection Act, published by the Massachusetts Department of Environmental Protection, Division of Wetlands, and Waterways and the Field Indicators for Identifying Hydric Soils in New England, Version 4, April 2019. Field Indicators for Identifying Hydric Soils in New England, Version 4, April 2019, has superseded Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Region (Version 2.0), Field Indicators of Hydric Soils in the United States, A Guide for Identifying and Delineation Hydric Soils, Version 8.2, and Field Indicators for Identifying Hydric Soils in New England, Version 3 for use in wetland delineations in New England. The Buzzards Bay National Estuary Program recommends the practitioner to download and read Field Indicators for Identifying Hydric Soils in New England, Version 4, April, 2019. This document is meant to be a companion to “The Buzzards Bay National Estuary Program Pocket Guide to Delineating Wetlands,” available at the Buzzards Bay National Estuary Program website, www.buzzardsbay.org. This update includes the “Errata for Companion Guide to Field Indicators for Identifying Hydric Soils in New England: TA-6 to A-17” (November 2018) and the revisions reflected in Field Indicators of Hydric Soils in the United States, A Guide for Identifying and Delineation Hydric Soils, Version 8.2 (2018) Special thanks to Peter Fletcher for tips regarding the arrangement of the initial version of the booklet.
    [Show full text]
  • Wetland Soils Importance of Wetland Soils • Chemical Transformations • Chemical (Nutrient) Storage These Affect Plant Growth and Peat Formation
    Wetland Soils Importance of wetland soils • Chemical transformations • Chemical (nutrient) storage These affect plant growth and peat formation Lecture outline: • What are soils? • How does inundation change upland soils into hydric soils? • What are the important distinguishing characteristics of hydric soils? • What are the implications of the unique characteristics of hydric soils for plants and chemical transformations? What are soils? _________ = study of the components and formation of soils Soil mapping is done by the Natural Resources Conservation Service (NRCS), a branch of the USDA. Soil Definitions: • Early definition of soil: the material capable of supporting the growth of land plants. • A natural body comprised of solids (minerals and organic matter), liquid, and gases that occurs on the land surface, occupies space, and is characterized by one or more of the following: horizons, or layers, that are distinguishable from the initial material as a result of additions, losses, transfers, and transformations of energy or the ability to support rooted plants in a natural environment. (Soil Survey Staff 1998) What are NOT soils? • Bedrock • Rocky outcrops & plateaus • Salt flats • Sand beaches and sand bars • Muddy shores • Unconsolidated material lacking any vegetation cover •Permanently flooded bottoms (this is SUBSTRATE) Can you have a wetland if you don’t have soil? Tiner 1999: “Tidal mud flats, sandy intertidal beaches, and rocky shores are examples of nonvegetated wetlands occurring on nonsoils.” Soil Types Two main types of soil: organic and mineral % C = half the amount of % organic material, ~ > 40% organic material by weight Organic matter must be 40 cm for a soil to be a histosol (organic soil); otherwise, it is a mineral soil with an organic layer (horizon) on the top.
    [Show full text]