Ground, Proximal, and Satellite Remote Sensing of Soil Moisture
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Remote Sensing and Airborne Geophysics in the Assessment of Natural Aggregate Resources
U. S. DEPARTMENT OF THE INTERIOR U. S. GEOLOGICAL SURVEY REMOTE SENSING AND AIRBORNE GEOPHYSICS IN THE ASSESSMENT OF NATURAL AGGREGATE RESOURCES by D.H. Knepper, Jr.1, W.H. Langer1, and S.H. Miller1 OPEN-FILE REPORT 94-158 1994 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1U.S. Geological Survey, Denver, CO 80225 CONTENTS ABSTRACT........................................................................................... iv CHAPTER I. INTRODUCTION.............................................................................. I-1 II. TYPES OF AGGREGATE DEPOSITS........................................... II-1 Crushed Stone............................................................................... II-1 Sedimentary Rocks............................................................. II-3 Igneous Rocks.................................................................... II-3 Metamorphic Rocks........................................................... II-4 Sand and Gravel............................................................................ II-4 Glacial Deposits................................................................ II-5 Alluvial Fans.................................................................... II-5 Stream Channel and Terrace Deposits............................... II-6 Marine Deposits............................................................... -
Study of Soil Moisture in Relation to Soil Erosion in the Proposed Tancítaro Geopark, Central Mexico: a Case of the Zacándaro Sub-Watershed
Study of soil moisture in relation to soil erosion in the proposed Tancítaro Geopark, Central Mexico: A case of the Zacándaro sub-watershed Jamali Hussein Mbwana Baruti March, 2004 Study of soil moisture in relation to soil erosion in the proposed Tancítaro Geopark, Central Mexico: A case of the Zacándaro sub-watershed by Jamali Hussein Mbwana Baruti Thesis submitted to the International Institute for Geo-information Science and Earth Observation in partial fulfilment of the requirements for the degree of Master of Science in Geo-information Science and Earth Observation, Land Degradation and Conservation specialisation Degree Assessment Board Dr. D. Rossiter (Chairman) ESA Department, ITC Dr. D. Karssenberg (External examiner) University of Utrecht Dr. D. P. Shrestha (Supervisor) ESA Department, ITC Dr. A. Farshad (Co supervisor and students advisor) ESA Department, ITC Dr. P. Van Dijk (Programm Director, EREG), ITC INTERNATIONAL INSTITUTE FOR GEO-INFORMATION SCIENCE AND EARTH OBSERVATION ENSCHEDE, THE NETHERLANDS Disclaimer This document describes work undertaken as part of a programme of study at the International Institute for Geo-information Science and Earth Observation. All views and opinions expressed therein remain the sole responsibility of the author, and do not necessarily represent those of the institute. Abstract A study on soil moisture in relation to soil erosion was conducted in the proposed Tancítaro Geopark, Central Mexico with special attention to the Zacándaro sub-watershed. The study aims at applying a simple water balance and an erosion model as conservation planning tools. Two methods i.e. Thorn- thwaite and Mather (1955) and the Revised Morgan-Morgan-Finney (2001) were applied in a GIS environment to model available soil moisture and soil loss rates. -
Water Content Concepts and Measurement Methods Suat Irmak, Professor, Soil and Water Resources and Irrigation Engineering
EC3046 December 2019 Soil- Water Potential and Soil- Water Content Concepts and Measurement Methods Suat Irmak, Professor, Soil and Water Resources and Irrigation Engineering Soil- water status is a critical and rapidly changing tion management. In addition, it is important for studying variable that determines and impacts numerous important soil- water movement, chemical transport, crop water stress, factors in production fields such as crop emergence and evapotranspiration, hydrologic and crop modeling, soil phys- growth, water management, water and crop yield productiv- ics, water resources management, climate change impacts ity relationships, and within- field hydrologic balances. Thus, on agricultural water management and crop productivity, its accurate determination dictates and impacts the success of meteorological studies, yield forecasting, water run- off and water management and related agricultural operations. This, run- on, infiltration studies, field traffic and within- field work in turn, affects the attainment of potential yield, as well as the ability and soil- compaction studies, aridity indices, and other reduction of water losses and chemical leaching. Maintaining agricultural and ecosystem functions and practices. Effective optimum soil moisture in the crop root zone also strongly in- irrigation management requires the knowledge of “when” fluences optimum nitrogen (N) uptake by plants, which helps and “how much” water to apply to optimize crop production. to reduce N leaching. Numerous soil moisture measurement Some of the most effective irrigation management decisions technologies are available. None of the methods, however, also include “how” to apply the irrigation water for most are perfectly suited to all operational conditions as each has effective productivity under different climate, soil, crop, and drawbacks and advantages, depending on the application management practices to reduce unbeneficial water losses conditions. -
Landslide Stability Analysis Using UAV Remote Sensing and in Situ Observations a Case Study for the Charonnier Landslide, Haute Alps in France
Landslide stability analysis using UAV remote sensing and in situ observations A case study for the Charonnier Landslide, Haute Alps in France Job de Vries (5600944) Utrecht University Under supervision from: Prof. dr. S.M. de Jong Dr. R. van Beek May – 2016 Utrecht, the Netherlands Abstract An approach consisting of different methods is applied to determine the geometry, relevant processes and failure mechanism that resulted in the failure of the Charonnier landslide in 1994. Due to their hazardous nature landslides have been a relevant research topic for decades. Despite that individual landslide events are not as hazardous or catastrophic as for example earthquakes, floods or volcanic eruptions, they occur more frequent and are more widespread (Varnes, 1984). Also in the geological formations of the Terres Noires, in south-east France, it is not necessarily the magnitude of events, rather their frequency of occurrence that makes mass movements hazardous. An extremely wet period, between September 1993 and January 1994, caused a hillslope in the Haute- Alps district to fail. Highly susceptible Terres Noires deposit near Charonnier River failed into a rotational landslide, moving an estimated 107,000 m3 material downslope. Precipitation figures between 1985 and 2015 show a clear pattern of intense rainstorms and huge amounts of precipitation in antecedent rainfall. This suggests that the extreme event on January 6 with 65 mm of rain after the wet months of September, October and December caused the sliding surface to fail. A total of 36 soil samples and 22 saturated conductivity measurements show a decreasing permeability with depth and the presence of macro-pores in the topsoil, supplying lateral flow in extreme rainfall events and infiltration with antecedent rainfall periods. -
Sustaining the Pedosphere: Establishing a Framework for Management, Utilzation and Restoration of Soils in Cultured Systems
Sustaining the Pedosphere: Establishing A Framework for Management, Utilzation and Restoration of Soils in Cultured Systems Eugene F. Kelly Colorado State University Outline •Introduction - Its our Problems – Life in the Fastlane - Ecological Nexus of Food-Water-Energy - Defining the Pedosphere •Framework for Management, Utilization & Restoration - Pedology and Critical Zone Science - Pedology Research Establishing the Range & Variability in Soils - Models for assessing human dimensions in ecosystems •Studies of Regional Importance Systems Approach - System Models for Agricultural Research - Soil Water - The Master Variable - Water Quality, Soil Management and Conservation Strategies •Concluding Remarks and Questions Living in a Sustainable Age or Life in the Fast Lane What do we know ? • There are key drivers across the planet that are forcing us to think and live differently. • The drivers are influencing our supplies of food, energy and water. • Science has helped us identify these drivers and our challenge is to come up with solutions Change has been most rapid over the last 50 years ! • In last 50 years we doubled population • World economy saw 7x increase • Food consumption increased 3x • Water consumption increased 3x • Fuel utilization increased 4x • More change over this period then all human history combined – we are at the inflection point in human history. • Planetary scale resources going away What are the major changes that we might be able to adjust ? • Land Use Change - the world is smaller • Food footprint is larger (40% of land used for Agriculture) • Water Use – 70% for food • Running out of atmosphere – used as as disposal for fossil fuels and other contaminants The Perfect Storm Increased Demand 50% by 2030 Energy Climate Change Demand up Demand up 50% by 2030 30% by 2030 Food Water 2D View of Pedosphere Hierarchal scales involving soil solid-phase components that combine to form horizons, profiles, local and regional landscapes, and the global pedosphere. -
Modeling Soil Nitrate Accumulation and Leaching in Conventional and Conservation Agriculture Cropping Systems
water Article Modeling Soil Nitrate Accumulation and Leaching in Conventional and Conservation Agriculture Cropping Systems Nicolò Colombani 1 , Micòl Mastrocicco 2,*, Fabio Vincenzi 3 and Giuseppe Castaldelli 3 1 SIMAU-Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche 12, 60131 Ancona, Italy; [email protected] 2 DiSTABiF-Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Campania University “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy 3 SVeB-Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; [email protected] (F.V.); [email protected] (G.C.) * Correspondence: [email protected]; Tel.: +39-0823-274-609 Received: 25 January 2020; Accepted: 29 May 2020; Published: 31 May 2020 Abstract: Nitrate is a major groundwater inorganic contaminant that is mainly due to fertilizer leaching. Compost amendment can increase soils’ organic substances and thus promote denitrification in intensively cultivated soils. In this study, two agricultural plots located in the Padana plain (Ferrara, Italy) were monitored and modeled for a period of 2.7 years. One plot was initially amended with 30 t/ha of compost, not tilled, and amended with standard fertilization practices, while the other one was run with standard fertilization and tillage practices. Monitoring was performed continuously via soil water probes (matric potential) and discontinuously via auger core profiles (major nitrogen species) before and after each cropping season. A HYDRUS-1D numerical model was calibrated and validated versus observed matric potential and nitrate, ammonium, and bromide (used as tracers). Model performance was judged satisfactory and the results provided insights on water and nitrogen balances for the two different agricultural practices tested here. -
Effects of Climatic Change on Soil Hydraulic Properties During
water Article Effects of Climatic Change on Soil Hydraulic Properties during the Last Interglacial Period: Two Case Studies of the Southern Chinese Loess Plateau Tieniu Wu 1,2 , Henry Lin 2, Hailin Zhang 1,*, Fei Ye 1, Yongwu Wang 1, Muxing Liu 1, Jun Yi 1 and Pei Tian 1 1 Key Laboratory for Geographical Process Analysis & Simulation, Hubei Province, Central China Normal University, Wuhan 430079, China; [email protected] (T.W.); [email protected] (F.Y.); [email protected] (Y.W.); [email protected] (M.L.); [email protected] (J.Y.); [email protected] (P.T.) 2 Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA 16802, USA; [email protected] * Correspondence: [email protected]; Tel.: +86-27-6786-7503 Received: 16 January 2020; Accepted: 10 February 2020; Published: 12 February 2020 Abstract: The hydraulic properties of paleosols on the Chinese Loess Plateau (CLP) are closely related to agricultural production and are indicative of the environmental evolution during geological and pedogenic periods. In this study, two typical intact sequences of the first paleosol layer (S1) on the southern CLP were selected, and soil hydraulic parameters together with basic physical and chemical properties were investigated to reveal the response of soil hydraulic properties to the warm and wet climate conditions. The results show that: (1) the paleoclimate in the southern CLP during the last interglacial period showed a pattern of three warm and -
Soil Moisture Sands Is Presented by Smith [ 1967] Who Uses Conventional Concepts of Capillary Forces and Gravity
A simplified picture of the infiltration of water into Soil Moisture sands is presented by Smith [ 1967] who uses conventional concepts of capillary forces and gravity. L. L. Boersma, D. Kirkham, D. Norum, The soil water profiles after the cessation of infiltration, R. Ziemer, J. C. Guitjens, J. Davidson, both with and without evaporation from the soil surface, and J. N. Luthin have been investigated in the field by Davidson et al. [1969] and compared with theory. Similar work is Infiltration continues to occupy the attention of soil reported by Gardner et al. [ 1970] , Staple [ 1969] , physicists and engineers. A theoretical and experimental Rubin [ 1967] , Rose [ 1968a, 1968b, 1969c] , Remson analysis of the effect of surface sealing on infiltration by [1967 ] , and Ibrahim and Brutsaert [ 1967 ] . Edwards and Larson [ 1969] showed that raindrops The applicability of Darcy's law to unsaturated flow reduced the infiltration rate by as much as 50% for a continues to receive attention in an experiment two-hour period of infiltration. The effect of raindrops on performed by Thames and Evans [ 1968 ] . They found the surface infiltration rate of soils has been investigated a linear relationship between flux and gradient only by Seginer and Morin [ 1970] who used an infiltration during the early stages of infiltration. Nonlinearity model based on the Horton equation. The effect of appeared at low gradients over a wide range of water antecedent moisture on infiltration rate was shown by contents. Bondarenko [1968] found that capillary flow Powell and Beasley [ 1967] to be dependent on crop velocity at low pressure gradients is not proportional to cover, degree of aggregation, and bulk density. -
Understanding Fields by Remote Sensing: Soil Zoning and Property Mapping
remote sensing Article Understanding Fields by Remote Sensing: Soil Zoning and Property Mapping Onur Yuzugullu 1,2,* , Frank Lorenz 3, Peter Fröhlich 1 and Frank Liebisch 2,4 1 AgriCircle, Rapperswil-Jona, 8640 St.Gallen, Switzerland; [email protected] 2 Group of Crop Science, Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland; [email protected] 3 LUFA Nord-West, Jägerstr. 23 - 27, 26121 Oldenburg, Germany; [email protected] 4 Water Protection and Substance Flows, Department of Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046 Zürich, Switzerland * Correspondence: [email protected] Received: 27 February 2020; Accepted: 29 March 2020; Published: 1 April 2020 Abstract: Precision agriculture aims to optimize field management to increase agronomic yield, reduce environmental impact, and potentially foster soil carbon sequestration. In 2015, the Copernicus mission, with Sentinel-1 and -2, opened a new era by providing freely available high spatial and temporal resolution satellite data. Since then, many studies have been conducted to understand, monitor and improve agricultural systems. This paper presents results from the SolumScire project, focusing on the prediction of the spatial distribution of soil zones and topsoil properties, such as pH, soil organic matter (SOM) and clay content in agricultural fields through random forest algorithms. For this purpose, samples from 120 fields were investigated. The zoning and soil property prediction has an accuracy greater than 90%. This is supported by a high agreement of the derived zones with farmer’s observations. The trained models revealed a prediction accuracy of 94%, 89% and 96% for pH, SOM and clay content, respectively. -
Satellite Imagery Evaluation of Soil Moisture Variability in North-East Part of Ganges Basin, India Proma Bhattacharyya
University of New Mexico UNM Digital Repository Earth and Planetary Sciences ETDs Electronic Theses and Dissertations 1-30-2013 Satellite imagery evaluation of soil moisture variability in north-east part of Ganges Basin, India Proma Bhattacharyya Follow this and additional works at: https://digitalrepository.unm.edu/eps_etds Recommended Citation Bhattacharyya, Proma. "Satellite imagery evaluation of soil moisture variability in north-east part of Ganges Basin, India." (2013). https://digitalrepository.unm.edu/eps_etds/6 This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Earth and Planetary Sciences ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. i Satellite Imagery Evaluation of Soil Moisture Variability in North-East part of Ganges Basin, India By Proma Bhattacharyya B.Sc Geology, University of Calcutta, India, 2007 M.Sc Applied Geology, Presidency College-University of Calcutta, 2009 THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Earth and Planetary Sciences The University of New Mexico, Albuquerque, New Mexico Graduation Date – December 2012 ii ACKNOWLEDGMENTS I heartily acknowledge Dr. Gary W. Weissmann, my advisor and dissertation chair, for continuing to encourage me through the years of my MS here in the University of New Mexico. His guidance will remain with me as I continue my career. I also thank my committee members, Dr. Louis Scuderi and Dr. Grant Meyer for their valuable recommendations pertaining to this study. To my parents and my fiancé, thank you for the many years of support. -
Improvement of Clay and Sand Quantification Based on a Novel
remote sensing Article Improvement of Clay and Sand Quantification Based on a Novel Approach with a Focus on Multispectral Satellite Images Caio T. Fongaro 1, José A. M. Demattê 1,*, Rodnei Rizzo 2, José Lucas Safanelli 1 , Wanderson de Sousa Mendes 1 , André Carnieletto Dotto 1, Luiz Eduardo Vicente 3, Marston H. D. Franceschini 4 and Susan L. Ustin 5 1 Department of Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo, USP, Ave. Pádua Dias, 11, Cx Postal 09, Piracicaba 13416-900, São Paulo, Brazil; [email protected] (C.T.F.); [email protected] (J.L.S.); [email protected] (W.d.S.M.); [email protected] (A.C.D.) 2 Center of Nuclear Energy in Agriculture, University of São Paulo, Centenário Avenue, 303, Piracicaba 13416-000, São Paulo, Brazil; [email protected] 3 Embrapa Environment/Low Carbon Agriculture Platform, Road SP-340, Km 127,5, PO Box 69, Tanquinho Velho, Jaguariúna 13820-000, São Paulo, Brazil; [email protected] 4 Laboratory of Geo-Information, Science and Remote Sensing, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands; [email protected] 5 Department of Land, Air, and Water Resources, University of California-Davis, 1 Shields Avenue, Davis, CA 95616, USA; [email protected] * Correspondence: [email protected]; Tel.: +55-19-3417-2109 Received: 31 August 2018; Accepted: 25 September 2018; Published: 27 September 2018 Abstract: Soil mapping demands large-scale surveys that are costly and time consuming. It is necessary to identify strategies with reduced costs to obtain detailed information for soil mapping. -
Methods to Monitor Soil Moisture
A3600-02 UNDERSTANDING CROP IRRIGATION Methods to Monitor Soil Moisture John Panuska, Scott Sanford and Astrid Newenhouse Advance ments in soil moisture monitoring technology major challenge facing Wisconsin growers is the need to conserve and protect natural make it a cost- resources amid increasing food demand, rising production costs and climate extremes. effective risk Growers need to use every opportunity possible to optimize production efficiency to management address these and other challenges and maintain yields. Water stress is one of several Afactors that can reduce crop yield and quality. Keeping the proper amount of water available in tool. the root zone is essential to any successful crop production operation. Irrigation has become an increasingly important risk management tool for growers. An understanding of soil moisture management is key for growers to make irrigation management decisions. The recommended approach for optimal root zone soil water management includes irrigation water management (scheduling) and soil moisture monitoring. Recent advancements in soil moisture monitoring technology make it a cost effective risk management tool. Types of equipment There are several aspects of soil moisture monitoring equipment: configuration, measurement science, and data management. The advantages and limitations along with specific equipment examples of each aspect are presented and discussed in this publication. Sensor configuration Figure 1 Figure 2 Portable soil moisture sensor Stationary moisture sensors Soil moisture sensors measure the amount of water in the soil. They are either stationary at fixed locations and depths or portable as handheld Francisco Arriaga Francisco probes. With a portable sensor (Figure 1) you can take measurements at several locations, but you may need to dig a hole to get readings deeper Courtesy of Spectrum Technologies, Inc.