When Is Ecological Restoration a Success? a Comparison Of

Total Page:16

File Type:pdf, Size:1020Kb

Load more

WHEN IS ECOLOGICAL RESTORATION A SUCCESS? A COMPARISON OF MACROINVERTEBRATE DIVERSITY AND ABUNDANCE IN IMPAIRED, UNIMPAIRED, AND RESTORED STREAMS IN SOUTHEAST OHIO ____________________________________ A Thesis Presented to Honors Tutorial College Ohio University ____________________________________ In Partial Fulfillment of the Requirements for Graduation from the Honors Tutorial College with the degree of Bachelor of Science in Biological Sciences ____________________________________ By Austin R. Miles April 2016 This thesis has been approved by The Honors Tutorial College and the Department of Biological Sciences _________________________________ Dr. Kelly Johnson Professor, Biological Sciences Thesis Advisor _________________________________ Dr. Soichi Tanda Honors Tutorial College, Director of Studies Biological Sciences _________________________________ Jeremy Webster Dean, Honors Tutorial College 1 Table of Contents List of Figures…………………………………………………………………….........3 List of Tables…………………………………………………………………………...3 Acknowledgements…………………………………………………………………….4 Abstract………………………………………………………………………………...5 1. Introduction…………………………………………………………………….......6 1.1 Origins of Acid Mine Drainage…………………………………………….6 1.2 Biological Effects of AMD………………………………………………...8 1.3 Restoration Background and Principles…………………………………..10 1.4 Efforts to Restore AMD Impaired Streams……………………………….12 1.5 Problems with Stream Restoration Efforts………………………………..15 1.6 Background on Biodiversity and Ecological Function……………….......16 1.7 Food Webs and Ecosystem Functioning………………………………….20 1.8 Acid Mine Restoration Practices………………………………………….21 1.9 Post-Remediation Management and Efficacy of Remediation…………...23 1.10 Background on the Study Watersheds………………………………..27 i. Sunday Creek……………………………………………………..27 ii. Monday Creek…………………………………………………….30 iii. Raccoon Creek…………………………………………………....32 1.11 Objectives……………………………………………………………..34 1.12 Significance…………………………………………………………...35 2. Methods…………………………………………………………………………...35 2.1 Study Sites……………………………………………………………......35 2 2.2 Field Work……………………………………………………………….36 2.3 Statistical Analyses………………………………………………………39 3. Results…………………………………………………………………………….40 3.1 Structural Metrics and Community Data………………………………...40 3.2 Functional Metrics……………………………………………………….46 4. Discussion………………………………………………………………………...51 4.1 Structural Metrics………………………………………………………..52 4.2 Functional Metrics……………………………………………………….59 5. Conclusions……………………………………………………………………….62 Bibliography…………………………………………………………………………..64 Appendix……………………………………………………………………………...69 3 List of Figures Figure 1. An example of a stream impaired by acid mine drainage……………………...7 Figure 2. Examples of EPT taxa……………………………………………………………..9 Figure 3. Map of each study watershed’s location in Ohio……………………………...27 Figure 4. Structural metric boxplots……………………………………………………….42 Figure 5. NMDS ordination made using structural metrics……………………………...43 Figure 6. NMDS ordination made using raw community data………………………….44 Figure 7. Functional metric boxplots………………………………………………………48 Figure 8. NMDS ordination made using functional metrics…………………………….50 List of Tables Table 1. Descriptive statistics of structural metrics………………………………………41 Table 2. ANOVA output of structural metrics……………………………………………41 Table 3. Strength of correlations for structural metric ordination………………………44 Table 4. MRPP analysis of structural metrics…………………………………………….45 Table 5. MRPP analysis of raw community data………………………………………...45 Table 6. Descriptive statistics of functional metrics……………………………………...46 Table 7. Descriptive statistics of functional metrics……………………………………...47 Table 8. ANOVA output of functional metrics…………………………………………...49 Table 9. Strength of correlations for functional metric ordination……………………...50 Table 10. MRPP analysis of functional metrics…………………………………………..51 4 Acknowledgements This study would not be possible without the guidance and encouragement of Dr. Kelly Johnson, and I would like to express my sincere gratitude for her assistance. I would also like to thank Dr. Soichi Tanda for his continued support. I am appreciative to the Ohio University Honors Tutorial College for providing me with numerous academic and research opportunities during my undergraduate career. This study would also not be possible without the MAIS sampling data collected during the summer of 2014. I would like to thank Rural Action and the Monday Creek Restoration Project and the Sunday Creek Restoration Project, as well as the Raccoon Creek Partnership for carrying out this work. I would like to thank in particular the various coordinators and members of these organizations, including Michelle Shively, Nate Schlater, Tim Ferrell, Amy Mackey, and Sarah Landers. Without their work and the help of numerous volunteers each summer the MAIS sampling would not be possible. I would also like to thank Jen Bowman for her work creating and maintaining watersheddata.com, which has been an incredibly helpful resource throughout my time working on this thesis. I am also grateful for funding provided by the Jeanette G. Grasselli Brown Undergraduate Research Award, without which I would not be able to have the opportunity to present my research at the International Society for Ecological Monitoring conference this May. 5 Abstract In streams impaired by acid mine drainage (AMD), restoration usually improves water quality more rapidly than stream biota. Biological recovery of fish and macroinvertebrates may lag behind, sometimes taking up to five years. Our goal in this study was to compare several measures of diversity in streams categorized in different stages of macroinvertebrate recovery to assess the extent to which what we call restored sites actually are restored. Twenty-four sites in 4 watersheds in southeast Ohio were categorized as impaired, improved, restored, or unimpaired based on historical water chemistry and macroinvertebrate multimetric index scores. We calculated 7 structural metrics including macroinvertebrate abundance, taxa richness, percent composition of Ephemeroptera, Plecoptera, and Trichoptera (% EPT), and the Simpson, Shannon-Weiner, Margalef, and Brillouin diversity indices for each site. Using the classification of each macroinvertebrate family into one of five functional feeding groups, we also calculated functional metrics including the number of taxa belonging to each functional group at each site, and the abundance of individuals belonging to each functional group at each site. ANOVAs were used to compare the calculated scores of each metric among site categories, as well as non-metric multidimensional scaling (NMDS) ordinations and multi-response permutation procedure (MRPP) analyses. Amongst all metrics analyzed, three patterns emerged—a gradient of improvement from impaired sites on up to unimpaired sites, increased variability of impaired and improved sites relative to unimpaired and restored sites, and consistent similarity between unimpaired and restored sites. Overall these patterns 6 suggest that restoration efforts in streams within these watersheds are successful in recovering degraded ecosystems. 7 1. Introduction 1.1 Origins of Acid Mine Drainage Rivers and streams are an integral component of the world’s environment. They play an important role in the water cycle and in the flux of minerals and nutrients down from the mountains and eventually to the ocean. They also contain a considerable number of species and habitat, which include some of the most threatened on Earth. Moreover, they provide humans with clean drinking water, harvestable plants and animals, navigable routes, waste removal, and renewable energy. Unfortunately, they are threatened by a number of disturbances, many anthropogenic in nature (Allan and Flecker 1993). Acid mine drainage, or AMD, is such an anthropogenic disturbance. It is a widespread and tenacious problem for streams in areas around the world that have been subject to mineral extraction. Following the end of mining operations AMD may continue to leach out for thousands of years. In Europe, for instance, AMD still occurs due to mines in dug by ancient Romans before 476 BCE (Edmonds and Peplow 2000). In the United States alone it is estimated that 500,000 inactive or abandoned mines exist in 32 states (Edmonds and Peplow 2000). These mines are all a potential source for AMD, and have impacted over 16,900 km of streams in the United States (Herlihy et al. 1990). In Appalachia abandoned coal mines are widespread, a pattern that may be traced back to the United State’s dependency on coal. In the U.S. coal has been the primary source of electricity for 60 years, and much of American coal production has come from Appalachia, including parts of Ohio (EIA 2013). During the economic 8 downturn following World War I, Ohio’s coal production declined because of a lack of demand. As a result, many mines in the Southeastern Ohio region closed down during the 1920’s. By the 1940’s most mines in the area had been abandoned. These abandoned mines have in turn contaminated a number of streams with AMD. The number of abandoned mines in Appalachia is estimated to range from 3000-5000. Because of AMD leaching out from these abandoned mines in the region, it is estimated that AMD has impacted 7000 to 13000 km of streams in the Appalachian region (USDA Forest Service 1993; Hill et al.; Herlihy et al 1990). Figure 1. A stream reach impacted by AMD. Metal hydroxide precipitates give the stream its orange color. 9 AMD occurs when pyrite-rich rock or coal is exposed to rain and air as a result
Recommended publications
  • CT DEEP Family-Level Identification Guide for Riffle-Dwelling Macroinvertebrates of Connecticut

    CT DEEP Family-Level Identification Guide for Riffle-Dwelling Macroinvertebrates of Connecticut

    CT DEEP Family-Level Identification Guide for Riffle-Dwelling Macroinvertebrates of Connecticut Seventh Edition Spring 2013 Authors and Acknowledgements Michael Beauchene produced the First Edition and revised the Second and Third Editions. Christopher Sullivan revised the Fourth and Fifth Editions. Erin McCollum developed the Sixth Edition with editorial assistance from Michael Beauchene. The First through Sixth Editions were developed and revised for use with Project SEARCH, a program formerly coordinated by CTDEEP but presently inactive. This Seventh Edition has been slightly modified for use by Connecticut high school students participating in the Connecticut Envirothon Aquatic Ecology workshop. Original drawings provided by Michael Beauchene and by the Volunteer Stream Monitoring Partnership at the University of Minnesota’s Water Resources Center. This page intentionally left blank. About the Key Scope of the Key This key is intended to assist Connecticut Envirothon students in the identification of aquatic benthic macroinvertebrates. As such, it is targeted toward organisms that are most commonly found in the riffle microhabitats of Connecticut streams. When conducting an actual field study of riffle dwelling macroinvertebrates, there may be an organism collected at a site in Connecticut that will not be found in this key. In this case, you should utilize another reference guide to identify the organism. Several useful guides are listed below. AQUATIC ENTOMOLOGY by Patrick McCafferty A GUIDE TO COMMON FRESHWATER INVERTEBRATES OF NORTH AMERICA by J. Reese Voshell, Jr. AN INTRODUCTION TO THE AQUATIC INSECTS OF NORTH AMERICA by R.W. Merritt and K.W. Cummins Most organisms will be keyed to the family level, however several will not be identified beyond the Kingdom Animalia phylum, class, or order.
  • Lazare Botosaneanu ‘Naturalist’ 61 Doi: 10.3897/Subtbiol.10.4760

    Lazare Botosaneanu ‘Naturalist’ 61 Doi: 10.3897/Subtbiol.10.4760

    Subterranean Biology 10: 61-73, 2012 (2013) Lazare Botosaneanu ‘Naturalist’ 61 doi: 10.3897/subtbiol.10.4760 Lazare Botosaneanu ‘Naturalist’ 1927 – 2012 demic training shortly after the Second World War at the Faculty of Biology of the University of Bucharest, the same city where he was born and raised. At a young age he had already showed interest in Zoology. He wrote his first publication –about a new caddisfly species– at the age of 20. As Botosaneanu himself wanted to remark, the prominent Romanian zoologist and man of culture Constantin Motaş had great influence on him. A small portrait of Motaş was one of the few objects adorning his ascetic office in the Amsterdam Museum. Later on, the geneticist and evolutionary biologist Theodosius Dobzhansky and the evolutionary biologist Ernst Mayr greatly influenced his thinking. In 1956, he was appoint- ed as a senior researcher at the Institute of Speleology belonging to the Rumanian Academy of Sciences. Lazare Botosaneanu began his career as an entomologist, and in particular he studied Trichoptera. Until the end of his life he would remain studying this group of insects and most of his publications are dedicated to the Trichoptera and their environment. His colleague and friend Prof. Mar- cos Gonzalez, of University of Santiago de Compostella (Spain) recently described his contribution to Entomolo- gy in an obituary published in the Trichoptera newsletter2 Lazare Botosaneanu’s first contribution to the study of Subterranean Biology took place in 1954, when he co-authored with the Romanian carcinologist Adriana Damian-Georgescu a paper on animals discovered in the drinking water conduits of the city of Bucharest.
  • (Trichoptera: Limnephilidae) in Western North America By

    (Trichoptera: Limnephilidae) in Western North America By

    AN ABSTRACT OF THE THESIS OF Robert W. Wisseman for the degree of Master ofScience in Entomology presented on August 6, 1987 Title: Biology and Distribution of the Dicosmoecinae (Trichoptera: Limnsphilidae) in Western North America Redacted for privacy Abstract approved: N. H. Anderson Literature and museum records have been reviewed to provide a summary on the distribution, habitat associations and biology of six western North American Dicosmoecinae genera and the single eastern North American genus, Ironoquia. Results of this survey are presented and discussed for Allocosmoecus,Amphicosmoecus and Ecclisomvia. Field studies were conducted in western Oregon on the life-histories of four species, Dicosmoecusatripes, D. failvipes, Onocosmoecus unicolor andEcclisocosmoecus scvlla. Although there are similarities between generain the general habitat requirements, the differences or variability is such that we cannot generalize to a "typical" dicosmoecine life-history strategy. A common thread for the subfamily is the association with cool, montane streams. However, within this stream category habitat associations range from semi-aquatic, through first-order specialists, to river inhabitants. In feeding habits most species are omnivorous, but they range from being primarilydetritivorous to algal grazers. The seasonal occurrence of the various life stages and voltinism patterns are also variable. Larvae show inter- and intraspecificsegregation in the utilization of food resources and microhabitatsin streams. Larval life-history patterns appear to be closely linked to seasonal regimes in stream discharge. A functional role for the various types of case architecture seen between and within species is examined. Manipulation of case architecture appears to enable efficient utilization of a changing seasonal pattern of microhabitats and food resources.
  • Final Report on Field Surveys

    Final Report on Field Surveys

    Ecological Surveys and Assessments to Facilitate Restoration Activities at the Salt River Marsh: Final Report on Field Surveys Prepared by: Peter J. Badra, Tyler J. Bassett, and Yu Man Lee Michigan Natural Features Inventory P.O. Box 13036 Lansing, MI 48901 For: Michigan Department of Environment, Great Lakes, and Energy, Water Resources Division February 4, 2020 Report Number 2020-05 Suggested Citation: Badra, P.J., T.J. Basset, Y.M. Lee. 2020. Ecological Surveys and Assessments to Facilitate Restoration Activities at the Salt River Marsh: Final Report on Field Surveys. Michigan Natural Features Inventory Report Number 2020-05, Lansing, MI. 97pp. Cover Photos: Background - Looking northwest at Stand 4, from edge of Stand 5, at cattails and common reed in the Salt River Marsh State Wildlife Area. Photo by Tyler J. Basset; Inset, left - Painted turtle hatchling. Photo by Yu Man Lee; Inset, right - American bluet damselfly larvae. Photo by Peter J. Badra. MSU is an affirmative-action, equal-opportunity employer. Michigan State University Extension programs and materials are open to all without regard to race, color, national origin, gender, gender identity, religion, age, height, weight, disability, political beliefs, sexual orientation, marital status, family status or veteran status. Copyright 2020 MSU Board of Trustees Acknowledgments Financial support for this project was provided by the Great Lakes Restoration Initiative via the Water Resources Division of the Michigan Department of Environment, Great Lakes, and Energy. Daria Hyde and Ashley Cole-Wick provided essential assistance with the field component of this project. Thank you to the landowners who kindly allowed us to access the Salt River and marsh through their properties, especially during difficult times with high water.
  • Diversity and Ecosystem Services of Trichoptera

    Diversity and Ecosystem Services of Trichoptera

    Review Diversity and Ecosystem Services of Trichoptera John C. Morse 1,*, Paul B. Frandsen 2,3, Wolfram Graf 4 and Jessica A. Thomas 5 1 Department of Plant & Environmental Sciences, Clemson University, E-143 Poole Agricultural Center, Clemson, SC 29634-0310, USA; [email protected] 2 Department of Plant & Wildlife Sciences, Brigham Young University, 701 E University Parkway Drive, Provo, UT 84602, USA; [email protected] 3 Data Science Lab, Smithsonian Institution, 600 Maryland Ave SW, Washington, D.C. 20024, USA 4 BOKU, Institute of Hydrobiology and Aquatic Ecology Management, University of Natural Resources and Life Sciences, Gregor Mendelstr. 33, A-1180 Vienna, Austria; [email protected] 5 Department of Biology, University of York, Wentworth Way, York Y010 5DD, UK; [email protected] * Correspondence: [email protected]; Tel.: +1-864-656-5049 Received: 2 February 2019; Accepted: 12 April 2019; Published: 1 May 2019 Abstract: The holometabolous insect order Trichoptera (caddisflies) includes more known species than all of the other primarily aquatic orders of insects combined. They are distributed unevenly; with the greatest number and density occurring in the Oriental Biogeographic Region and the smallest in the East Palearctic. Ecosystem services provided by Trichoptera are also very diverse and include their essential roles in food webs, in biological monitoring of water quality, as food for fish and other predators (many of which are of human concern), and as engineers that stabilize gravel bed sediment. They are especially important in capturing and using a wide variety of nutrients in many forms, transforming them for use by other organisms in freshwaters and surrounding riparian areas.
  • Patterns of Ecological Performance and Aquatic Insect Diversity in High

    Patterns of Ecological Performance and Aquatic Insect Diversity in High

    University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2012 Patterns of Ecological Performance and Aquatic Insect Diversity in High Quality Protected Area Networks Jason Lesley Robinson University of Tennessee Knoxville, [email protected] Recommended Citation Robinson, Jason Lesley, "Patterns of Ecological Performance and Aquatic Insect Diversity in High Quality Protected Area Networks. " PhD diss., University of Tennessee, 2012. http://trace.tennessee.edu/utk_graddiss/1342 This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Jason Lesley Robinson entitled "Patterns of Ecological Performance and Aquatic Insect Diversity in High Quality Protected Area Networks." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Ecology and Evolutionary Biology. James A. Fordyce, Major Professor We have read this dissertation and recommend its acceptance: J. Kevin Moulton, Nathan J. Sanders, Daniel Simberloff, Charles R. Parker Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official student records.) Patterns of Ecological Performance and Aquatic Insect Diversity in High Quality Protected Area Networks A Dissertation Presented for The Doctor of Philosophy Degree The University of Tennessee, Knoxville Jason Lesley Robinson May 2012 Copyright © 2012 by Jason Lesley Robinson All rights reserved.
  • The Trichoptera of North Carolina

    The Trichoptera of North Carolina

    Families and genera within Trichoptera in North Carolina Spicipalpia (closed-cocoon makers) Integripalpia (portable-case makers) RHYACOPHILIDAE .................................................60 PHRYGANEIDAE .....................................................78 Rhyacophila (Agrypnia) HYDROPTILIDAE ...................................................62 (Banksiola) Oligostomis (Agraylea) (Phryganea) Dibusa Ptilostomis Hydroptila Leucotrichia BRACHYCENTRIDAE .............................................79 Mayatrichia Brachycentrus Neotrichia Micrasema Ochrotrichia LEPIDOSTOMATIDAE ............................................81 Orthotrichia Lepidostoma Oxyethira (Theliopsyche) Palaeagapetus LIMNEPHILIDAE .....................................................81 Stactobiella (Anabolia) GLOSSOSOMATIDAE ..............................................65 (Frenesia) Agapetus Hydatophylax Culoptila Ironoquia Glossosoma (Limnephilus) Matrioptila Platycentropus Protoptila Pseudostenophylax Pycnopsyche APATANIIDAE ..........................................................85 (fixed-retreat makers) Apatania Annulipalpia (Manophylax) PHILOPOTAMIDAE .................................................67 UENOIDAE .................................................................86 Chimarra Neophylax Dolophilodes GOERIDAE .................................................................87 (Fumanta) Goera (Sisko) (Goerita) Wormaldia LEPTOCERIDAE .......................................................88 PSYCHOMYIIDAE ....................................................68
  • Brachycentridae Brachycentrus Spp.) of Two Northern Michigan Streams

    Brachycentridae Brachycentrus Spp.) of Two Northern Michigan Streams

    BEHAVIORAL AND MORPHOLOGICAL VARIATION IN BRACHYCENTRIDS (BRACHYCENTRIDAE BRACHYCENTRUS SPP.) OF TWO NORTHERN MICHIGAN STREAMS Maya Chang, Kellie Watkins, Jillian Geyer University of Michigan Biological Station Biology 390 Natural History and Evolution 13 August 2009 Jordan Price ABSTRACT Caddisflies of order Trichoptera are an important indicator species for many aquatic habitats. These organisms may be useful in analyzing the effects of global climate change. We observed morphological and behavioral differences of Trichoptera (Brachycentridae Brachycentrus spp.) between Carp Creek and Maple River, two stream habitats of differing temperature and dissolved oxygen levels. We collected samples of larvae using D‐nets and measured length and width of larvae and casings. We expected there to be little differences between morphology and behavior of Brachycentrids in these two streams. Unexpected results showed that Brachycentrids collected in the Maple River were pupating, and some cases contained adult flies. Consequently, the differences in the two sites may be the result of different evolutionary tactics in Brachycentrids. Keywords: Brachycentridae Brachycentrus, caddisfly, temperature, dissolved oxygen level, behavioral difference, morphological difference. I grant the Regents of the University of Michigan the non‐exclusive right to retain, reproduce, and distribute my paper, titled in electronic formats and at no cost throughout the world. The University of Michigan may make and keep more than one copy of the Paper for purposes of security, backup, preservation and access, and may migrate the Paper to any medium or format for the purpose of preservation and access in the future. Signed, 2 INTRODUCTION The order Trichoptera (caddisflies) encompasses over 12,000 species in North America, which, as larvae, live in rivers and streams.
  • DBR Y W OREGON STATE

    DBR Y W OREGON STATE

    The Distribution and Biology of the A. 15 Oregon Trichoptera PEE .1l(-.", DBR Y w OREGON STATE Technical Bulletin 134 AGRICULTURAL 11 EXPERIMENTI STATION Oregon State University Corvallis, Oregon INovember 1976 FOREWORD There are four major groups of insectswhoseimmature stages are almost all aquatic: the caddisflies (Trichoptera), the dragonflies and damselflies (Odonata), the mayflies (Ephemeroptera), and the stoneflies (Plecoptera). These groups are conspicuous and important elements in most freshwater habitats. There are about 7,000 described species of caddisflies known from the world, and about 1,200 of these are found in America north of Mexico. All play a significant ro'e in various aquatic ecosystems, some as carnivores and others as consumers of plant tissues. The latter group of species is an important converter of plant to animal biomass. Both groups provide food for fish, not only in larval but in pupal and adult stages as well. Experienced fishermen have long imitated these larvae and adults with a wide variety of flies and other artificial lures. It is not surprising, then, that the caddisflies have been studied in detail in many parts of the world, and Oregon, with its wide variety of aquatic habitats, is no exception. Any significant accumulation of these insects, including their various develop- mental stages (egg, larva, pupa, adult) requires the combined efforts of many people. Some collect, some describe new species or various life stages, and others concentrate on studying and describing the habits of one or more species. Gradually, a body of information accumulates about a group of insects for a particular region, but this information is often widely scattered and much effort is required to synthesize and collate the knowledge.
  • Updated Checklist of the Michigan (USA) Caddisflies, with Regional and Habitat Affinities

    A peer-reviewed open-access journal ZooKeys Updated730: 57–74 checklist(2017) of the Michigan (USA) caddisflies, with regional and habitat affinities 57 doi: 10.3897/zookeys.730.21776 CHECKLIST http://zookeys.pensoft.net Launched to accelerate biodiversity research Updated checklist of the Michigan (USA) caddisflies, with regional and habitat affinities David C. Houghton1, R. Edward DeWalt2, Angelica J. Pytel1, Constance M. Brandin1, Sarah E. Rogers1, David E. Ruiter3, Ethan Bright4, Patrick L. Hudson5, Brian J. Armitage6 1 Department of Biology, Hillsdale College, 33 East College Street, Hillsdale, MI 49242, USA 2 Illinois Na- tural History Survey, 1816 South Oak Street, Champaign IL 61820, USA 3 235 SW Central Avenue, Grants Pass, OR 97526, USA 4 Museum of Zoology, University of Michigan, Ann Arbor, MI 48103, USA 5 Great Lakes Science Center, US Geological Survey, 1451 Green Road, Ann Arbor, MI 48105, USA 6 Instituto Conmemorativo Gorgas de Estudio de la Salud, Ave. Justo Arosemena y Calle 35, Apartado Postal No 0816- 02593, Ciudad de Panamá, Republic of Panamá Corresponding author: David C. Houghton ([email protected]) Academic editor: A. Previšić | Received 20 October 2017 | Accepted 6 December 2017 | Published 17 January 2018 http://zoobank.org/D8CA634C-3ED1-49E4-92E5-C91DFFB327E3 Citation: Houghton DC, DeWalt RE, Pytel AJ, Brandin CM, Rogers SE, Ruiter DE, Bright E, Hudson PL, Armitage BJ (2018) Updated checklist of the Michigan (USA) caddisflies, with regional and habitat affinities. ZooKeys 730: 57–74. https://doi.org/10.3897/zookeys.730.21776 Abstract Based on examination of ~180,000 specimens from 695 collections of 443 localities collected from the 1930s to 2015 we report 295 species of caddisflies from Michigan.
  • Trichoptera)�� Of�Virginia:�Part�II.�Families�Of�Integripalpia�

    Trichoptera) OfVirginia:PartII.FamiliesOfIntegripalpia

    Banisteria , Number 31, pages 3-23 © 2008 by the Virginia Natural History Society An Annotated List of the Caddisflies (Trichoptera) of Virginia: Part II. Families of Integripalpia Oliver S. Flint, Jr. Department of Entomology National Museum of Natural History Washington, D.C. 20560 Richard L. Hoffman Virginia Museum of Natural History Martinsville, Virginia 24112 Charles R. Parker U. S. Geological Survey Great Smoky Mountains National Park Gatlinburg, Tennessee 37738 ABSTRACT One hundred forty-five species of caddisflies in the families Apataniidae, Brachycentridae, Calamoceratidae, Goeridae, Helicopsychidae, Lepidostomatidae, Leptoceridae, Limnephilidae, Molannidae, Odontoceridae, Phryganeidae, Sericostomatidae, and Uenoidae are listed for Virginia, of which 27 were not previously known for the state, bringing the total number of verified resident species known from the Commonwealth to 351. Counties of known occurrence are given for all species; detailed collection data are provided for rare species, those which constitute substantial range extensions, and those new to the state list. The distribution of each genus and species is also summarized. Key words : Apataniidae, Brachycentridae, caddisfly, Calamoceratidae, Goeridae, Helicopsychidae, Lepidostomatidae, Leptoceridae, Limnephilidae, Molannidae, Odontoceridae, Phryganeidae, Sericostomatidae, Trichoptera, Uenoidae, Virginia. This is the second installment of a three-part treatise on their geographical distribution. The present on the caddisflies (Trichoptera) of Virginia. For treatment lists the species of the remaining families, background and general remarks, please refer to the with additions and corrections for those accounted in introductory sections in Part I (Flint et al. 2004. An Part I. A summary conclusion with analyses of annotated list of the caddisflies (Trichoptera) of biogeographical patterns is now in preparation as the Virginia: Part I.
  • CHAPTER 10 TRICHOPTERA (Caddisflies)

    CHAPTER 10 TRICHOPTERA (Caddisflies)

    Ù«·¼» ¬± ߯«¿¬·½ ײª»®¬»¾®¿¬»• ±º ¬¸» ˰°»® Ó·¼©»•¬ | îððì CHAPTER 10 TRICHOPTERA (Caddisflies) Citation: Bouchard, R.W., Jr. 2004. Guide to aquatic macroinvertebrates of the Upper Midwest. Water Resources Center, University of Minnesota, St. Paul, MN. 208 pp. ݸ¿°¬»® ïð | ÌÎ×ÝØÑÐÌÛÎß 115 Ù«·¼» ¬± ߯«¿¬·½ ײª»®¬»¾®¿¬»• ±º ¬¸» ˰°»® Ó·¼©»•¬ | îððì ORDER TRICHOPTERA Caddisflies 10 Ì®·½¸±°¬»®¿ ·• ¬¸» ´¿®¹»•¬ ±®¼»® ±º ·²•»½¬• ·² ©¸·½¸ »ª»®§ ³»³¾»® ·• ¬®«´§ ¿¯«¿¬·½ò Ì®·½¸±°¬»®¿ ¿®» ½´±•» ®»´¿¬·ª»• ±º ¾«¬¬»®º´·»• ¿²¼ ³±¬¸• øÔ»°·¼±°¬»®¿÷ ¿²¼ ´·µ» Ô»°·¼±°¬»®¿ô ½¿¼¼·•º´·»• ¸¿ª» ¬¸» ¿¾·´·¬§ ¬± •°·² •·´µò ̸·• ¿¼¿°¬¿¬·±² ·• ´¿®¹»´§ ®»•°±²•·¾´» º±® ¬¸» •«½½»•• ±º ¬¸·• ¹®±«°ò Í·´µ ·• «•»¼ ¬± ¾«·´¼ ®»¬®»¿¬•ô ¬± ¾«·´¼ ²»¬• º±® ½±´´»½¬·²¹ º±±¼ô º±® ½±²•¬®«½¬·±² ±º ½¿•»•ô º±® ¿²½¸±®·²¹ ¬± ¬¸» •«¾•¬®¿¬»ô ¿²¼ ¬± •°·² ¿ ½±½±±² º±® ¬¸» °«°¿ò ß´³±•¬ ¿´´ ½¿¼¼·•º´·»• ´·ª» ·² ¿ ½¿•» ±® ®»¬®»¿¬ ©·¬¸ ¬¸» »¨½»°¬·±² ±º θ§¿½±°¸·´·¼¿»ò Ý¿¼¼·•º´·»• ¿®» ·³°±®¬¿²¬ ·² ¿¯«¿¬·½ »½±•§•¬»³• ¾»½¿«•» ¬¸»§ °®±½»•• ±®¹¿²·½ ³¿¬»®·¿´ ¿²¼ ¿®» ¿² ·³°±®¬¿²¬ º±±¼ •±«®½» º±® º·•¸ò ̸·• ¹®±«° ¼·•°´¿§• ¿ ª¿®·»¬§ ±º º»»¼·²¹ ¸¿¾·¬• •«½¸ ¿• º·´¬»®ñ½±´´»½¬±®•ô ½±´´»½¬±®ñ¹¿¬¸»®»®•ô •½®¿°»®•ô •¸®»¼¼»®•ô °·»®½»®ñ¸»®¾·ª±®»•ô ¿²¼ °®»¼¿¬±®•ò Ý¿¼¼·•º´·»• ¿®» ³±•¬ ¿¾«²¼¿²¬ ·² ®«²²·²¹ ø´±¬·½÷ ©¿¬»®•ò Ô·µ» Û°¸»³»®±°¬»®¿ ¿²¼ д»½±°¬»®¿ô ³¿²§ Ì®·½¸±°¬»®¿ •°»½·»• ¿®» •»²•·¬·ª» ¬± °±´´«¬·±²ò Trichoptera Morphology Ô¿®ª¿´ Ì®·½¸±°¬»®¿ ®»•»³¾´» ½¿¬»®°·´´¿®• »¨½»°¬ Ì®·½¸±°¬»®¿ ´¿½µ ¿¾¼±³·²¿´ °®±´»¹• ©·¬¸ ½®±½¸»¬• ø•»» º·¹ ïïòî÷ò Ì®·½¸±°¬»®¿ ½¿² ¾» ·¼»²¬·º·»¼ ¾§ ¬¸»·® •¸±®¬ ¿²¬»²²¿»ô •½´»®±¬·¦»¼ ¸»¿¼ô •½´»®±¬·¦»¼