Jochen Kumlehn Nils Stein Editors Biotechnological Approaches to Barley Improvement Biotechnology in Agriculture and Forestry

Total Page:16

File Type:pdf, Size:1020Kb

Jochen Kumlehn Nils Stein Editors Biotechnological Approaches to Barley Improvement Biotechnology in Agriculture and Forestry Biotechnology in Agriculture and Forestry 69 Jack M. Widholm · Jochen Kumlehn · Toshiyuki Nagata Series Editors Jochen Kumlehn Nils Stein Editors Biotechnological Approaches to Barley Improvement Biotechnology in Agriculture and Forestry Volume 69 Series Editors Prof. Dr. Jack M. Widholm (Managing Editor) 285A E.R. Madigan Laboratory, Department of Crop Sciences, University of Illinois, 1201 W. Gregory, Urbana, IL 61801, USA Dr. Jochen Kumlehn Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Head, Plant Reproductive Biology, Corrensstr. 3, 06466 Gatersleben, Germany Prof. Dr. Toshiyuki Nagata Professor and Dean, Faculty of Biological Sciences and Applied Chemistry, Hosei University, 3-7-2 Kajino-cho, Koganei-shi, Tokyo 184-8584, Japan; Emeritus Professor of the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan More information about this series at http://www.springer.com/series/798 Jochen Kumlehn • Nils Stein Editors Biotechnological Approaches to Barley Improvement Editors Jochen Kumlehn Nils Stein Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Germany ISSN 0934-943X ISBN 978-3-662-44405-4 ISBN 978-3-662-44406-1 (eBook) DOI 10.1007/978-3-662-44406-1 Springer Heidelberg New York Dordrecht London Library of Congress Control Number: 2014954986 © Springer-Verlag Berlin Heidelberg 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface Barley is deemed one of the first plant species to be domesticated. Its cultivation over a very broad range of environments and its versatile utilization for the production of raw material for feed and food render it a top-four crop plant worldwide. Representing the temperate cereals of the Triticeae tribe (wheat, rye, triticale), barley has been used as experimental model since the era of classical genetics and cytogenetics—a role that has been reinforced along the development of contemporary biology and crop plant research. The generation of comprehensive genome sequence data is regarded as a cor- nerstone with major impact into all areas of modern barley research. Thus, we are convinced of the timeliness and importance to survey and reflect the current state of biotechnologically oriented barley research in the present volume of the Springer series Biotechnology in Agriculture and Forestry. Besides genome sequencing, major progress was achieved by deep sequencing-based transcriptomics, the estab- lishment of comprehensive mutant panels and TILLING platforms, the generation of high-resolution genetic maps, efficient site-directed mutagenesis using custom- izable endonucleases, as well as the establishment of automated plant phenotyping facilities. This powerful suite of tools greatly facilitates the elucidation of molec- ular mechanisms underlying plant performance, which by itself is a prerequisite for knowledge-driven progress in barley breeding to cope with future challenges in agriculture and the related value chain. The present volume is structured into two major sections: the first focusing on current agricultural challenges and approaches to barley improvement and the second giving insight to recent progress in methodology. The individual chapters provide the reader with comprehensive information spanning from fundamental aspects to special applications. We are grateful to all the contributing authors—all are leading scientists in their respective field of research—for their outstanding input. All chapters were exten- sively peer reviewed to ensure for high standard and scientifically sound informa- tion throughout this compilation. We thus are very grateful to the contribution of all the involved reviewers, who were willing, in addition to the general load of v vi Preface reviewing that all of us are facing these days, to review and comment on the contributions to this volume. All their names are listed overleaf and their help is very much appreciated. We hope this volume will serve as a useful resource for interested readers with good basic biological knowledge, students, and teachers especially of the life sciences as well as for established scientists working on barley or related subjects. Great thanks also to Springer Publishing for its indefinite patience and support. Gatersleben, Germany Jochen Kumlehn Nils Stein Chapter Reviewers Frank R. Blattner, Germany Roland von Bothmer, Sweden Peter M. Chandler, Australia David B. Collinge, Denmark Catherine Feuillet, Belgium Brian P. Forster, Austria Trevor Garnett, Australia Andreas Graner, Germany Go¨tz Hensel, Germany Andreas Houben, Germany Paul A. Johnston, New Zealand Benjamin Kilian, Germany Peter Langridge, Australia Frank Ordon, Germany Christoph Peterha¨nsel, Germany Richard Pickering, New Zealand Klaus Pillen, Germany Thorsten Schnurbusch, Germany Chris Carolin Scho¨n, Germany Mark E. Sorrells, USA Thomas Thieme, Germany Roberto Tuberosa, Italy Achim Walter, Switzerland Robbie Waugh, UK vii ThiS is a FM Blank Page Contents Part I Agricultural Challenges and Approaches to Barley Improvement 1 The World Importance of Barley and Challenges to Further Improvements ......................................... 3 Harold Verstegen, Otto Ko¨neke, Viktor Korzun, and Reinhard von Broock 2 Genetic Diversity and Germplasm Management: Wild Barley, Landraces, Breeding Materials ............................ 21 Kazuhiro Sato, Andrew Flavell, Joanne Russell, Andreas Bo¨rner, and Jan Valkoun 3 Domestication ......................................... 37 Takao Komatsuda 4 Shoot and Inflorescence Architecture ....................... 55 Laura Rossini, Ron Okagaki, Arnis Druka, and Gary J. Muehlbauer 5 Genetic Control of Reproductive Development ................ 81 Benedikt Drosse, Chiara Campoli, Aman Mulki, and Maria von Korff 6 Improvement of Mineral Nutrition: A Source and Sink for Candidate Genes ....................................... 101 Benjamin D. Gruber and Nicolaus von Wire´n 7 Photosynthesis and Leaf Senescence as Determinants of Plant Productivity .......................................... 113 Per L. Gregersen, Christine H. Foyer, and Karin Krupinska 8 Grain Development ..................................... 139 Winfriede Weschke and Hans Weber ix x Contents 9 Drought Stress Tolerance Mechanisms in Barley and Its Relevance to Cereals ............................................ 161 Polavarpu B. Kavi Kishor, Kalladan Rajesh, Palakolanu S. Reddy, Christiane Seiler, and Nese Sreenivasulu 10 Response to Viral Pathogens .............................. 181 Frank Ordon and Thomas Ku¨hne 11 Host and Nonhost Response to Attack by Fungal Pathogens ...... 197 Patrick Schweizer 12 Responses to Phytophagous Arthropods ..................... 237 Isabel Diaz, Ine´s Cambra, M. Estrella Santamarı´a, Pablo Gonza´lez-Melendi, and Manuel Martı´nez 13 Molecular Farming ..................................... 249 Einar Ma¨ntyla¨ and Bjo¨rn L. O¨ rvar Part II Recent Progress in Methodology 14 Development of Sequence Resources ........................ 271 Nils Stein 15 Induced Genetic Variation, TILLING and NGS-Based Cloning ... 287 Silvio Salvi, Arnis Druka, Sara Giulia Milner, and Damian Gruszka 16 Modulation of Meiotic Recombination ...................... 311 Luke Ramsay, Isabelle Colas, and Robbie Waugh 17 The Secondary Gene Pool of Barley (Hordeum bulbosum): Gene Introgression and Homoeologous Recombination ......... 331 Brigitte Ruge-Wehling and Peter Wehling 18 Genome-Wide Association Scans (GWAS) ................... 345 Robbie Waugh, Bill Thomas, Andrew Flavell, Luke Ramsay, Jordi Comadran, and Joanne Russell 19 Genomic Selection in Barley Breeding ...................... 367 Karl J. Schmid and Patrick Thorwarth 20 Haploid Technology .................................... 379 Jochen Kumlehn 21 Genetic Engineering .................................... 393
Recommended publications
  • Protected Areas and the Challenge of Conserving Crop Wild Relatives
    PARKS 2012 Vol 18.1 PROTECTED AREAS AND THE CHALLENGE OF CONSERVING CROP WILD RELATIVES Danny Hunter1*, Nigel Maxted2, Vernon Heywood3, Shelagh Kell2 and Teresa Borelli1 * Corresponding author, [email protected] 1 Bioversity International, Rome, Italy 2 School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom 3 School of Biological Sciences, University of Reading, Reading RG6 6AS, United Kingdom ABSTRACT Crop wild relatives are a critical resource for sustaining future food security. It is widely recognized that many of the world’s protected areas contain CWR diversity. Despite this, it has not yet proved possible to undertake significant actions to conserve the CWR they contain. Many challenges and obstacles need to be addressed in order to improve this situation. Recent initiatives have started to address these challenges and uncovered some key lessons. Still, the need for action is urgent and the paper concludes by drawing attention to the need for a global approach to conserving priority and threatened CWR in the wild. INTRODUCTION worth noting that the same study found breeders’ use of CWR taxa was increasing year on year, even though it Crop wild relatives (CWR) - wild plant species closely was recognized that they were still far from being related to crops to which they may contribute beneficial systematically exploited. genes - constitute an enormous reservoir of genetic variation for crop improvement and are an important Some idea of the scale of benefits may be obtained from socio-economic resource. Genes from wild plants have published estimates referring to a selected number of provided crops with resistance to many pests and crops.
    [Show full text]
  • Toward Unifying Global Hotspots of Wild and Domesticated Biodiversity
    plants Review Toward Unifying Global Hotspots of Wild and Domesticated Biodiversity Samuel Pironon 1,*, James S. Borrell 1, Ian Ondo 1, Ruben Douglas 1, Charlotte Phillips 2, Colin K. Khoury 3,4 , Michael B. Kantar 5 , Nathan Fumia 5 , Marybel Soto Gomez 6,7 , Juan Viruel 1 , Rafael Govaerts 1 ,Félix Forest 1 and Alexandre Antonelli 1,8 1 Royal Botanic Gardens, Kew, Richmond TW93AQ, UK; [email protected] (J.S.B.); [email protected] (I.O.); [email protected] (R.D.); [email protected] (J.V.); [email protected] (R.G.); [email protected] (F.F.); [email protected] (A.A.) 2 Royal Botanic Gardens, Kew, Wakehurst Place TW93AE, UK; [email protected] 3 International Center for Tropical Agriculture (CIAT), Cali 6713, Colombia; [email protected] 4 Department of Biology, Saint Louis University, St. Louis, MO 63103, USA 5 Department of Tropical Plant and Soil Science, University of Hawaii at Manoa, Honolulu, HI 96822, USA; [email protected] (M.B.K.); [email protected] (N.F.) 6 Department of Botany, University of British Columbia, Vancouver, BC V6T1Z4, Canada; [email protected] 7 UBC Botanical Garden and Centre for Plant Research, University of British Columbia, Vancouver, BC V6T1Z4, Canada 8 Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, 40530 Göteborg, Sweden * Correspondence: [email protected] Received: 17 July 2020; Accepted: 27 August 2020; Published: 31 August 2020 Abstract: Global biodiversity hotspots are areas containing high levels of species richness, endemism and threat. Similarly, regions of agriculturally relevant diversity have been identified where many domesticated plants and animals originated, and co-occurred with their wild ancestors and relatives.
    [Show full text]
  • Crop Wild Relatives: Plant Conservation for Food Security
    Natural England Research Report NERR037 Crop Wild Relatives: Plant conservation for food security www.naturalengland.org.uk Natural England Research Report NERR037 Crop Wild Relatives: Plant conservation for food security John Hopkins1 and Nigel Maxted2 1Natural England 2University of Birmingham Published on 25 January 2011 © Natural England copyright 2011 ISSN 1754-1956 This material is subject to Natural England copyright protection under the Copyright Designs and Patents Act 1988. Natural England copyright protected material (other than Natural England logos) may be reproduced free of charge in any format or medium for non-commercial purposes, private study, criticism, review, news reporting and for internal circulation within your organisation. This is subject to the material being reproduced accurately and not used in a misleading context. Where any of the Natural England copyright material is being republished or copied to others, the source of the material must be identified and the copyright status acknowledged. However, if you wish to use all or part of this information for commercial purposes, including publishing you will need to apply for a licence. Applications can be sent to: Publications Natural England 3rd Floor, Touthill Close, City Road Peterborough PE1 1XN Tel: 0845 600 3078 Fax: 01733 455103 Email: [email protected] Crop Wild Relatives: Plant conservation for food security i Project details This report is a review of the scientific literature relating to Crop Wild Relatives and related aspects of crop genetic diversity conservation, carried out by the authors. A summary of the findings covered by this report, as well as Natural England's views on this research, can be found within Natural England Research Information Note RIN037 – Crop Wild Relatives: Plant conservation for food security.
    [Show full text]
  • Comportement De Trois Espèces De Vesce Sous L'effet D'un Stress Hydrique
    IOSR Journal of Agriculture and Veterinary Science (IOSR-JAVS) ISSN: 2319-2380, ISBN: 2319-2372. Volume 2, Issue 1 (Jan. - Feb. 2013), PP 50-56 www.iosrjournals.org Effect of Drought on Growth and Chlorophyll Content in Three Vetch Species Sywar Haffani1, Majid Mezni2 and Wided Chaïbi1 1Faculté des Sciences de Tunis, Campus Universitaire, 1060, le Belvédère, Tunisie. 2Université de Carthage, Institut National de la Recherche Agronomique de Tunisie, Rue Hédi Karray, 2049 Ariana, Tunisie. Abstract: Plants in the nature are constantly exposed to biotic and abiotic stresses. Among these stresses, the drought is the mainly important factor unfavorable to the growth and the development of plants, and it is considered as a threat in the sustainable agriculture especially in dry regions. The aim of this work is to study the effect of 4 water regimes [100% (control) - 80 - 60 and 40% of the field capacity (FC)] on the dimensional and weight growth and on the chlorophyll content in three vetch species (Vicia narbonensis, V. sativa and V. villosa). The experiment was carried out under greenhouse in a randomized complete block design with four replicates. The sowing was realized by one pre-germinating seed per pot. The water stress was imposed at the two leaves stage. The parameters were determined after 71 days of drought. Results showed that height, leaf area and dry matter of shoots and roots decreased significantly with the water stress intensities on the three vetch species. However, V. villosa was the most sensitive one at this stage of growth, compared to Narbonne vetch. The biomass reduction was in concomitance with an important decrease in chlorophyll content which reached 44% and 20% respectively for V.
    [Show full text]
  • Draft Carpathian Red List of Forest Habitats
    CARPATHIAN RED LIST OF FOREST HABITATS AND SPECIES CARPATHIAN LIST OF INVASIVE ALIEN SPECIES (DRAFT) PUBLISHED BY THE STATE NATURE CONSERVANCY OF THE SLOVAK REPUBLIC 2014 zzbornik_cervenebornik_cervene zzoznamy.inddoznamy.indd 1 227.8.20147.8.2014 222:36:052:36:05 © Štátna ochrana prírody Slovenskej republiky, 2014 Editor: Ján Kadlečík Available from: Štátna ochrana prírody SR Tajovského 28B 974 01 Banská Bystrica Slovakia ISBN 978-80-89310-81-4 Program švajčiarsko-slovenskej spolupráce Swiss-Slovak Cooperation Programme Slovenská republika This publication was elaborated within BioREGIO Carpathians project supported by South East Europe Programme and was fi nanced by a Swiss-Slovak project supported by the Swiss Contribution to the enlarged European Union and Carpathian Wetlands Initiative. zzbornik_cervenebornik_cervene zzoznamy.inddoznamy.indd 2 115.9.20145.9.2014 223:10:123:10:12 Table of contents Draft Red Lists of Threatened Carpathian Habitats and Species and Carpathian List of Invasive Alien Species . 5 Draft Carpathian Red List of Forest Habitats . 20 Red List of Vascular Plants of the Carpathians . 44 Draft Carpathian Red List of Molluscs (Mollusca) . 106 Red List of Spiders (Araneae) of the Carpathian Mts. 118 Draft Red List of Dragonfl ies (Odonata) of the Carpathians . 172 Red List of Grasshoppers, Bush-crickets and Crickets (Orthoptera) of the Carpathian Mountains . 186 Draft Red List of Butterfl ies (Lepidoptera: Papilionoidea) of the Carpathian Mts. 200 Draft Carpathian Red List of Fish and Lamprey Species . 203 Draft Carpathian Red List of Threatened Amphibians (Lissamphibia) . 209 Draft Carpathian Red List of Threatened Reptiles (Reptilia) . 214 Draft Carpathian Red List of Birds (Aves). 217 Draft Carpathian Red List of Threatened Mammals (Mammalia) .
    [Show full text]
  • Botanic Gardens Are Important Contributors to Crop Wild Relative Preservation
    Published November 21, 2019 RESEARCH Botanic Gardens Are Important Contributors to Crop Wild Relative Preservation Abby Meyer* and Nicholas Barton Botanic Gardens Conservation International US at at The Huntington ABSTRACT Library, Art Museum, and Botanical Gardens, 1151 Oxford Rd., San Humans rely on crop wild relatives (CWRs) for Marino, CA 91108. Received 2 June 2019. Accepted 11 Oct. 2019. sustainable agriculture and food security through *Corresponding author ([email protected]). Assigned to Associate augmentation of crop yield, disease resistance, Editor Joseph Robins. and climatic tolerance, among other important Abbreviations: BGCI, Botanic Gardens Conservation International; traits. Many CWRs are underrepresented in crop CWR, crop wild relative; GRIN, Germplasm Resources Information gene banks. With at least one-third of known Network. plant species maintained in botanic garden living collections, the botanic garden community serves as an important global ex situ network rop wild relatives (CWRs), plants that have “an indirect that supports plant conservation and research Cuse derived from its relatively close genetic relationship to a around the world. We sought to characterize crop,” provide important genetic diversity needed by breeders and botanic garden holdings of CWRs and demon- scientists to develop a wide range of crop plant adaptations (Maxted strate capacity for cross-sector coordination in et al., 2006, p. 2680). Benefits such as increased production, better support of CWR ex situ preservation. To do this, nutrition, drought tolerance, and pest and disease resistance have Botanic Gardens Conservation International been made possible through the use of CWRs and allowed for US (BGCI-US), in partnership with the United more consistent and sustainable yields of conventional crops for States Botanic Garden, used the BGCI Plant- Search database to conduct an ex situ survey of decades (Dempewolf et al., 2017; Guarino and Lobell, 2011; Hajjar CWRs maintained in botanic gardens.
    [Show full text]
  • An Evolutionary Perspective on Human Cross-Sensitivity to Tree Nut and Seed Allergens," Aliso: a Journal of Systematic and Evolutionary Botany: Vol
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 33 | Issue 2 Article 3 2015 An Evolutionary Perspective on Human Cross- sensitivity to Tree Nut and Seed Allergens Amanda E. Fisher Rancho Santa Ana Botanic Garden, Claremont, California, [email protected] Annalise M. Nawrocki Pomona College, Claremont, California, [email protected] Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, Evolution Commons, and the Nutrition Commons Recommended Citation Fisher, Amanda E. and Nawrocki, Annalise M. (2015) "An Evolutionary Perspective on Human Cross-sensitivity to Tree Nut and Seed Allergens," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 33: Iss. 2, Article 3. Available at: http://scholarship.claremont.edu/aliso/vol33/iss2/3 Aliso, 33(2), pp. 91–110 ISSN 0065-6275 (print), 2327-2929 (online) AN EVOLUTIONARY PERSPECTIVE ON HUMAN CROSS-SENSITIVITY TO TREE NUT AND SEED ALLERGENS AMANDA E. FISHER1-3 AND ANNALISE M. NAWROCKI2 1Rancho Santa Ana Botanic Garden and Claremont Graduate University, 1500 North College Avenue, Claremont, California 91711 (Current affiliation: Department of Biological Sciences, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840); 2Pomona College, 333 North College Way, Claremont, California 91711 (Current affiliation: Amgen Inc., [email protected]) 3Corresponding author ([email protected]) ABSTRACT Tree nut allergies are some of the most common and serious allergies in the United States. Patients who are sensitive to nuts or to seeds commonly called nuts are advised to avoid consuming a variety of different species, even though these may be distantly related in terms of their evolutionary history.
    [Show full text]
  • University of Southampton Research Repository Eprints Soton
    University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk UNIVERSITY OF SOUTHAMPTON A REVISION OF Vicia SUBGENUS Vicia USING DATABASE TECHNIQUES A Thesis submitted for the Degree of Doctor of Philosophy in the University of Southampton by Nigel Maxted Department of Biology September, 199 0 "What we cannot speak about we must passover in silence" Wittgenstein (1974) "The revolution , if such it is to be, will arise from the application of computers to systematics, both in data-processing and in the more restricted field of production of classifications and keys." Heywood (1974) 11 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF SCIENCE BIOLOGY Doctor of Philosophy A REVISION OF VICIA SUBGENUS VICIA USING DATABASE TECHNIQUES by Nigel Maxted The thesis investigates the applications of contemporary database technology to enhance the process and production of a taxonomic revision.
    [Show full text]
  • Developing Methodologies for the Global in Situ Conservation of Crop
    Developing methodologies for the global in situ conservation of crop wild relatives By Holly A. Vincent A thesis submitted to the University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Biosciences The University of Birmingham June 2016 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Climate change is predicted to have far-reaching deleterious impacts worldwide; agriculture in particular is expected to be effected by significant loss of suitable land and crop yields in the world’s most populous and poorest regions. Crop wild relatives (CWR) are a rich source of underutilised genetic diversity which could help to mitigate climate change for agriculture through breeding new resilient varieties. However, CWR are under-conserved and threatened in the wild. This thesis researches and develops systematic methodologies to advance knowledge and support action on in situ CWR conservation at the global level. Methods included developing a global inventory of CWR associated with crops important for food security worldwide, species distribution modelling, climate change analysis, in situ gap analysis, reserve planning and prioritisation, and, examining the congruence of CWR distributions with regions of high biodiversity and crop diversity.
    [Show full text]
  • Crop Wild Relatives
    Crop wild relatives The Crop Wild Relatives Project The benefits of foods from the forests The value of wild relatives Managing Editor Contents Ruth D. Raymond An introduction to crop wild relatives 1 ssistant Managing Editor The Crop Wild Relatives Project 2 Cassandra Moore Use crop wild relatives or lose them! 3 Intern Kelly Wagner Wild foods are rich in micronutrients 4 Design & layout The benefits of foods from the forests 5 Patrizia Tazza Frances Ferraiuolo The value of wild relatives 6 Cover Photo Bringing crop relatives to the public 7 The wild relatives of banana could provide solutions for Spicy wild relatives get some respect 8 improving the crop, which is notoriously difficult to breed. The importance of wild bananas in Sri Lanka 9 Karen Robinson/Panos Wild relatives offer new lease on life to an ancient grain 10 Pictures Global conference maps out future for wild relatives 11 © Bioversity International 2006 Regional catalogue supports national strategies 12 Reprinted from Geneflow 2006. Putting diversity back into wheat 13 Protecting the wild relatives of walnut 14 Saving Central Asia's pistachio diversity 15 Ask the old women 16 Tapping the potential of medicinal and aromatic plants in northern Europe 17 Climate change threatens wild relatives with extinction 18 This publication was Wild potato relative may blunt late blight 19 supported by the UNEP/GEF On the rocks 20 project "In situ conservation of crop wild relatives through Spreading the word about wild relatives 21 enhanced information management and field Wild relatives could help boost berry market 22 application." Groundnut relatives hit the spot 23 Glossary 24 n introduction to crop wild relatives Crop wild relatives include value of some crops, crop ancestors as well as including protein content other species more or less in durum wheat, calcium closely related to crops.
    [Show full text]
  • The Toxicity of Vicia Species and Their Utilisation As Grain Legumes
    cñ[Ptx¡ s$9 % The toxicity of Vicía speci zftrU $95 their utilisation as grain le es oÇ Dissertation for the degree I)octor of Philosophy in Agricultural Science by Dirk Enneking B.Ag.Sc. (Adelaide) Universify of Adelaide Waite Agricultural Research Institute South Australia June, 1994 uplA zIpIA'luaA I)eclaration This work contains no m¿terial which has been accepted for the award of any other degree or diploma in any universþ or other tertiary institution and, to the best of my knowledge and beliet contains no material previousþ published or written by another person, except where due reference has been made in the text. I girre consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopytng SrG* o ?. :. .t..è... 1. .? ^rB:..7. 11 Acknowledgements I would like to tha¡k the many people who have contributed their time, thought and resorrçes to the successfirl completion of this study. The m¡ny discussions with friends and colleagues, and the written correspondence with overseas researchers have heþed to formulate and test many ideas. Scientific collaboration with the late Dr. R L. Davies, Dr. Phil Glatz, Llmne Giles and Dr. Nigel Maxted has been one of the key features of the study. Individual contributions are acknowledged in the relevant sections of this thesis. I would also like to thank the staffat the South Austraïan Department of Agriculture's Northfiekl Piggery and Parafield Poultry Research Centre, particularþ J¡nine Baker and Andrew Cecil, for carrying out the animal experiments. This study would not have been possible without the continuous help of Dr.
    [Show full text]
  • Section A. Crop Wild Relatives A.1
    SECTION A. CROP WILD RELATIVES A.1. Introduction What are crop wild relatives? Crop wild relatives (CWR) are taxa closely related to crops and are defined by their potential ability to contribute beneficial traits for crop improvement; for example, to confer resistance to pests and diseases, improve tolerance to environmental conditions such as extreme temperatures, drought and flooding, and to improve nutrition, flavour, colour, texture and handling qualities . A working definition of a CWR based on the Gene Pool concept or, in the 1 absence of crossing and genetic diversity information, the Taxon Group concept , has been proposed: ‘‘A crop wild relative is a wild plant taxon that has an indirect use derived from its relatively close genetic relationship to a crop; this relationship is defined in terms of the CWR belonging to gene pools 1 or 2, or taxon groups 1 to 4 of the crop’’. Pyrus salicifolia Pall., a wild relative of pear (P. pyraster Burgsd.), in Naxcıvan, Azerbaijan. This species grows in very dry and rocky areas; in some places the seeds of P. salicifolia are used to obtain the rootstock for local varieties of pears (photo: Mirza Musayev). Genetic erosion is a key problem for CWR. What is genetic erosion? Genetic erosion is a fundamental problem for CWR and has been referred to in the literature as the permanent reduction in richness (total number of alleles) or evenness (i.e. spread of allelic diversity)3 of common local alleles, or the loss of combinations of alleles over time in a defined area4. Genetic erosion can affect wild populations conserved in situ and ex situ collections (i.e.
    [Show full text]