Risks and Management of Non-Native Impatiens Species in the Netherlands

Total Page:16

File Type:pdf, Size:1020Kb

Risks and Management of Non-Native Impatiens Species in the Netherlands Risks and management of non - native Impatiens species in the Netherlands J. Matthews, R. Beringen, E. Boer, H. Duistermaat, B. Odé, J.L.C.H. van Valkenburg, G. van der Velde & R.S.E.W. Leuven Risks and management of non-native Impatiens species in the Netherlands J. Matthews, R. Beringen, E. Boer, H. Duistermaat, B. Odé, J.L.C.H. van Valkenburg, G. van der Velde & R.S.E.W. Leuven 29 September 2015 Radboud University, FLORON and Naturalis Biodiversity Center Commissioned by Invasive Alien Species Team Office for Risk Assessment and Research Netherlands Food and Consumer Product Safety Authority Ministry of Economic Affairs Series of Reports Environmental Science The Reports Environmental Science are edited and published by the Department of Environmental Science, Institute for Water and Wetland Research, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands (tel. secretariat: + 31 (0)24 365 32 81). Reports Environmental Science 491 Title: Risks and management of non-native Impatiens species in the Netherlands Authors: J. Matthews, R. Beringen, E. Boer, H. Duistermaat, B. Odé, J.L.C.H. van Valkenburg, G. van der Velde & R.S.E.W. Leuven Cover photo: Orange jewelweed (Impatiens capensis). Photo: J.L.C.H. van Valkenburg. Project manager: Dr. R.S.E.W. Leuven, Department of Environmental Science, Institute for Water and Wetland Research, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands, e-mail: [email protected] Project number: RU/FNWI/FEZ 62002666 Client: Netherlands Food and Consumer Product Safety Authority, Invasive Alien Species Team, Office for Risk Assessment and Research, P.O. Box 43006, 3540 AA Utrecht Reference client: Order number 60003347 d.d. 1st December 2014 and specification code TRCVWA/BuRO2014/9291 d.d. 15th October 2014 Orders: Secretariat of the Department of Environmental Science, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands, e-mail: [email protected], mentioning Reports Environmental Science 491 Key words: Dispersion; ecological effects; invasive species; management options, public health, socio-economic impacts 2015. Department of Environmental Science, Institute for Water and Wetland Research, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands All rights reserved. No part of this report may be translated or reproduced in any form of print, photoprint, microfilm, or any other means without prior written permission of the publisher. Content Samenvatting ........................................................................................................................ 8 Summary ............................................................................................................................ 17 1. Introduction .................................................................................................................. 25 1.1. Background and problem statement ..................................................................... 25 1.2. Research goals ..................................................................................................... 25 1.3. Outline and coherence of research ....................................................................... 25 2. Materials and methods .................................................................................................... 27 2.1 Quick scan of relevant Impatiens species and hybrids ............................................... 27 2.2. Literature review ....................................................................................................... 28 2.3. Data acquisition on current distribution ..................................................................... 29 2.4. Risk assessment ...................................................................................................... 29 2.4.1. Selection of risk assessment method ................................................................. 29 2.4.2. The ISEIA ecological risk assessment protocol .................................................. 30 2.4.3. Expert meeting on risk classification using the ISEIA protocol ............................ 32 2.5. Workshop on cost-effective management strategies ................................................. 32 3. Survey of Impatiens species and hybrids in the Netherlands and surrounding countries . 34 4. Descriptions of Impatiens species .................................................................................. 37 4.1. Impatiens arguta ....................................................................................................... 37 4.1.1. Species description ............................................................................................ 37 4.1.2. Habitat summary ................................................................................................ 38 4.1.3. Recorded distribution ......................................................................................... 39 4.1.4. Invasion process ................................................................................................ 39 4.1.5. Environmental impact summary ......................................................................... 39 4.1.6. Ecological risk assessment with the ISEIA protocol ............................................ 40 4.1.7. Other risk assessments and classifications ........................................................ 42 4.2. Balfour's touch-me-not (Impatiens balfourii) .............................................................. 43 4.2.1. Species description ............................................................................................ 43 4.2.2. Habitat summary ................................................................................................ 44 4.2.3. Recorded distribution ......................................................................................... 46 4.2.4. Invasion process ................................................................................................ 47 4.2.5. Environmental impact summary ......................................................................... 48 4.2.6. Ecological risk assessment with the ISEIA protocol ............................................ 49 4.2.7. Other risk assessments and classifications ........................................................ 52 4.3. Common garden balsam (Impatiens balsamina) ....................................................... 53 4 4.3.1. Species description ............................................................................................ 53 4.3.2. Habitat summary ................................................................................................ 55 4.3.3. Recorded distribution ......................................................................................... 55 4.3.4. Invasion process ................................................................................................ 56 4.3.5. Environmental impact summary ......................................................................... 56 4.3.6. Ecological risk assessment with the ISEIA protocol ............................................ 57 4.3.7. Other risk assessments and classifications ........................................................ 59 4.4. Orange jewelweed (Impatiens capensis) .................................................................. 60 4.4.1. Species description ............................................................................................ 60 4.4.2. Habitat summary ................................................................................................ 62 4.4.3. Recorded distribution ......................................................................................... 63 4.4.4. Invasion process ................................................................................................ 65 4.4.5. Environmental impact summary ......................................................................... 66 4.4.6. Ecological risk assessment with the ISEIA protocol ............................................ 67 4.4.7. Other risk assessments and classifications ........................................................ 70 4.5. Impatiens edgeworthii ............................................................................................... 71 4.5.1. Species description ............................................................................................ 71 4.5.2. Habitat summary ................................................................................................ 72 4.5.3. Recorded distribution ......................................................................................... 73 4.5.4. Invasion process ................................................................................................ 73 4.5.5. Environmental impact summary ......................................................................... 73 4.5.6. Ecological risk assessment with the ISEIA protocol ............................................ 74 4.5.7. Other risk assessments and classifications ........................................................ 77 4.6. Impatiens flanaganae ............................................................................................... 78 4.6.1. Species description ............................................................................................ 78 4.6.2.
Recommended publications
  • Germination, Vegetative and Flowering Behavior of Balsam (Impatiens
    International Journal of Environment, Agriculture and Biotechnology (IJEAB) Vol-3, Issue -4, Jul-Aug- 2018 http://dx.doi.org/10.22161/ijeab/3.4.38 ISSN: 2456-1878 Germination, vegetative and flowering behavior of Balsam (Impatiens balsamina L.) in response to natural photoperiods Muhammad Aslam Baloch1, Tanveer Fatima Miano*1, Niaz Ahmed Wahocho1, Naheed Akhtar Talpur2, Abdul Qadir Gola1 1Department of Horticulture, Sindh Agriculture University Tandojam, Pakistan 2Department of Soil Science, Sindh Agriculture University Tandojam, Pakistan Corresponding Author: Dr. Tanveer Fatima Miano*, Associate Professor Corresponding Author Email: [email protected] Abstract— A lack of application of photoperiod and light content (46.79 SPAD) was recorded from NP4= 9 hrs intensity to manipulate the growth of current spring (8:00 am-5:00 pm) as compared to seed germination annuals has, in part, been due to the lack of information (63.88%), germination index (0.66 gi) plant height (14.92 identifying the photoperiodic and light intensities cm), leaves plant-1 (48.16), days to 1st flower (45.96), requirements of various species. Present pot experiment flowers plant-1 (5.00), days to flower persistence (11.16), was carried out at Horticulture Garden, Department of weight of single flower (0.62 g), chlorophyll content (36.46 Horticulture, Sindh Agriculture University Tandojam, SPAD) was recorded from NP1= Control (Normal day during spring 2017, which was laid out in a three length). replicated Complete Randomized Design (CRD). Two Keywords— flowering behaviour, natural photoperiods, varieties of balsam (V1= Tom Thumb, V2 = Double Complete Randomized Design. Camcellia) were studied under NP1= Control (Normal day length), NP2=3 hrs (8:00 am- 11:00 am), NP3= 6 hrs (8:00 I.
    [Show full text]
  • Cytomorphological Diversity in Some Species of Impatiens Linn. (Balsaminaceae) from Western Himalayas (India)
    © 2010 The Japan Mendel Society Cytologia 75(4): 379–387, 2010 Cytomorphological Diversity in Some Species of Impatiens Linn. (Balsaminaceae) from Western Himalayas (India) Syed Mudassir Jeelani*, Savita Rani, Sanjeev Kumar, Raghbir Chand Gupta and Santosh Kumari Department of Botany, Punjabi University, Patiala 147 002, India Received May 28, 2010; accepted August 28, 2010 Summary The genus Impatiens Linn. belongs to the family Balsaminaceae and includes mostly wild as well as commonly cultivated ornamental plants. Nearly 91% of Indian species of Impatiens are reported to be endemic. To generate basic information on genetic diversity required for the improvement of germplasm, the present study has been carried out from the different selected parts of Western Himalayas such as Kashmir (J&K) and the Kangra and Sirmaur districts (H.P). During this study, 23 accessions belonging to 9 species of the genus Impatiens have been cytomorphologi- cally observed. The species being cytologically worked out for the first time on a worldwide basis include 2 species as I.laxiflora (nϭ7, 8) and I. reidii (nϭ7). Six aneuploid cytotypes have been reported for the first time for the species I. arguta (nϭ7), I. bicornuta (nϭ7), I. brachycentra (nϭ8), I. glandulifera (nϭ6), I. scabrida (nϭ6) and I. sulcata (nϭ8) on a worldwide basis. The meiotic course in most of these accessions has been observed to be normal except for some of the accessions of I. brachycentra, I. glandulifera, I. scabrida and I. sulcata marked with abnormal meiosis. Out of 4 species (6 accessions) marked with cytomixis, in 2 accessions, one for each of I. scabrida and I.
    [Show full text]
  • Impatiens Glandulifera (Himalayan Balsam) Chloroplast Genome Sequence As a Promising Target for Populations Studies
    Impatiens glandulifera (Himalayan balsam) chloroplast genome sequence as a promising target for populations studies Giovanni Cafa1, Riccardo Baroncelli2, Carol A. Ellison1 and Daisuke Kurose1 1 CABI Europe, Egham, Surrey, UK 2 University of Salamanca, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Villamayor (Salamanca), Spain ABSTRACT Background: Himalayan balsam Impatiens glandulifera Royle (Balsaminaceae) is a highly invasive annual species native of the Himalayas. Biocontrol of the plant using the rust fungus Puccinia komarovii var. glanduliferae is currently being implemented, but issues have arisen with matching UK weed genotypes with compatible strains of the pathogen. To support successful biocontrol, a better understanding of the host weed population, including potential sources of introductions, of Himalayan balsam is required. Methods: In this molecular study, two new complete chloroplast (cp) genomes of I. glandulifera were obtained with low coverage whole genome sequencing (genome skimming). A 125-year-old herbarium specimen (HB92) collected from the native range was sequenced and assembled and compared with a 2-year-old specimen from UK field plants (HB10). Results: The complete cp genomes were double-stranded molecules of 152,260 bp (HB92) and 152,203 bp (HB10) in length and showed 97 variable sites: 27 intragenic and 70 intergenic. The two genomes were aligned and mapped with two closely related genomes used as references. Genome skimming generates complete organellar genomes with limited technical and financial efforts and produces large datasets compared to multi-locus sequence typing. This study demonstrates the 26 July 2019 Submitted suitability of genome skimming for generating complete cp genomes of historic Accepted 12 February 2020 Published 24 March 2020 herbarium material.
    [Show full text]
  • Anatomical Investigations of the Male Reproductive System of Selected Species of Macrosiphini
    Bulletin of Insectology 61 (1): 179, 2008 ISSN 1721-8861 Anatomical investigations of the male reproductive system of selected species of Macrosiphini Karina WIECZOREK Department of Zoology, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland Abstract Histological sections and whole mount preparations of five species of Macrosiphini [Impatientinum asiaticum Nevsky, Hypero- myzus (Hyperomyzus) pallidus Hille Ris Lambers, Myzus (Myzus) cerasi (F.), Rhopalomyzus (Judenkoa) loniceare (Siebold) and Uroleucon obscurum (Koch)] were examined. Key words: Hemiptera, Aphidoidea, Aphididae, Macrosiphini, male reproductive system. In previous research on the structure of the male repro- References ductive system of aphids, about 70 species from various subfamilies have been described, mainly Lachninae BLACKMAN R. L., 1987.- Reproduction cytogenetics and de- (Wojciechowski, 1977), Chaitophorinae (Wieczorek and velopment, pp 163-191. In: Aphids, their biology, natural Wojciechowski, 2004), and Calaphidinae (Głowacka et. enemies and control (MINKS A. K., HARREWIJN P., Ed).- El- sevier, Amsterdam, The Netherland. al., 1974; Wieczorek and Wojciechowski, 2001; Wiec- BOCHEN K., KLIMASZEWSKI S. M., WOJCIECHOWSKI W., zorek, 2006). 1975.- Budowa męskiego układu rozrodczego Macrosipho- In contrast, Aphidinae are the largest and most diverse niella artemisiae (B.De Fonsc.) i M. millefolli (De Geer) group of aphids whose male reproductive system is least (Homoptera, Aphididae).- Acta Biologica Uniwersytet Slaski studied. In Pterocommatini the structure of the male re- w Katowicach, 90: 73-81. productive system has been analysed in Pterocomma GŁOWACKA E., KLIMASZEWSKI S. M., SZELEGIEWICZ H., WOJ- populeum (Kaltenbach) (Wieczorek and Wo- CIECHOWSKI W., 1974.- Uber den Bau des mannlichen Fort- jciechowski, 2005) and Pterocomma salicis (L.) (Wiec- pflanzungssystems der Aphiden (Homoptera, Aphidoidea).- zorek and Mróz, 2006), in Aphidini in Rhopalosiphum Annales Universitas Mariae Curie-Skłodowska, 29C: 133-138.
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • Hummingbird Gardening for Wisconsin Gardeners Using Native Plants
    HUMMINGBIRD GARDENING FOR WISCONSIN GARDENERS USING NATIVE PLANTS “The hummingbird is seen to stop thus some instants before a flower, and dart off like a gleam to another; it visits them all, plunging its little tongue into their bosom, caressing them with its wings, without ever settling, but at the same time ever quitting them.” W.C.L. Martin, General History of Hummingbirds, Circa 1840. KEY ELEMENTS OF A SUCCESSFUL HUMMINGBIRD GARDEN A “Wildscape” Filled With Native Plants Loved By Hummingbirds With Something in Bloom All Season Long! Well-Maintained Hummingbird Feeders from April through October (with no instant nectar or red food coloring) Cover, Perching & Preening Spots (trees & shrubs with dense, tiny branches for perching, shepherd’s hooks, tree snags, brush piles) Inclusion of Water Feature---water should be very shallow and feature should include waterfall and dripper and/or misting device to keep water moving and fresh Use of Hummingbird Beacons (red ribbons, metallic streamers, gazing ball, or any red object near feeders and flowers, especially in early spring!) NATIVE HUMMINGBIRD GARDENING & WILDSCAPING TIPS Plant Red or Orange Tubular Flowers with no fragrance (although some flowers of other colors can also be highly attractive to hummingbirds) Use Native Plants, Wildflowers & Single Flowers Plants with Many Small Blossoms Pointing Sideways or Down Use Plants With Long Bloom Period Use Plants that Bloom Profusely During August & September Create Mass Plantings (not just a single plant) of Flowers that are Hummingbird Favorites Eliminate or Greatly Decrease the Use of Turf Grass to Create a Natural Hummingbird and Wild Bird Habitat (native groundcovers can be used in place of turf grass if desired) Use Natural and/or Organic Mulches (Pine Needles, Leaves, Bark) Whenever Possible Height of Plants should be Tall, not Short (or utilize hanging baskets or large containers for shorter plants)---remember, hummingbirds are birds of the air and not the ground.
    [Show full text]
  • Invasive Species Identification Guide
    Invasive Species Identification guides – Table of Contents Floating Pennywort (Hydrocotyle ranunculoides)……………………………….…………………………………2 Giant Hogweed (Heracleum mantegazzianum)…………………………………………………………………….4 Himalayan balsam (Impatiens glandulifera)………………………………………………………….…………….6 Japanese knotweed (Fallopia japonica)………………………………………………………………………………..8 New Zealand pigmyweed (Crassula helmsii)……………………………………………………………………….10 Water fern (Azolla filiculoides)……………………………………………………………………………………………12 This list is by no means exhaustive. Please refer to pages 233-237 of the Lincolnshire Biodiversity Action Plan (3rd Edition) for a list of priority non-native invasive species for our area. Floating pennywort Hydrocotyle ranunculoides Invasive species identification guide Where is it found? Floating on the surface or emerging from still or slowly moving freshwater. Can be free floating or rooted. Similar to…… Marsh pennywort (see bottom left photo) – this has a smaller more rounded leaf that attaches to the stem in the centre rather than between two lobes. Will always be rooted and never free floating. Key features Lobed leaves Fleshy green or red stems Floating or rooted Forms dense interwoven mats Leaf Leaves can be up to 7cm in diameter. Lobed leaves can float on or stand above the water. Marsh pennywort Roots Up to 5cm Fine white Stem attaches in roots centre More rounded leaf Floating pennywort Larger lobed leaf Stem attaches between lobes Photos © GBNNSS Workstream title goes here Invasive species ID guide: Floating pennywort Management Floating pennywort is extremely difficult to control due to rapid growth rates (up to 20cm from the bank each day). Chemical control: Can use glyphosphate but plant does not rot down very quickly after treatment so vegetation should be removed after two to three weeks in flood risk areas. Regular treatment necessary throughout the growing season.
    [Show full text]
  • Maine Coefficient of Conservatism
    Coefficient of Coefficient of Scientific Name Common Name Nativity Conservatism Wetness Abies balsamea balsam fir native 3 0 Abies concolor white fir non‐native 0 Abutilon theophrasti velvetleaf non‐native 0 3 Acalypha rhomboidea common threeseed mercury native 2 3 Acer ginnala Amur maple non‐native 0 Acer negundo boxelder non‐native 0 0 Acer pensylvanicum striped maple native 5 3 Acer platanoides Norway maple non‐native 0 5 Acer pseudoplatanus sycamore maple non‐native 0 Acer rubrum red maple native 2 0 Acer saccharinum silver maple native 6 ‐3 Acer saccharum sugar maple native 5 3 Acer spicatum mountain maple native 6 3 Acer x freemanii red maple x silver maple native 2 0 Achillea millefolium common yarrow non‐native 0 3 Achillea millefolium var. borealis common yarrow non‐native 0 3 Achillea millefolium var. millefolium common yarrow non‐native 0 3 Achillea millefolium var. occidentalis common yarrow non‐native 0 3 Achillea ptarmica sneezeweed non‐native 0 3 Acinos arvensis basil thyme non‐native 0 Aconitum napellus Venus' chariot non‐native 0 Acorus americanus sweetflag native 6 ‐5 Acorus calamus calamus native 6 ‐5 Actaea pachypoda white baneberry native 7 5 Actaea racemosa black baneberry non‐native 0 Actaea rubra red baneberry native 7 3 Actinidia arguta tara vine non‐native 0 Adiantum aleuticum Aleutian maidenhair native 9 3 Adiantum pedatum northern maidenhair native 8 3 Adlumia fungosa allegheny vine native 7 Aegopodium podagraria bishop's goutweed non‐native 0 0 Coefficient of Coefficient of Scientific Name Common Name Nativity
    [Show full text]
  • (Balsaminaceae) Using Chloroplast Atpb-Rbcl Spacer Sequences
    Systematic Botany (2006), 31(1): pp. 171–180 ᭧ Copyright 2006 by the American Society of Plant Taxonomists Phylogenetics of Impatiens and Hydrocera (Balsaminaceae) Using Chloroplast atpB-rbcL Spacer Sequences STEVEN JANSSENS,1,4 KOEN GEUTEN,1 YONG-MING YUAN,2 YI SONG,2 PHILIPPE KU¨ PFER,2 and ERIK SMETS1,3 1Laboratory of Plant Systematics, Institute of Botany and Microbiology, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium; 2Institut de Botanique, Universite´ de Neuchaˆtel, Neuchaˆtel, Switzerland; 3Nationaal Herbarium Nederland, Universiteit Leiden Branch, PO Box 9514, 2300 RA Leiden, The Netherlands 4Author for correspondence ([email protected]) ABSTRACT. Balsaminaceae are a morphologically diverse family with ca. 1,000 representatives that are mainly distributed in the Old World tropics and subtropics. To understand the relationships of its members, we obtained chloroplast atpB-rbcL sequences from 86 species of Balsaminaceae and five outgroups. Phylogenetic reconstructions using parsimony and Bayesian approaches provide a well-resolved phylogeny in which the sister group relationship between Impatiens and Hydrocera is confirmed. The overall topology of Impatiens is strongly supported and is geographically structured. Impatiens likely origi- nated in South China from which it colonized the adjacent regions and afterwards dispersed into North America, Africa, India, the Southeast Asian peninsula, and the Himalayan region. Balsaminaceae are annual or perennial herbs with in the intrageneric relationships of Impatiens. The most flowers that exhibit a remarkable diversity. The family recent molecular intrageneric study on Balsaminaceae consists of more than 1,000 species (Grey-Wilson utilized Internal Transcribed Spacer (ITS) sequences 1980a; Clifton 2000), but only two genera are recog- and provided new phylogenetic insights in Impatiens nized.
    [Show full text]
  • Reconstructing the Basal Angiosperm Phylogeny: Evaluating Information Content of Mitochondrial Genes
    55 (4) • November 2006: 837–856 Qiu & al. • Basal angiosperm phylogeny Reconstructing the basal angiosperm phylogeny: evaluating information content of mitochondrial genes Yin-Long Qiu1, Libo Li, Tory A. Hendry, Ruiqi Li, David W. Taylor, Michael J. Issa, Alexander J. Ronen, Mona L. Vekaria & Adam M. White 1Department of Ecology & Evolutionary Biology, The University Herbarium, University of Michigan, Ann Arbor, Michigan 48109-1048, U.S.A. [email protected] (author for correspondence). Three mitochondrial (atp1, matR, nad5), four chloroplast (atpB, matK, rbcL, rpoC2), and one nuclear (18S) genes from 162 seed plants, representing all major lineages of gymnosperms and angiosperms, were analyzed together in a supermatrix or in various partitions using likelihood and parsimony methods. The results show that Amborella + Nymphaeales together constitute the first diverging lineage of angiosperms, and that the topology of Amborella alone being sister to all other angiosperms likely represents a local long branch attrac- tion artifact. The monophyly of magnoliids, as well as sister relationships between Magnoliales and Laurales, and between Canellales and Piperales, are all strongly supported. The sister relationship to eudicots of Ceratophyllum is not strongly supported by this study; instead a placement of the genus with Chloranthaceae receives moderate support in the mitochondrial gene analyses. Relationships among magnoliids, monocots, and eudicots remain unresolved. Direct comparisons of analytic results from several data partitions with or without RNA editing sites show that in multigene analyses, RNA editing has no effect on well supported rela- tionships, but minor effect on weakly supported ones. Finally, comparisons of results from separate analyses of mitochondrial and chloroplast genes demonstrate that mitochondrial genes, with overall slower rates of sub- stitution than chloroplast genes, are informative phylogenetic markers, and are particularly suitable for resolv- ing deep relationships.
    [Show full text]
  • Aphids (Hemiptera, Aphididae)
    A peer-reviewed open-access journal BioRisk 4(1): 435–474 (2010) Aphids (Hemiptera, Aphididae). Chapter 9.2 435 doi: 10.3897/biorisk.4.57 RESEARCH ARTICLE BioRisk www.pensoftonline.net/biorisk Aphids (Hemiptera, Aphididae) Chapter 9.2 Armelle Cœur d’acier1, Nicolas Pérez Hidalgo2, Olivera Petrović-Obradović3 1 INRA, UMR CBGP (INRA / IRD / Cirad / Montpellier SupAgro), Campus International de Baillarguet, CS 30016, F-34988 Montferrier-sur-Lez, France 2 Universidad de León, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 – León, Spain 3 University of Belgrade, Faculty of Agriculture, Nemanjina 6, SER-11000, Belgrade, Serbia Corresponding authors: Armelle Cœur d’acier ([email protected]), Nicolas Pérez Hidalgo (nperh@unile- on.es), Olivera Petrović-Obradović ([email protected]) Academic editor: David Roy | Received 1 March 2010 | Accepted 24 May 2010 | Published 6 July 2010 Citation: Cœur d’acier A (2010) Aphids (Hemiptera, Aphididae). Chapter 9.2. In: Roques A et al. (Eds) Alien terrestrial arthropods of Europe. BioRisk 4(1): 435–474. doi: 10.3897/biorisk.4.57 Abstract Our study aimed at providing a comprehensive list of Aphididae alien to Europe. A total of 98 species originating from other continents have established so far in Europe, to which we add 4 cosmopolitan spe- cies of uncertain origin (cryptogenic). Th e 102 alien species of Aphididae established in Europe belong to 12 diff erent subfamilies, fi ve of them contributing by more than 5 species to the alien fauna. Most alien aphids originate from temperate regions of the world. Th ere was no signifi cant variation in the geographic origin of the alien aphids over time.
    [Show full text]
  • Morphological and Anatomical Responses of Selected Coastal Salt Marsh Plants to Soil Moisture
    AN ABSTRACT OF THE THESIS OF Denise M. Seliskar for the degree ofMaster of Science in Botany and Plant Pathology presented onJune 30, 1980. of selected Title: Morphological and anatomical responses coastal salt marsh lants to spin moisture. Redacted for privacy Abstract approved: Fred R. Rick on Morphological and anatomical characteristicsof Deschampsia cespitosa, Distichlis spicata, Grindeliaintegrifolia, Jaumea carnosa and Salicornia virginica werestudied from the marsh fringing Netarts Bay, Oregon. Significant morphological differ- ences were found along transectsbetween upper and lowerdistribu- tional limits of each species, a distanceof 40 m at the most." Plants were taller in the upper, drier,portion of the marsh except for D. spicata, where the reverse wastrue. In certain cases stem diameter, leaf width, internode length,branching, amount of flowering and stem density were amongfeatures found to be different along the transects of the variousspecies. Lignification of vas- cular bundle sheaths was greatest instems of D. spicata fromits more sclerenchma upper zone. Larger vascular bundles of J. carnosa, to in G. integrifolia and less aerenchymain S. virginica were found be characteristic of plants from the upperdistributional areas of these species. With vertical and lateral transplants of the five species it was concluded that these species respond plastically in their morphology and anatomy to the environment. In all cases the transplanted plants took on the morphological and anatomical characteristics of the sur- rounding plants. Since the various morphological forms are not gene- tically fixed they are not considered to be ecotypes. D. cespitosa; D. spicata, G. integrifolia and S. virginica were studied under three soil moisture treatments (saturated (SAT), field capacity (FC) and near wilting point (DRY)) in a controlled greenhouse experiment.
    [Show full text]