Germination, Vegetative and Flowering Behavior of Balsam (Impatiens
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Impatiens Glandulifera
NOBANIS – Invasive Alien Species Fact Sheet Impatiens glandulifera Author of this fact sheet: Harry Helmisaari, SYKE (Finnish Environment Institute), P.O. Box 140, FIN-00251 Helsinki, Finland, Phone + 358 20 490 2748, E-mail: [email protected] Bibliographical reference – how to cite this fact sheet: Helmisaari, H. (2010): NOBANIS – Invasive Alien Species Fact Sheet – Impatiens glandulifera. – From: Online Database of the European Network on Invasive Alien Species – NOBANIS www.nobanis.org, Date of access x/x/201x. Species description Scientific name: Impatiens glandulifera Royle (Balsaminaceae). Synonyms: Impatiens roylei Walpers. Common names: Himalayan balsam, Indian balsam, Policeman's Helmet (GB), Drüsiges Springkraut, Indisches Springkraut (DE), kæmpe-balsamin (DK), verev lemmalts (EE), jättipalsami (FI), risalísa (IS), bitinė sprigė (LT), puķu sprigane (LV), Reuzenbalsemien (NL), kjempespringfrø (NO), Niecierpek gruczolowaty, Niecierpek himalajski (PL), недотрога железконосная (RU), jättebalsamin (SE). Fig. 1 and 2. Impatiens glandulifera in an Alnus stand in Helsinki, Finland, and close-up of the seed capsules, photos by Terhi Ryttäri and Harry Helmisaari. Fig. 3 and 4. White and red flowers of Impatiens glandulifera, photos by Harry Helmisaari. Species identification Impatiens glandulifera is a tall annual with a smooth, usually hollow and jointed stem, which is easily broken (figs. 1-4). The stem can reach a height of 3 m and its diameter can be up to several centimetres. The leaves are opposite or in whorls of 3, glabrous, lanceolate to elliptical, 5-18 cm long and 2.5-7 cm wide. The inflorescences are racemes of 2-14 flowers that are 25-40 mm long. Flowers are zygomorphic, their lowest sepal forming a sac that ends in a straight spur. -
(Balsaminaceae) Using Chloroplast Atpb-Rbcl Spacer Sequences
Systematic Botany (2006), 31(1): pp. 171–180 ᭧ Copyright 2006 by the American Society of Plant Taxonomists Phylogenetics of Impatiens and Hydrocera (Balsaminaceae) Using Chloroplast atpB-rbcL Spacer Sequences STEVEN JANSSENS,1,4 KOEN GEUTEN,1 YONG-MING YUAN,2 YI SONG,2 PHILIPPE KU¨ PFER,2 and ERIK SMETS1,3 1Laboratory of Plant Systematics, Institute of Botany and Microbiology, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium; 2Institut de Botanique, Universite´ de Neuchaˆtel, Neuchaˆtel, Switzerland; 3Nationaal Herbarium Nederland, Universiteit Leiden Branch, PO Box 9514, 2300 RA Leiden, The Netherlands 4Author for correspondence ([email protected]) ABSTRACT. Balsaminaceae are a morphologically diverse family with ca. 1,000 representatives that are mainly distributed in the Old World tropics and subtropics. To understand the relationships of its members, we obtained chloroplast atpB-rbcL sequences from 86 species of Balsaminaceae and five outgroups. Phylogenetic reconstructions using parsimony and Bayesian approaches provide a well-resolved phylogeny in which the sister group relationship between Impatiens and Hydrocera is confirmed. The overall topology of Impatiens is strongly supported and is geographically structured. Impatiens likely origi- nated in South China from which it colonized the adjacent regions and afterwards dispersed into North America, Africa, India, the Southeast Asian peninsula, and the Himalayan region. Balsaminaceae are annual or perennial herbs with in the intrageneric relationships of Impatiens. The most flowers that exhibit a remarkable diversity. The family recent molecular intrageneric study on Balsaminaceae consists of more than 1,000 species (Grey-Wilson utilized Internal Transcribed Spacer (ITS) sequences 1980a; Clifton 2000), but only two genera are recog- and provided new phylogenetic insights in Impatiens nized. -
Summary Data
Table 11. Summary List of Species Identified in 2001-2002, Squam Lakes Watershed, New Hampshire. Page 1 of 12 Type Common Name Scientific Name Amphibians Bullfrog Rana catesbeiana Amphibians Eastern American toad Bufo americanus Amphibians Gray treefrog Hyla versicolor Amphibians Green frog Rana clamitans Amphibians Northern leopard frog Rana pipiens Amphibians Northern dusky salamander Desmognathus fuscus Amphibians Northern spring peeper Pseudacris crucifer Amphibians Northern two-lined salamander Eurycea bislineata Amphibians Pickerel frog Rana palustris Amphibians Redback salamander Plethodon cinereus Amphibians Red-spotted newt Notophthalmus viridescens Amphibians Spotted salamander Ambystoma maculatum Amphibians Wood frog Rana sylvatica Birds Alder Flycatcher Empidonax alnorum Birds American Bittern Botaurus lentiginosus Birds American Black Duck Anas rubripes Birds American Coot Fulica americana Birds American Crow Corvus brachyrhynchos Birds American Goldfinch Carduelis tristis Birds American Green-winged Teal Anas crecca Birds American Kestrel Falco sparverius Birds American Redstart Setophaga ruticilla Birds American Robin Turdus migratorius Birds American Tree Sparrow Spizella arborea Birds American Woodcock Scolopax minor Birds Atlantic Brant Branta bernicla Birds Bald Eagle* Haliaeetus leucocephalus* Birds Baltimore Oriole Icterus galbula Birds Bank Swallow Riparia riparia Birds Barn Swallow Hirundo rustica Birds Barred Owl Strix varia Birds Belted Kingfisher Ceryle alcyon Birds Black-and-white Warbler Mniotilta varia Birds -
Morphological and Anatomical Responses of Selected Coastal Salt Marsh Plants to Soil Moisture
AN ABSTRACT OF THE THESIS OF Denise M. Seliskar for the degree ofMaster of Science in Botany and Plant Pathology presented onJune 30, 1980. of selected Title: Morphological and anatomical responses coastal salt marsh lants to spin moisture. Redacted for privacy Abstract approved: Fred R. Rick on Morphological and anatomical characteristicsof Deschampsia cespitosa, Distichlis spicata, Grindeliaintegrifolia, Jaumea carnosa and Salicornia virginica werestudied from the marsh fringing Netarts Bay, Oregon. Significant morphological differ- ences were found along transectsbetween upper and lowerdistribu- tional limits of each species, a distanceof 40 m at the most." Plants were taller in the upper, drier,portion of the marsh except for D. spicata, where the reverse wastrue. In certain cases stem diameter, leaf width, internode length,branching, amount of flowering and stem density were amongfeatures found to be different along the transects of the variousspecies. Lignification of vas- cular bundle sheaths was greatest instems of D. spicata fromits more sclerenchma upper zone. Larger vascular bundles of J. carnosa, to in G. integrifolia and less aerenchymain S. virginica were found be characteristic of plants from the upperdistributional areas of these species. With vertical and lateral transplants of the five species it was concluded that these species respond plastically in their morphology and anatomy to the environment. In all cases the transplanted plants took on the morphological and anatomical characteristics of the sur- rounding plants. Since the various morphological forms are not gene- tically fixed they are not considered to be ecotypes. D. cespitosa; D. spicata, G. integrifolia and S. virginica were studied under three soil moisture treatments (saturated (SAT), field capacity (FC) and near wilting point (DRY)) in a controlled greenhouse experiment. -
The Yearbook of Agriculture • 1961 ^
87TH CONGRESS, IST SESSION, HOUSE DOCUMENT NO. 29 THE YEARBOOK OF AGRICULTURE • 1961 ^ THE UNITED STATES DEPARTMENT OF AGRICULTURE Washington, D.G. SEEDS The Yearbook of Agriculture 1961 ¿^ f i Í THE UNITED STATES GOVERNMENT PRINTING OFFICE FOR SALE BY THE SUPERINTENDENT OF DOCUMENTS, WASHINGTON 25, D.G., PRICE $2 FOREWORD ORVILLE L. FREEMAN Secretary of Agriculture GOOD SEEDS ARE both a symbol and a foundation of the good Ufe our people have gained. A baisic factor in our realization of mankind's most sought goal, agricultural abundance, good seeds can be a means of our bringing about an Age of Plenty and an Age of Peace and Free- dom. We can use our good seeds to help end hunger and fear for the less fortunate half of the human family. So used, our seeds can be more meaningful to a hungry world than can the rocket that first carries man to the moon. This Yearbook of Agriculture seeks to provide a new and improved basis for understanding the complex order of Nature's forces so that man can better shape them in a positive and creative fashion. Seeds are ever a positive and creative force. Seeds are the germ of life, a beginning and an end, the fruit of yesterday's harvest and the promise of tomorrow's. Without an ample store of seeds there can be no national treasure, or no future for a Nation. Finding and developing better seeds is the oldest continuous service our Federal Government has rendered to our farmers—indeed, to all our people. -
Planta Daninha 2018; V36:E018165357 16 Horas Com Luz E 8 Horas Sem
MOHAMED, N. et al. The role of plant growth regulators in the development of in vitro flowering, histology and ... 1 151103-PD-2016 PLANTA (9 páginas) DANINHAPROVA GRÁFICA SOCIEDADE BRASILEIRA DA CIÊNCIA DAS PLANTAS DANINHAS ISSN 0100-8358 (print) <http://www.sbcpd.org> 1806-9681 (online) Article THE ROLE OF PLANT GROWTH REGULATORS IN THE DEVELOPMENT OF in vitro FLOWERING, HISTOLOGY AND ULTRASTRUCTURAL STUDIES IN Impatiens balsamina CV. MOHAMED, N.1* DWARF BUSH TAHA, R.M.1 O Papel dos Reguladores de Crescimento de Plantas no Desenvolvimento dos RAZAK, U.N.A.A.1 Estudos in vitro de Floração, Histologia e Ultrastruturais de Impatiens 1 ELIAS, H. balsamina cv. Dwarf Bush ABSTRACT - An efficient protocol for in vitro flowering was successfully established for Impatiens balsamina cv Dwarf Bush, an important medicinal plant, through tissue culture techniques. Shoot, stem and petiole explants obtained from 4 week-old aseptic seedlings cultured on MS medium supplemented with different concentrations of plant growth regulator (PGR) were used for in vitro flower induction. Gibberellic acid (GA3), benzylaminopurine (BAP) and kinetin (Kin) treatment singly applied in MS media (pH 5.8), could all stimulate flowering at 23-26 oC with photoperiod of 16 hours light and 8 hours dark. It was observed that shoot explants were more responsive than stem explants in floral formation. Regeneration was achieved via direct organogenesis. For shoot explants, the treatment that induced the highest rate of -1 in vitro flowering (7.30 ± 0.16 flowers per plantlet) was 1.0 mg L GA3. Ultrastructural and histological analysis of in vivo and in vitro flowers were done to discover any somaclonal variation. -
Comparative Genomics of the Balsaminaceae Sister Genera Hydrocera Triflora and Impatiens Pinfanensis
International Journal of Molecular Sciences Article Comparative Genomics of the Balsaminaceae Sister Genera Hydrocera triflora and Impatiens pinfanensis Zhi-Zhong Li 1,2,†, Josphat K. Saina 1,2,3,†, Andrew W. Gichira 1,2,3, Cornelius M. Kyalo 1,2,3, Qing-Feng Wang 1,3,* and Jin-Ming Chen 1,3,* ID 1 Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; [email protected] (Z.-Z.L.); [email protected] (J.K.S.); [email protected] (A.W.G.); [email protected] (C.M.K.) 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China * Correspondence: [email protected] (Q.-F.W.); [email protected] (J.-M.C.); Tel.: +86-27-8751-0526 (Q.-F.W.); +86-27-8761-7212 (J.-M.C.) † These authors contributed equally to this work. Received: 21 December 2017; Accepted: 15 January 2018; Published: 22 January 2018 Abstract: The family Balsaminaceae, which consists of the economically important genus Impatiens and the monotypic genus Hydrocera, lacks a reported or published complete chloroplast genome sequence. Therefore, chloroplast genome sequences of the two sister genera are significant to give insight into the phylogenetic position and understanding the evolution of the Balsaminaceae family among the Ericales. In this study, complete chloroplast (cp) genomes of Impatiens pinfanensis and Hydrocera triflora were characterized and assembled using a high-throughput sequencing method. The complete cp genomes were found to possess the typical quadripartite structure of land plants chloroplast genomes with double-stranded molecules of 154,189 bp (Impatiens pinfanensis) and 152,238 bp (Hydrocera triflora) in length. -
Landscaping Near Black Walnut Trees
Selecting juglone-tolerant plants Landscaping Near Black Walnut Trees Black walnut trees (Juglans nigra) can be very attractive in the home landscape when grown as shade trees, reaching a potential height of 100 feet. The walnuts they produce are a food source for squirrels, other wildlife and people as well. However, whether a black walnut tree already exists on your property or you are considering planting one, be aware that black walnuts produce juglone. This is a natural but toxic chemical they produce to reduce competition for resources from other plants. This natural self-defense mechanism can be harmful to nearby plants causing “walnut wilt.” Having a walnut tree in your landscape, however, certainly does not mean the landscape will be barren. Not all plants are sensitive to juglone. Many trees, vines, shrubs, ground covers, annuals and perennials will grow and even thrive in close proximity to a walnut tree. Production and Effect of Juglone Toxicity Juglone, which occurs in all parts of the black walnut tree, can affect other plants by several means: Stems Through root contact Leaves Through leakage or decay in the soil Through falling and decaying leaves When rain leaches and drips juglone from leaves Nuts and hulls and branches onto plants below. Juglone is most concentrated in the buds, nut hulls and All parts of the black walnut tree produce roots and, to a lesser degree, in leaves and stems. Plants toxic juglone to varying degrees. located beneath the canopy of walnut trees are most at risk. In general, the toxic zone around a mature walnut tree is within 50 to 60 feet of the trunk, but can extend to 80 feet. -
Study on the Potential Application of Impatiens Balsamina L. Flowers Extract As a Natural Colouring Ingredient in a Pastry Product
International Journal of Environmental Research and Public Health Article Study on the Potential Application of Impatiens balsamina L. Flowers Extract as a Natural Colouring Ingredient in a Pastry Product Eleomar de O. Pires, Jr. 1,2 , Eliana Pereira 1,Márcio Carocho 1 , Carla Pereira 1 , Maria Inês Dias 1 , Ricardo C. Calhelha 1 , Ana Ciri´c´ 3 , Marina Sokovi´c 3 , Carolina C. Garcia 2 , Isabel C. F. R. Ferreira 1 , Cristina Caleja 1,* and Lillian Barros 1,* 1 Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; [email protected] (E.d.O.P.J.); [email protected] (E.P.); [email protected] (M.C.); [email protected] (C.P.); [email protected] (M.I.D.); [email protected] (R.C.C.); [email protected] (I.C.F.R.F.) 2 Departamento Acadêmico de Alimentos (DAALM), Câmpus Medianeira, Universidade Tecnológica Federal do Paraná (UTFPR), CEP, Medianeira 85884-000, PR, Brazil; [email protected] 3 Institute for Biological Research “Siniša Stankovi´c”—NationalInstitute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; [email protected] (A.C.);´ [email protected] (M.S.) * Correspondence: [email protected] (C.C.); [email protected] (L.B.); Tel.: +351-273-303285 (C.C.); +351-273-303219 (L.B.); Fax: +351-273-325405 (L.B.) Abstract: Flowers of the genus Impatiens are classified as edible; however, their inclusion in the human diet is not yet a common practice. Its attractive colours have stirred great interest by the food industry. -
Butterfly Garden Plant List
Duncan Library Butterfly Garden Plant List Latin Name Common Name Flowers When Attracts What Status Aquilegia canadensis. Columbine April-May Butterflies Native Asclepius incarnata. Swamp Milkweed July-August Butterflies Native A.syriaca Common Milkweed July Monarch, Other Native A. tuberosa Orange Milkweed June-July Butterflies, Bees Native Camassia spp. Blue Camas April Insects ? Conoclinium coelestinum. Blue Mistflower, Wild Ageratum August Butterflies, Bees Native Cosmos sulphureous Klondike, Yellow Cosmos June-September All Mexico Chrysoganum virginianum. Green-and-Gold April-May Groundcover Native Echinacea purpura. Eastern Purple Coneflower July-August Butterflies, Birds Native Eryngium planum(?) Sea Holly June-July Butterflies, Bees (European) Erigeron pulchellus Robin's Plantain April Early Bees, Butterflies Native E. strigosus Daisy Fleabane June-August Bees, Butterflies Native Eutrochium spp. Joe Pye Weed July-August All Native Foeniculum vulgare Fennel July-August Swallowtails (India) Geranium spp. Cranesbill April-May Solitary bees Native Impatiens balsamina Balsam June-August Insects (India) Lobelia cardinalis Cardinal Flower July-August Hums, Swallowtails Native Mirabilis jalapa Four O' Clocks July-August Hums, Sphinx moth (Peru) Monarda didyma Red Bee Balm July Bees, Butterflies, Hums Native M. fistulosa Lavender Bee Balm July Bees, Butterflies, Hums Native Muscari botryoides Grape Hyacinth March-April Early insects (Eurasia) Packera aurea Golden Ragwort March-April Small bees Native Penstemon digitalis Beardtongue April-May Butterflies Native Physostegia virginiana Obedient Plant August Butterflies, Hums Native Pycnanthemum muticum. Short-toothed Mountain Mint July Bees, Butterflies, Hums Native P. virginianum Common Mountain Mint July Bees, Butterflies, Hums Native P. tenuifolium Narrow-leaf Mountain Mint July Bees, Butterflies, Hums Native Rudbeckia fulgida Orange coneflower July-August Butterflies, Bees Native R. -
(MNQ) Biosynthesis in Impatiens Balsamina L. Lian Chee Foong1,2, Jian Yi Chai1, Anthony Siong Hock Ho1, Brandon Pei Hui Yeo3, Yang Mooi Lim4 & Sheh May Tam1*
www.nature.com/scientificreports OPEN Comparative transcriptome analysis to identify candidate genes involved in 2‑methoxy‑1,4‑naphthoquinone (MNQ) biosynthesis in Impatiens balsamina L. Lian Chee Foong1,2, Jian Yi Chai1, Anthony Siong Hock Ho1, Brandon Pei Hui Yeo3, Yang Mooi Lim4 & Sheh May Tam1* Impatiens balsamina L. is a tropical ornamental and traditional medicinal herb rich in natural compounds, especially 2‑methoxy‑1,4‑naphthoquinone (MNQ) which is a bioactive compound with tested anticancer activities. Characterization of key genes involved in the shikimate and 1,4‑dihydroxy‑2‑naphthoate (DHNA) pathways responsible for MNQ biosynthesis and their expression profles in I. balsamina will facilitate adoption of genetic/metabolic engineering or synthetic biology approaches to further increase production for pre‑commercialization. In this study, HPLC analysis showed that MNQ was present in signifcantly higher quantities in the capsule pericarps throughout three developmental stages (early‑, mature‑ and postbreaker stages) whilst its immediate precursor, 2‑hydroxy‑1,4‑naphthoquinone (lawsone) was mainly detected in mature leaves. Transcriptomes of I. balsamina derived from leaf, fower, and three capsule developmental stages were generated, totalling 59.643 Gb of raw reads that were assembled into 94,659 unigenes (595,828 transcripts). A total of 73.96% of unigenes were functionally annotated against seven public databases and 50,786 diferentially expressed genes (DEGs) were identifed. Expression profles of 20 selected genes from four major secondary metabolism pathways were studied and validated using qRT‑PCR method. Majority of the DHNA pathway genes were found to be signifcantly upregulated in early stage capsule compared to fower and leaf, suggesting tissue‑specifc synthesis of MNQ. -
BALSAMINACEAE 1. IMPATIENS Linnaeus, Sp. Pl. 2: 937. 1753
BALSAMINACEAE 凤仙花科 feng xian hua ke Chen Yilin (陈艺林 Chen Yi-ling)1; Shinobu Akiyama2, Hideaki Ohba3 Herbs annual or perennial [rarely epiphytic or subshrubs]. Stems erect or procumbent, usually succulent, often rooting at lower nodes. Leaves simple, alternate, opposite, or verticillate, not stipulate, or sometimes with stipular glands at base of petiole, petiolate or sessile, pinnately veined, margin serrate to nearly entire, teeth often glandular-mucronate. Flowers bisexual, protandrous, zygomorphic, resupinate to through 180° in axillary or subterminal racemes or pseudo-umbellate inflorescences, or not pedunculate, fascicled or solitary. Sepals 3(or 5); lateral sepals free or connate, margins entire or serrate; lower sepal (lip) large, petaloid, usually navicular, funnelform, saccate, or cornute, tapering or abruptly constricted into a nectariferous spur broadly or narrowly filiform, straight, curved, incurved, or ± coiled, swollen at tip, or pointed, rarely 2-lobed, rarely without spur. Petals 5, free, upper petal (standard) flat or cucullate, small or large, often crested abaxially, lateral petals free or united in pairs (wing). Stamens 5, alternating with petals, connate or nearly so into a ring surrounding ovary and stigma, falling off in one piece before stigma ripens; filaments short, flat with a scalelike appendage inside; anthers 2-celled, connivent, opening by a slit or pore. Gynoecium 4- or 5-carpellate, syncarpous; ovary superior, 4- or 5-loculed, each locule with 2 to many anatropous ovules; style 1, very short or ± absent; stigmas 1– 5. Fruit an indehiscent berry, or a 4- or 5-valved loculicidal fleshy capsule, usually dehiscing elastically. Seeds dispersed explosively from opening valves, without endosperm; testa smooth or tuberculate.