A CHARACTERIZATION of BASOPHILIC DEGENERATION of COLLAGEN by HISTOCHEMICAL and MICROSPECTROSCOPIC PROCEDURES*Jprocedures*T P
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lysochrome Dyes Sudan Dyes, Oil Red Fat Soluble Dyes Used for Biochemical Staining of Triglycerides, Fatty Acids, and Lipoproteins Product Description
FT-N13862 Lysochrome dyes Sudan dyes, Oil red Fat soluble dyes used for biochemical staining of triglycerides, fatty acids, and lipoproteins Product Description Name : Sudan IV Other names: Sudan R, C.I. Solvent Red 24, C.I. 26105, Lipid Crimson, Oil Red, Oil Red BB, Fat Red B, Oil Red IV, Scarlet Red, Scarlet Red N.F, Scarlet Red Scharlach, Scarlet R Catalog Number : N13862, 100g Structure : CAS: [85-83-6] Molecular Weight : MW: 380.45 λabs = 513-529 nm (red); Sol(EtOH): 0.09%abs =513-529nm(red);Sol(EtOH):0.09% S:22/23/24/25 Name : Sudan III Other names: Rouge Sudan ; rouge Ceresin ; CI 26100; CI Solvent Red 23 Catalog Number : 08002A, 25g Structure : CAS:[85-86-9] Molecular Weight : MW: 352.40 λabs = 513-529 nm (red); Sol(EtOH): 0.09%abs =503-510nm(red);Sol(EtOH):0.15% S:24/25 Name : Sudan Black B Other names: Sudan Black; Fat Black HB; Solvent Black 3; C.I. 26150 Catalog Number : 279042, 50g AR7910, 100tests stain for lipids granules Structure : CAS: [4197-25-5] S:22/23/24/25 Molecular Weight : MW: 456.54 λabs = 513-529 nm (red); Sol(EtOH): 0.09%abs=596-605nm(blue-black) Name : Oil Red O Other names: Solvent Red 27, Sudan Red 5B, C.I. 26125 Catalog Number : N13002, 100g Structure : CAS: [1320-06-5 ] Molecular Weight : MW: 408.51 λabs = 513-529 nm (red); Sol(EtOH): 0.09%abs =518(359)nm(red);Sol(EtOH): moderate; Sol(water): Insoluble S:22/23/24/25 Storage: Room temperature (Z) P.1 FT-N13862 Technical information & Directions for use A lysochrome is a fat soluble dye that have high affinity to fats, therefore are used for biochemical staining of triglycerides, fatty acids, and lipoproteins. -
Digitally Reinforced Polarization of Hematoxylin-Eosin in the Diagnosis
Özgün Araştırma/Original Article doi: 10.5146/tjpath.2012.01126 Digitally Reinforced Polarization of Hematoxylin-Eosin in the Diagnosis of Renal Amyloidosis Renal Amiloidoz Tanısında Dijital Güçlendirilmiş Hematoksilen Eozin Polarizasyonu Sait ŞEN, Banu SARSIK KumbaraCI Department of Medical Pathology, Ege University, Faculty of Medicine, İZMİR, TURKEY The summary of this study was presented at 24th Congress of Pathology held in Prague on 8-12 September 2012 ABSTRACT ÖZ Objective: Systemic amyloidosis is a rare disorder, characterized by Amaç: Sistemik amiloidozlar, hematoksilen-eozin boyamada amorf extracellular accumulation of Congo red positive fibrillar amyloid eozinofilik görülen, Kongo kırmızısı ile boyanan fibriller amiloid protein deposits that have an amorphous, eosinophilic appearance proteinlerin ekstrasellüler birikimiyle karakterize nadir hastalıklardır. on hematoxylin-eosin stained preparations. The kidney is the Böbrekler sistemik amiloidozlardan en sık etkilenen organdır. Kongo most commonly affected organ by systemic amyloidosis. Congo kırmızısı, zayıf birefrenjant boyanmamış amiloidin birefranjansını red staining increases the positive birefringence of the weakly artırır. Bu çalışmada, böbrek biopsilerinin rutin hematoksilen eozin birefringent unstained amyloid. In this study, we investigated the kesitlerinde dijital güçlendirilmiş birefrenjansın potansiyel tanısal potential diagnostic power of digitally reinforced birefringence of gücünü araştırdık. routine hematoxylin-eosin stained slides from renal biopsies. Gereç ve Yöntem: Hematoksilen-eozin boyalı 130 preparat Material and Method: We reviewed 130 hematoxylin-eosin stained polarizasyon için değerlendirildi. Altmış beş yeni amiloidoz olgusuna slides for polarization. Sixty-five new amyloidosis cases were böbrek biyopsisi ile tanı konuldu. Tüm böbrek biopsileri ışık ve diagnosed by renal biopsy. All renal biopsies were evaluated by light immünflöresan mikroskop ile değerlendirildi. Preparatlar kör olarak, microscopy and immunofluorescence. -
Pituitary Gland
Part 6: Pituitary Gland Normal Physiology and Structure The pituitary gland comprises the adenohypophysis, which is made up of the pars distalis, pars intermedia and pars tuberalis and the neurohypophysis which includes the pars nervosa, infundibular stem and median eminence. The pars distalis forms the largest proportion of the gland and functions as the overall regulator of peripheral endocrine function by synthesizing and secreting at least 6 major trophic hormones. These include growth hormone (GH), prolactin (PrL), adrenocorticotrophic hormone (ACTH), thyroid stimulating hormone (TSH), luteinizing hormone (LH) and follicle stimulating hormone (FSH). Since this is the important area of the pituitary with respect to detecting endocrine active compounds, the rest of this section will concentrate only on this part of the pituitary. For reviews see (Page, 1994; Tucker, 1999; Greaves, 2007). Each hormone of the pars distalis is generally secreted by a seperate cell type, but some cells are able to secrete two hormones. The different hormones impart different staining properties to the cells. Using histological stains based on Orange G and periodic acid-Schiff (PAS), the cells of the pars distalis have been divided into acidophils (orange G positive), basophils (PAS positive) and chromophobes (absence of staining). In the rat, these have been reported to constitute 40, 10 and 50% respectively of the cell population of the pars distalis. The staining characteristics are dependent on the level of secretory activity, and when the cells have just secreted their granules or when secretory activity is increased, all the cells take on chromophobic characteristics due to the relative abundance of secretory organelles (endoplasmic reticulum and Golgi) and relative lack of secretory granules. -
New Tetrachromic VOF Stain (Type III-G.S) for Normal and Pathological Fish Tissues C
ORIGINAL PAPER New Tetrachromic VOF Stain (Type III-G.S) for Normal and Pathological Fish Tissues C. Sarasquete,* M. Gutiérrez Instituto de Ciencias Marinas de Andalucía, CSIC Polígono Río San Pedro, Apdo oficial, Puerto Real, Cádiz, Spain richrome methods invariably use dyes in acid ©2005, European Journal of Histochemistry pH solvents, usually diluted in aqueous acetic Tacid, and the concentration of this acid A new VOF Type III-G.S stain was applied to histological sec- matches the concentration of dye. Staining depends tions of different organs and tissues of healthy and pathologi- largely on the attachment of dyes to proteins. The cal larvae, juvenile and adult fish species (Solea senegalensis; acid pH itself is necessary to maximise the amount Sparus aurata; Diplodus sargo; Pagrus auriga; Argyrosomus regius and Halobatrachus didactylus). In comparison to the of dye that will attach to tissue amino groups. original Gutiérrez´VOF stain, more acid dyes of contrasting Proteins have both positively (amino groups) and colours and polychromatic/metachromatic properties were negatively (carboxyl and hydroxyl) charged groups. incorporated as essential constituents of the tetrachromic VOF Usually one predominates and this will have an stain. This facilitates the selective staining of different basic tissues and improves the morphological analysis of histo- overall negative or positive charge (being an acid or chemical approaches of the cell components. The VOF-Type III a basic protein). These charges can, however, bal- G.S stain is composed of a mixture of several dyes of varying ance each other out to some degree. Phosphate size and molecular weight (Orange G< acid Fuchsin< Light green<Methyl Blue<Fast Green), which are used simultane- groups of DNA and binding-proteins are important ously, and it enables the individual tissues to be selectively dif- in nuclear staining.The ionisation of basic groups of ferentiated and stained. -
LAB 3: Morphological Characteristics of Bacteria Protocols for Endospore Stain, Capsule Stain, Motility Stab and Wet Mount
LAB 3: Morphological Characteristics of Bacteria Protocols for Endospore Stain, Capsule Stain, Motility Stab and Wet Mount. INTRODUCTION Bacteria are characterized by the presence or absence of a number of different structures. Endospores, capsules and flagella are three such examples. Each of these structures is visible with light microscopy if the correct staining procedure is employed. ENDOSPORES are survival structures. In poor growth conditions some genera may sporulate. Rather than dying, endospores survive in a dormant state. Endospores are unique to Bacteria and are formed by a limited number of bacterial genera. The soil bacteria within the genera Bacillus and Clostridium are the most familiar. The stepwise process of sporulation is triggered by poor growth conditions ( see the discussion of the process of sporulation in your text). The transition from vegetative cell to endopsore requires an environmental signal and then a series of steps. The The endospore forms within the vegetative cell. A wall forms around a copy of the bacterial chromosome, capturing some ribosomes, proteints and DNA. The endospore forming within the cell can be visualized using the light microscope. As the sporulation process continues, layers form within the spore making it very dense. Exterior to the spore, the vegetative cell dies. At the completion of sporulation, oval spores are visible using light microscopy. Endospores cannot replicate. However they allow survival in lean times. In fact they are resistant to extreme environmental conditions such as high temperatures, dryness, toxic chemicals, and UV radiation. The dormant structure allows cell survival until conditions favorable to cell growth returns. Favorable growth conditions signal the process of endospore germination. -
The Histochemical Distribution of Placental Calcium and Alkaline Phosphatase Activity Following Fetoplacental Dissociation in Th
Loyola University Chicago Loyola eCommons Master's Theses Theses and Dissertations 1976 The Histochemical Distribution of Placental Calcium and Alkaline Phosphatase Activity Following Fetoplacental Dissociation in the Albino Rat eric sigmond Loyola University Chicago Follow this and additional works at: https://ecommons.luc.edu/luc_theses Part of the Medical Anatomy Commons Recommended Citation sigmond, eric, "The Histochemical Distribution of Placental Calcium and Alkaline Phosphatase Activity Following Fetoplacental Dissociation in the Albino Rat" (1976). Master's Theses. 2872. https://ecommons.luc.edu/luc_theses/2872 This Thesis is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Master's Theses by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Copyright © 1976 eric sigmond THE HISTOCHEMICAL DISTRIBUTION OF PLACENTAL CALCIUM AND ALKALINE PHOSPHATASE ACTIVITY FOLLOWING FETOPLACENTAL DISSOCIATION IN THE ALBINO RAT by Eric Sigmond A Thesis Submitted to the Faculty of the Graduate School of Loyola University of Chicago in Partial Fulfillment of the Requirements for the Degree of Master of Science February 1976 ACKNOWLEDGEMENT I wish to express my gratitude to Dr. Leslie A. Emmert for his suggestion of the problem, his patience, encouragement and supervision throughout the course of this thesis. His guidance helped overcome many problems which arose during the course of this study. I also wish to express thanks to Dr. Charles C.C. O'Morchoe and Dr. Maurice V. L'Heureux for their many valuable suggestions during the writing of this thesis. -
Colloid Milium: a Histochemical Study* James H
CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector THE JOURNAL OF INVESTIOATIVE DERMATOLOOY vol. 49, No. 5 Copyright 1567 by The Williams & Wilkins Co. Printed in U.S.A. COLLOID MILIUM: A HISTOCHEMICAL STUDY* JAMES H. GRAHAM, M.D. AND ANTONIO S. MARQUES, M.D. Wagner (1), in 1866, first reported colloidreaction, with and without diastase digestion; milium in a 54 year old woman who showedcolloidal iron reaction, with and without bovine testicular hyaluronidase digestion for 1 hour at lesions on the forehead, cheeks and nose. In37 C; Movat's pentachrome I stain (2); alcian patients with colloid milium, the involvedblue pH 2.5 and 0.4 (3, 4); aldehyde-fuchsin pH skin is usually hyperpigmented, thickened,1.7 and 0.4 (4), with and without elastase digestion furrowed, nnd covered with multiple 0.5—5(5); Snook's reticulum stain; phosphotungstic acid hematoxylin stain (PTAH); Prussian blue re- mm dome-shaped, discrete papules. The shiny,action for iron; Fontana-Masson stain for ar- pink or orange to yellowish white translucentgentaffin granules; thiofiavine T fluorescent stain lesions have been likened to vesieles, but are(6, 7); Congo red; alkaline Congo red method firm and only after considerable pressure can(8); crystal violet amyloid stain; methyl violet a clear to yellow mueoid substance be ex-stain for amyloid (9, 5); toluidine blue (4); and Giemsa stain. The crystal violet and methyl vio- pressed from the papules. The lesions involvelet stained sections were mounted in Highman's sun exposed sites including the dorsum of theApathy gum syrup (5) which tends to prevent hands, web between the thumb and indexbleeding and gives a more permanent preparation. -
DIFFERENTIAL STAINING, Part I
DIFFERENTIAL STAINING, Part I Differential staining is a procedure that takes advantage of differences in the physical and chemical properties of different groups of bacteria. It allows us to differentiate between different kinds of bacterial cells or different parts of a bacterial cell. I. GRAM STAIN The most commonly used differential stain is the Gram stain, first described in 1884 by Christian Gram, a Danish physician. The Gram reaction divides bacteria into two groups, those which are Gram-positive and those which are Gram-negative. Those organisms which retain the primary stain (crystal violet) are stained purple and are designated Gram-positive; those which lose the crystal violet and are subsequently stained by a safranin counterstain appear red and are designated Gram-negative. The conventional Gram-stain technique is described in the Procedure part of this handout; however, it is important to recognize early on that two aspects of the procedure are crucial: 1. The crystal violet treatment must precede iodine treatment. Iodine acts as a mordant, i.e., it increases the affinity of the cells for the crystal violet. Iodine alone has no bacterial staining capabilities. 2. Decolorization must be short and precise. Too long an exposure to 95% alcohol will decolorize Gram-positive as well as Gram-negative cells. The Gram stain has been used as a taxonomic tool for many years, aiding in the classification and identification of bacterial cells. However, it is also useful in a broader sense, as there appears to be a close correlation between the Gram reaction and many other morphological and physiological characteristics of bacterial cells. -
Tissue in Cases of Acute Rheumatism
Ann Rheum Dis: first published as 10.1136/ard.16.3.307 on 1 September 1957. Downloaded from Ann. rheum. Dis. (1957), 16, 307. HISTOCHEMICAL INVESTIGATION OF CONNECTIVE TISSUE IN CASES OF ACUTE RHEUMATISM BY A. I. STRUKOV AND G. V. ORLOVSKAYA U.S.S.R. Academy of Medical Sciences, Moscow (RECEIVED FOR PUBLICATION JULY 5, 1957) The connective tissue is the chief place where the phases: soluble (procollagen) and insoluble (colla- pathological rheumatic process takes place. The stromine). Obtained by precipitation from a changes mainly affect its intercellular components. solution, procollagen has all the properties of On the basis of this localization of the pathological collagen fibrils (of collagen): it turns red when it is lesions, rheumatism has been included among the stained by Van Gieson stain, and its roentgenogram so-called collagen diseases (Klemperer, 1950). The shows the characteristic interplane intervals of mechanism of development of the pathological 2-9 A and 11-0 A. Under the electron microscope by copyright. processes in the intercellular substance of connective it shows the same transverse bands. tissue can be understood only when there is a clear In a roentgenogram, collastromine shows no idea of the nature, structure, and correlations of ring at 2 9 A which is characteristic for collagen; collagen and the amorphous cementing substance, it has no periodicity, does not turn red with Van both of which play a principal role in the develop- Gieson stain, and shows a distinct metachromasia; ment of the rheumatic process. staining with silver reveals argyrophilic fibres. The The investigations made in recent years with the results of fractioning show collagen as at least a aid of physical, chemical, and histochemical bi-phasic system; the known features of collagen methods have considerably advanced our concepts in toto are determined by its content of procollagen. -
Newsletter 4
ANATECH LTD INNOVATOR Special Stains Issue Special Stains Issue Hematoxylin and eosin (H & E) is the gold stan- dard for demonstration of tissue structure in anatomic pathology. However, by utilizing vari- ous dye solutions, special stains allow further visualization of major macromolecules (e.g., carbohydrates, proteins, minerals) in a rainbow of colors beyond the blue and pink hues of H & E staining. This makes special stains indispensable in the demonstration of tissue morphology and its components. While immunohistochemistry and molecular biology are truly advancing in 1 A B the diagnosis of diseases, the comparatively low cost of histochemical special stains makes them April 2010 vital to the pathology laboratory. Figure 1. Fatty liver metamorphosis. A) Iron, 20x; B) H&E, 40x. ANATECH LTD. has a growing family of really A new look special stains. We refer to them as really special because several of them are unique and were at some old favorites developed in response to a problem with the existing traditional stain, due to unavailability Iron or technical performance. By understanding the chemistry of dyes, ANATECH LTD. was able to Hemosiderin, an iron-storage complex, is normally respond to these problems and produce special present intracellularly in macrophages. However, stains that are chemically unique and/or offer during hemorrhaging, when red blood cells (RBC) are a technical improvement over the conventional released from the circulatory system, excess hemosid- stain. Knowing that the stained tissue’s appear- erin deposits will occur in the surrounding extracel- ance is critical, our really special stains yield lular spaces. This is seen grossly in the color change of similarly colored results as the traditional dyes. -
Selective and Recyclable Congo Red Dye Adsorption by Spherical Fe3o4
www.nature.com/scientificreports OPEN Selective and Recyclable Congo Red Dye Adsorption by Spherical Fe3O4 Nanoparticles Functionalized with 1,2,4,5-Benzenetetracarboxylic Acid Sobhan Chatterjee1, Nikita Guha2, Sarathkumar Krishnan2, Amrendra K. Singh1, Pradeep Mathur1 & Dhirendra K. Rai2* In this study, the new material Fe3O4@BTCA has been synthesized by immobilization of 1,2,4,5-Benzenetetracarboxylic acid (BTCA) on the surface of Fe3O4 NPs, obtained by co-precipitation of FeCl3.6H2O and FeCl2.4H2O in the basic conditions. Characterization by P-XRD, FE-SEM, and TEM confrm Fe3O4 has a spherical crystalline structure with an average diameter of 15 nm, which after functionalization with BTCA, increases to 20 nm. Functionalization also enhances the surface area and surface charge of the material, confrmed by BET and zeta potential analyses, respectively. The dye adsorption capacity of Fe3O4@BTCA has been investigated for three common dyes; Congo red (C.R), Methylene blue (M.B), and Crystal violet (C.V). The adsorption studies show that the material rapidly and selectively adsorbs C.R dye with very high adsorption capacity (630 mg/g), which is attributed to strong H-bonding ability of BTCA with C.R dye as indicated by adsorption mechanism study. The material also shows excellent recyclability without any considerable loss of adsorption capacity. Adsorption isotherm and kinetic studies suggest that the adsorption occurs by the Langmuir adsorption model following pseudo-second-order adsorption kinetics. Organic dyes are one of the signifcant contributors to water pollution caused by the discharge of efuent from various industries such as textile, plastic, printing, photographic, paper-pulp, paint, and leather1–9. -
Hydrothermal Degradation of Congo Red in Hot Compressed Water And
ineering ng & E P l r a o c i c e m s e s Journal of h T C e f c h o Yuksel, J Chem Eng Process Technol 2013, 4:9 l ISSN: 2157-7048 n a o n l o r g u y o J Chemical Engineering & Process Technology DOI: 10.4172/2157-7048.1000179 Research Article Article OpenOpen Access Access Hydrothermal Degradation of Congo Red in Hot Compressed Water and its Kinetics Asli Yuksel* Izmir Institute of Technology, Faculty of Engineering, Department of Chemical Engineering, Gulbahce Campus, Urla, Izmir, Turkey Abstract A di-azo dye, Congo Red (CR) was used as a model compound to investigate the degradation mechanism in hot compressed water (HCW). The unique properties of HCW facilitated the degradation efficiency without addition of any organic solvent. The influences of reaction time, temperature, initial dye concentration and amount of hydrogen peroxide (H2O2) on the degradation of CR and the removal of total organic carbon (TOC) from the product solution were investigated. The presence of H2O2 was found to enhance the degradation of CR. The results showed that the degradation yield could reach 99.0% with a solution of 100 ppm CR and 50 mM H2O2 at 150°C at the end of 60 min. Maximum conversion of the total organic carbon was recorded as 62.2%. Moreover, the effect of the presence of 2- - 2- 2- several co-existing negative ions such as SO4 , Cl , CO3 were investigated. It was found that the presence of SO4 2- - accelerated evidently the degradation of CR.