Colloid Milium: a Histochemical Study* James H
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Toxicological Evaluation of Certain Veterinary Drug Residues in Food
WHO FOOD ADDITIVES SERIES: 69 Prepared by the Seventy-eighth meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA) GENTIAN VIOLET page 3-34 Toxicological evaluation of certain veterinary drug residues in food , 2 7 The summaries and evaluations contained in this book are, in most cases, based on o. N unpublished proprietary data submitted for the purpose of the JECFA assessment. A registration es authority should not grant a registration on the basis of an evaluation unless it has first received i r e authorization for such use from the owner who submitted the data for JECFA review or has received the data on which the summaries are based, either from the owner of the data or from es es S a second party that has obtained permission from the owner of the data for this purpose. v i t i Add d World Health Organization, Geneva, 2014 oo F O O 6 1 H 0 W 2 GENTIAN VIOLET First draft prepared by Mr John Reeve 1 and Dr Susan Barlow 2 1 Science and Risk Assessment Branch, Ministry for Primary Industries, Wellington, New Zealand 2 Consultant, Brighton, East Sussex, England, United Kingdom 1. Explanation ........................................................................................... 4 2. Biological data ...................................................................................... 4 2.1 Biochemical aspects ....................................................................... 4 2.1.1 Absorption, distribution and excretion ................................... 4 (a) Mice ................................................................................ -
Identification of Typewriter Ribbons Charlotte L
Journal of Criminal Law and Criminology Volume 46 | Issue 6 Article 15 1956 Identification of Typewriter Ribbons Charlotte L. Brown Paul L. Kirk Follow this and additional works at: https://scholarlycommons.law.northwestern.edu/jclc Part of the Criminal Law Commons, Criminology Commons, and the Criminology and Criminal Justice Commons Recommended Citation Charlotte L. Brown, Paul L. Kirk, Identification of Typewriter Ribbons, 46 J. Crim. L. Criminology & Police Sci. 882 (1955-1956) This Criminology is brought to you for free and open access by Northwestern University School of Law Scholarly Commons. It has been accepted for inclusion in Journal of Criminal Law and Criminology by an authorized editor of Northwestern University School of Law Scholarly Commons. IDENTIFICATION OF TYPEWRITER RIBBONS* CHARLOTTE L. BROWN AND PAUL L. KIRK Mrs. Charlotte L. Brown, a member of the staff of the School of Criminology, Univer- sity of California, has collaborated with Dr. Kirk in the research and presentation of several articles that have appeared in this Journal during the last few years. Two of these, which appeared in volume 45, dealt with methods of identifying various types of writing inks. Paul L. Kirk is Professor of Criminology at the University of California and has con- tributed periodically to this Journal during the last fifteen years. He is the author of "Crime Investigation" and numerous articles on various laboratory techniques in several branches of criminalistics.-EDITOR. In the examination of typewritten documents it is frequently desirable to determine that a particular ribbon was used, that two or more documents were prepared with the same ribbon, or that more than one ribbon was used in preparing a single docu- ment. -
Lysochrome Dyes Sudan Dyes, Oil Red Fat Soluble Dyes Used for Biochemical Staining of Triglycerides, Fatty Acids, and Lipoproteins Product Description
FT-N13862 Lysochrome dyes Sudan dyes, Oil red Fat soluble dyes used for biochemical staining of triglycerides, fatty acids, and lipoproteins Product Description Name : Sudan IV Other names: Sudan R, C.I. Solvent Red 24, C.I. 26105, Lipid Crimson, Oil Red, Oil Red BB, Fat Red B, Oil Red IV, Scarlet Red, Scarlet Red N.F, Scarlet Red Scharlach, Scarlet R Catalog Number : N13862, 100g Structure : CAS: [85-83-6] Molecular Weight : MW: 380.45 λabs = 513-529 nm (red); Sol(EtOH): 0.09%abs =513-529nm(red);Sol(EtOH):0.09% S:22/23/24/25 Name : Sudan III Other names: Rouge Sudan ; rouge Ceresin ; CI 26100; CI Solvent Red 23 Catalog Number : 08002A, 25g Structure : CAS:[85-86-9] Molecular Weight : MW: 352.40 λabs = 513-529 nm (red); Sol(EtOH): 0.09%abs =503-510nm(red);Sol(EtOH):0.15% S:24/25 Name : Sudan Black B Other names: Sudan Black; Fat Black HB; Solvent Black 3; C.I. 26150 Catalog Number : 279042, 50g AR7910, 100tests stain for lipids granules Structure : CAS: [4197-25-5] S:22/23/24/25 Molecular Weight : MW: 456.54 λabs = 513-529 nm (red); Sol(EtOH): 0.09%abs=596-605nm(blue-black) Name : Oil Red O Other names: Solvent Red 27, Sudan Red 5B, C.I. 26125 Catalog Number : N13002, 100g Structure : CAS: [1320-06-5 ] Molecular Weight : MW: 408.51 λabs = 513-529 nm (red); Sol(EtOH): 0.09%abs =518(359)nm(red);Sol(EtOH): moderate; Sol(water): Insoluble S:22/23/24/25 Storage: Room temperature (Z) P.1 FT-N13862 Technical information & Directions for use A lysochrome is a fat soluble dye that have high affinity to fats, therefore are used for biochemical staining of triglycerides, fatty acids, and lipoproteins. -
Digitally Reinforced Polarization of Hematoxylin-Eosin in the Diagnosis
Özgün Araştırma/Original Article doi: 10.5146/tjpath.2012.01126 Digitally Reinforced Polarization of Hematoxylin-Eosin in the Diagnosis of Renal Amyloidosis Renal Amiloidoz Tanısında Dijital Güçlendirilmiş Hematoksilen Eozin Polarizasyonu Sait ŞEN, Banu SARSIK KumbaraCI Department of Medical Pathology, Ege University, Faculty of Medicine, İZMİR, TURKEY The summary of this study was presented at 24th Congress of Pathology held in Prague on 8-12 September 2012 ABSTRACT ÖZ Objective: Systemic amyloidosis is a rare disorder, characterized by Amaç: Sistemik amiloidozlar, hematoksilen-eozin boyamada amorf extracellular accumulation of Congo red positive fibrillar amyloid eozinofilik görülen, Kongo kırmızısı ile boyanan fibriller amiloid protein deposits that have an amorphous, eosinophilic appearance proteinlerin ekstrasellüler birikimiyle karakterize nadir hastalıklardır. on hematoxylin-eosin stained preparations. The kidney is the Böbrekler sistemik amiloidozlardan en sık etkilenen organdır. Kongo most commonly affected organ by systemic amyloidosis. Congo kırmızısı, zayıf birefrenjant boyanmamış amiloidin birefranjansını red staining increases the positive birefringence of the weakly artırır. Bu çalışmada, böbrek biopsilerinin rutin hematoksilen eozin birefringent unstained amyloid. In this study, we investigated the kesitlerinde dijital güçlendirilmiş birefrenjansın potansiyel tanısal potential diagnostic power of digitally reinforced birefringence of gücünü araştırdık. routine hematoxylin-eosin stained slides from renal biopsies. Gereç ve Yöntem: Hematoksilen-eozin boyalı 130 preparat Material and Method: We reviewed 130 hematoxylin-eosin stained polarizasyon için değerlendirildi. Altmış beş yeni amiloidoz olgusuna slides for polarization. Sixty-five new amyloidosis cases were böbrek biyopsisi ile tanı konuldu. Tüm böbrek biopsileri ışık ve diagnosed by renal biopsy. All renal biopsies were evaluated by light immünflöresan mikroskop ile değerlendirildi. Preparatlar kör olarak, microscopy and immunofluorescence. -
Gentian Violet S010
Gentian Violet S010 Gentian Violet is used as staining solution for monochrome staining of microbes. Composition** Ingredients Gentian violet 0.500 gm Distilled water 100.000 ml **Formula adjusted, standardized to suit performance parameters Directions 1) Prepare a smear on a clear, dry glass slide. 2) Allow it to air dry and fix with gentle heat. 3) Flood the slide with Gentian Violet (S010). 4) Allow the stain to be in contact with the smear for 1-2 minutes. 5) Wash in slow-running water, just enough to remove excess of dye. 6) Flood the smear with Iodine, drain and flood again with Iodine for 1 minute. 7) Wash with decolourizer (alcohol) for about 5-15 seconds. Wash the slide to stop the action of decolourizer. 8) Flood with safranin for 1 minute, wash very lightly. 9) Blot dry and examine under oil immersion objective. Principle And Interpretation Gentian Violet is used as a simple stain where it can render the organisms violet. Besides this it can also be used in the Gram staining for distinguishing between gram-positive and gram-negative organisms. Earlier, Gentian violet was used as the primary stain in Grams staining method, subsequently crystal violet has replaced gentian violet because of the defined chemical nature of crystal violet. Quality Control Appearance Dark purple coloured solution. Clarity Clear without any particles. Microscopic Examination Gram staining is carried out where Gentian Violet is used as one of the stains and staining characteristics of organisms are observed under microscope using oil immersion lens. Results Fq`l,onrhshudnqf`mhrlr9Uhnkds Fq`l,mdf`shudnqf`mhrlr9 Qdc Nsgdqdkdldmsr9U`qhntrrg`cdrneqdcsnotqokd Storage and Shelf Life Store below 30°C in tightly closed container and away from bright light. -
The Sensitizing and Indicator Action of Victoria Blue and Janus Green on the Flocculation Reaction for Syphilis
In the case of sulphonamides, cultures resistant to sulphanilamide were resistant or partially resistant to the other members of this group with the exception of marfanil. Resistance once acquired seems to be permanent, and so far we have not been successful in reducing it in vitro. REFERENCES. ALBERT, A., FRANCIS, A. E., GARROD, L. P., AND LINNELL, W. H.-(1938) Brit. J. exp. Path., 19, 41. LANDY, M., LARKUM, N. W., OswALD, E. J., AND STREIGHTOFF, F.-(1943) Science, 97, 265. LEVADITI, C., AND MCINTOSH, J.-(1910) Bull. Soc. Path. exot., 3, 368. MACLEAN, I. H., ROGERS, K. B., AND FLEMING, A.-(1939) Lancet, i, 562. MACLEOD, C. M.-(1940) J. exp. Med., 72, 217. RAMMELKAMP, C. H., AND MAXON, T.-(1942) Proc. Soc. exp. Biol., N.Y., 51, 386. RUBBO, S. D., ALBERT, A., AND MAxWELL, M.-(1942) Brit. J. exp. Path., 23, 69. TILLETT, W. S., CAMBIER, M. J., AND HARRIS, W. H.-(1943) J. clin. Invest., 22, 249. THE SENSITIZING AND INDICATOR ACTION OF VICTORIA BLUE AND JANUS GREEN ON THE FLOCCULATION REACTION FOR SYPHILIS. F. M. BERGER. From the Public Health Laboratory, County Hall, Wakefield. Received for publication November 9, 1943. DEAN (1937) found that isamine blue could act as an indicator of the reaction between an antigen and its homologous antibody. The addition of the dye to a mixture of horse serum and dilute antiserum produced a precipitate which was easily visible because it took up all the dye from the supernatant fluid. Prof. P. L. Suther- land suggested the possibility of using isamine blue as indicator in serological tests for syphilis. -
LAB 3: Morphological Characteristics of Bacteria Protocols for Endospore Stain, Capsule Stain, Motility Stab and Wet Mount
LAB 3: Morphological Characteristics of Bacteria Protocols for Endospore Stain, Capsule Stain, Motility Stab and Wet Mount. INTRODUCTION Bacteria are characterized by the presence or absence of a number of different structures. Endospores, capsules and flagella are three such examples. Each of these structures is visible with light microscopy if the correct staining procedure is employed. ENDOSPORES are survival structures. In poor growth conditions some genera may sporulate. Rather than dying, endospores survive in a dormant state. Endospores are unique to Bacteria and are formed by a limited number of bacterial genera. The soil bacteria within the genera Bacillus and Clostridium are the most familiar. The stepwise process of sporulation is triggered by poor growth conditions ( see the discussion of the process of sporulation in your text). The transition from vegetative cell to endopsore requires an environmental signal and then a series of steps. The The endospore forms within the vegetative cell. A wall forms around a copy of the bacterial chromosome, capturing some ribosomes, proteints and DNA. The endospore forming within the cell can be visualized using the light microscope. As the sporulation process continues, layers form within the spore making it very dense. Exterior to the spore, the vegetative cell dies. At the completion of sporulation, oval spores are visible using light microscopy. Endospores cannot replicate. However they allow survival in lean times. In fact they are resistant to extreme environmental conditions such as high temperatures, dryness, toxic chemicals, and UV radiation. The dormant structure allows cell survival until conditions favorable to cell growth returns. Favorable growth conditions signal the process of endospore germination. -
DIFFERENTIAL STAINING, Part I
DIFFERENTIAL STAINING, Part I Differential staining is a procedure that takes advantage of differences in the physical and chemical properties of different groups of bacteria. It allows us to differentiate between different kinds of bacterial cells or different parts of a bacterial cell. I. GRAM STAIN The most commonly used differential stain is the Gram stain, first described in 1884 by Christian Gram, a Danish physician. The Gram reaction divides bacteria into two groups, those which are Gram-positive and those which are Gram-negative. Those organisms which retain the primary stain (crystal violet) are stained purple and are designated Gram-positive; those which lose the crystal violet and are subsequently stained by a safranin counterstain appear red and are designated Gram-negative. The conventional Gram-stain technique is described in the Procedure part of this handout; however, it is important to recognize early on that two aspects of the procedure are crucial: 1. The crystal violet treatment must precede iodine treatment. Iodine acts as a mordant, i.e., it increases the affinity of the cells for the crystal violet. Iodine alone has no bacterial staining capabilities. 2. Decolorization must be short and precise. Too long an exposure to 95% alcohol will decolorize Gram-positive as well as Gram-negative cells. The Gram stain has been used as a taxonomic tool for many years, aiding in the classification and identification of bacterial cells. However, it is also useful in a broader sense, as there appears to be a close correlation between the Gram reaction and many other morphological and physiological characteristics of bacterial cells. -
Newsletter 4
ANATECH LTD INNOVATOR Special Stains Issue Special Stains Issue Hematoxylin and eosin (H & E) is the gold stan- dard for demonstration of tissue structure in anatomic pathology. However, by utilizing vari- ous dye solutions, special stains allow further visualization of major macromolecules (e.g., carbohydrates, proteins, minerals) in a rainbow of colors beyond the blue and pink hues of H & E staining. This makes special stains indispensable in the demonstration of tissue morphology and its components. While immunohistochemistry and molecular biology are truly advancing in 1 A B the diagnosis of diseases, the comparatively low cost of histochemical special stains makes them April 2010 vital to the pathology laboratory. Figure 1. Fatty liver metamorphosis. A) Iron, 20x; B) H&E, 40x. ANATECH LTD. has a growing family of really A new look special stains. We refer to them as really special because several of them are unique and were at some old favorites developed in response to a problem with the existing traditional stain, due to unavailability Iron or technical performance. By understanding the chemistry of dyes, ANATECH LTD. was able to Hemosiderin, an iron-storage complex, is normally respond to these problems and produce special present intracellularly in macrophages. However, stains that are chemically unique and/or offer during hemorrhaging, when red blood cells (RBC) are a technical improvement over the conventional released from the circulatory system, excess hemosid- stain. Knowing that the stained tissue’s appear- erin deposits will occur in the surrounding extracel- ance is critical, our really special stains yield lular spaces. This is seen grossly in the color change of similarly colored results as the traditional dyes. -
Selective and Recyclable Congo Red Dye Adsorption by Spherical Fe3o4
www.nature.com/scientificreports OPEN Selective and Recyclable Congo Red Dye Adsorption by Spherical Fe3O4 Nanoparticles Functionalized with 1,2,4,5-Benzenetetracarboxylic Acid Sobhan Chatterjee1, Nikita Guha2, Sarathkumar Krishnan2, Amrendra K. Singh1, Pradeep Mathur1 & Dhirendra K. Rai2* In this study, the new material Fe3O4@BTCA has been synthesized by immobilization of 1,2,4,5-Benzenetetracarboxylic acid (BTCA) on the surface of Fe3O4 NPs, obtained by co-precipitation of FeCl3.6H2O and FeCl2.4H2O in the basic conditions. Characterization by P-XRD, FE-SEM, and TEM confrm Fe3O4 has a spherical crystalline structure with an average diameter of 15 nm, which after functionalization with BTCA, increases to 20 nm. Functionalization also enhances the surface area and surface charge of the material, confrmed by BET and zeta potential analyses, respectively. The dye adsorption capacity of Fe3O4@BTCA has been investigated for three common dyes; Congo red (C.R), Methylene blue (M.B), and Crystal violet (C.V). The adsorption studies show that the material rapidly and selectively adsorbs C.R dye with very high adsorption capacity (630 mg/g), which is attributed to strong H-bonding ability of BTCA with C.R dye as indicated by adsorption mechanism study. The material also shows excellent recyclability without any considerable loss of adsorption capacity. Adsorption isotherm and kinetic studies suggest that the adsorption occurs by the Langmuir adsorption model following pseudo-second-order adsorption kinetics. Organic dyes are one of the signifcant contributors to water pollution caused by the discharge of efuent from various industries such as textile, plastic, printing, photographic, paper-pulp, paint, and leather1–9. -
Removal of Methyl Violet 2B Dye from Aqueous Solution Using a Magnetic Composite As an Adsorbent L.R
Removal of methyl violet 2B dye from aqueous solution using a magnetic composite as an adsorbent L.R. Bonetto, F Ferrarini, C. de Marco, J.S. Crespo, Régis Guégan, M Giovanela To cite this version: L.R. Bonetto, F Ferrarini, C. de Marco, J.S. Crespo, Régis Guégan, et al.. Removal of methyl violet 2B dye from aqueous solution using a magnetic composite as an adsorbent. Journal of Water Process Engineering, Elsevier, 2015, 6, pp.11-20. 10.1016/j.jwpe.2015.02.006. insu-01130235 HAL Id: insu-01130235 https://hal-insu.archives-ouvertes.fr/insu-01130235 Submitted on 11 Mar 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Removal of methyl violet 2B dye from aqueous solution using a magnetic composite as an adsorbent L. R. Bonettoa*, F. Ferrarinia, C. D. Marcoa, J. S. Crespoa, R. Guéganb, M. Giovanelaa* aCentro de Ciências Exatas e da Tecnologia, Universidade de Caxias do Sul, 95070-560 Caxias do Sul – RS, Brazil. bInstitut des Sciences de la Terre d’Orléans, UMR 7327, CNRS-Université d’Orléans, 1A Rue de la Férollerie, 45071 Orléans Cedex 2, France Authors to whom correspondence should be addressed: M. -
Hydrothermal Degradation of Congo Red in Hot Compressed Water And
ineering ng & E P l r a o c i c e m s e s Journal of h T C e f c h o Yuksel, J Chem Eng Process Technol 2013, 4:9 l ISSN: 2157-7048 n a o n l o r g u y o J Chemical Engineering & Process Technology DOI: 10.4172/2157-7048.1000179 Research Article Article OpenOpen Access Access Hydrothermal Degradation of Congo Red in Hot Compressed Water and its Kinetics Asli Yuksel* Izmir Institute of Technology, Faculty of Engineering, Department of Chemical Engineering, Gulbahce Campus, Urla, Izmir, Turkey Abstract A di-azo dye, Congo Red (CR) was used as a model compound to investigate the degradation mechanism in hot compressed water (HCW). The unique properties of HCW facilitated the degradation efficiency without addition of any organic solvent. The influences of reaction time, temperature, initial dye concentration and amount of hydrogen peroxide (H2O2) on the degradation of CR and the removal of total organic carbon (TOC) from the product solution were investigated. The presence of H2O2 was found to enhance the degradation of CR. The results showed that the degradation yield could reach 99.0% with a solution of 100 ppm CR and 50 mM H2O2 at 150°C at the end of 60 min. Maximum conversion of the total organic carbon was recorded as 62.2%. Moreover, the effect of the presence of 2- - 2- 2- several co-existing negative ions such as SO4 , Cl , CO3 were investigated. It was found that the presence of SO4 2- - accelerated evidently the degradation of CR.