Toxicological Evaluation of Certain Veterinary Drug Residues in Food

Total Page:16

File Type:pdf, Size:1020Kb

Toxicological Evaluation of Certain Veterinary Drug Residues in Food WHO FOOD ADDITIVES SERIES: 69 Prepared by the Seventy-eighth meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA) GENTIAN VIOLET page 3-34 Toxicological evaluation of certain veterinary drug residues in food , 2 7 The summaries and evaluations contained in this book are, in most cases, based on o. N unpublished proprietary data submitted for the purpose of the JECFA assessment. A registration es authority should not grant a registration on the basis of an evaluation unless it has first received i r e authorization for such use from the owner who submitted the data for JECFA review or has received the data on which the summaries are based, either from the owner of the data or from es es S a second party that has obtained permission from the owner of the data for this purpose. v i t i Add d World Health Organization, Geneva, 2014 oo F O O 6 1 H 0 W 2 GENTIAN VIOLET First draft prepared by Mr John Reeve 1 and Dr Susan Barlow 2 1 Science and Risk Assessment Branch, Ministry for Primary Industries, Wellington, New Zealand 2 Consultant, Brighton, East Sussex, England, United Kingdom 1. Explanation ........................................................................................... 4 2. Biological data ...................................................................................... 4 2.1 Biochemical aspects ....................................................................... 4 2.1.1 Absorption, distribution and excretion ................................... 4 (a) Mice ................................................................................. 4 (b) Rats ................................................................................. 5 2.1.2 Biotransformation .................................................................. 7 (a) Bacteria ............................................................................ 7 (b) In vitro .............................................................................. 7 (c) Mice ................................................................................. 8 (d) Rats ................................................................................. 8 2.2 Toxicological studies ....................................................................... 8 2.2.1 Acute toxicity ......................................................................... 8 2.2.2 Short-term studies of toxicity ................................................. 9 (a) Rats ................................................................................. 9 (b) Dogs ................................................................................ 9 2.2.3 Long-term studies of toxicity and carcinogenicity.................. 10 (a) Mice ................................................................................. 10 (b) Rats ................................................................................. 13 2.2.4 Genotoxicity .......................................................................... 17 2.2.5 Reproductive and developmental toxicity.............................. 22 (a) Multigeneration reproductive toxicity ............................... 22 (b) Developmental toxicity ..................................................... 23 2.2.6 Special studies ...................................................................... 25 2.3 Observations in humans ................................................................. 25 3. Comments ............................................................................................ 26 3.1 Biochemical data ............................................................................ 26 3.2 Toxicological data ........................................................................... 26 4. Evaluation ............................................................................................. 30 5. References ........................................................................................... 31 - 3 - 4 GENTIAN VIOLET 1. EXPLANATION Gentian violet (Chemical Abstracts Service No. 548-62-9) has many common names, including CI Basic Violet 3, crystal violet and methyl violet 10B. It is a triphenylmethane dye with antibacterial, antifungal and anthelminthic properties. Gentian violet has been used for the treatment of fungal and parasitic infections in fish and topically for skin and eye infections in livestock. It was previously used in poultry feeds to inhibit the growth of mould and fungus; however, several countries have withdrawn approval or registration of this use. In humans, gentian violet has been used as a hair dye, to treat gut parasites and for topical fungal treatment. It has also been used in human medicine to treat blood held for transfusions in order to prevent the transmission of Chagas disease caused by Trypanosoma cruzi . It also has activity as a topical antiviral agent. Gentian violet is used in industrial processes for wood, leather, silk, nylon, paper and ribbon tapes and also as a biological stain. Contamination of the environment can occur, as about 1015% of all dyes are lost directly to wastewater in the dyeing process. Gentian violet in water originating from contamination as a result of its industrial applications or from its illegal use in aquaculture is efficiently taken up from the water by fish. Gentian violet has not previously been evaluated by the Joint FAO/WHO Expert Committee on Food Additives (JECFA). It was evaluated by the Committee at the current meeting at the request of the Twentieth Session of the Codex Committee on Residues of Veterinary Drugs in Foods (FAO/WHO, 2012), which asked for advice as to whether an acceptable daily intake (ADI) can be established and whether the continued use of gentian violet in food-producing animals is safe for humans. 2. BIOLOGICAL DATA 2.1 Biochemical aspects 2.1.1 Absorption, distribution and excretion Docampo & Moreno (1990) reviewed the metabolism and mode of action of gentian violet. No data were available on skin absorption of gentian violet in food-producing animals when the drug is applied topically, although Diamante et al. (2009) considered gentian violet to be poorly absorbed through human skin. (a) Mice Groups of 12 male and 12 female B6C3F1 mice were housed three per metabolism cage and given 14 doses of 14 C-labelled gentian violet (94.8% gentian violet and 5.2% pentamethylpararosaniline) at 12-hour intervals by gavage. The total gentian violet doses were 5.6 mg/kg body weight (bw) (0.72 MBq/animal) and 7.1 mg/kg bw (0.72 MBq/animal) for males and females, respectively. The mice were killed 2 hours after receiving the final dose. Urine, faeces, liver, kidney, muscle, testes or ovaries and a fat sample were collected during the study, and radioactivity was measured ( Table 1 ). The data show that gentian violet residues GENTIAN VIOLET 5 Table 1. Disposition and excretion of multiple oral doses of 14 C-labelled gentian violet administered to mice Sample Gentian violet residues a ( g/g or g/mL) Males Females Liver 17.8 ± 2.6** 10.7 ± 3.4** Kidney 1.6 ± 0.1** 2.7 ± 0.8** Muscle 0.6 ± 0.4** 1.3 ± 0.7** Gonad 0.49 ± 0.08 3.66 ± 1.08 b Fat 14.3 ± 3.0** 24.1 ± 7.0** Urine 1.16 (5.9%) 1.58 (8.1%) Faeces 12.89 (65.9%) 13.17 (67.4%) **: P < 0.01 (student t-test for a signi cant sex difference) a Values are means ± 1 standard deviation for 12 male and 12 female mice. Numbers in parentheses indicate the percentage of the total dose. b Mean of eight mice. Source : McDonald et al. (1984a); McDonald (1989) were highest in adipose tissue (particularly in females), although a major portion (6667%) was excreted in faeces (McDonald et al., 1984a; McDonald, 1989). (b) Rats Groups of three male and three female F344 rats were housed individually in metabolism cages and given a single dose by gavage of 14 C-labelled gentian violet (94.8% gentian violet and 5.2% pentamethylpararosaniline). Gentian violet doses were 4.8 mg/kg bw (0.11 MBq/animal) and 5.2 mg/kg bw (0.34 MBq/animal) for males and females, respectively. Rats were killed 2, 4, 14 or 24 hours after dosing. Urine, faeces, liver, kidney, muscle, testes or ovaries and a fat sample were collected, and radioactivity was measured ( Table 2 ). Half-lives of 14.5 and 14.4 hours were calculated following a single dose for the liver and kidney, respectively, for males and 17.0 and 18.3 hours, respectively, for females (McDonald et al., 1984a). Groups of eight male and eight female F344 rats were housed individually in metabolism cages and given 14 doses of 14 C-labelled gentian violet (94.8% gentian violet and 5.2% pentamethylpararosaniline) at 12-hour intervals by gavage. The total gentian violet doses were 3.5 mg/kg bw (5.2 MBq/animal) and 5.69 mg/kg bw (2.9 MBq/animal) for males and females, respectively. The rats were killed 2 hours after receiving the final dose. Urine, faeces, liver, kidney, muscle, testes or ovaries and a fat sample were collected, and radioactivity was measured ( Table 3 ). As for mice, gentian violet residues concentrated in the adipose tissue of females; in males, the levels in liver and fat were similar. The percentages of administered gentian violet radioactivity excreted in the faeces of rats and mice were very similar, whereas considerably more was excreted in the urine of mice than in that of rats (McDonald et al., 1984a). Two female bile ductcannulated rats were administered a single dose of 14 C-labelled gentian violet (94.8% gentian violet and 5.2% pentamethylpara- rosaniline) by gavage at 300 g (0.12 MBq) or 840 g (0.34 MBq), and bile was 6 GENTIAN VIOLET Table 2. Deposition and excretion
Recommended publications
  • Identification of Typewriter Ribbons Charlotte L
    Journal of Criminal Law and Criminology Volume 46 | Issue 6 Article 15 1956 Identification of Typewriter Ribbons Charlotte L. Brown Paul L. Kirk Follow this and additional works at: https://scholarlycommons.law.northwestern.edu/jclc Part of the Criminal Law Commons, Criminology Commons, and the Criminology and Criminal Justice Commons Recommended Citation Charlotte L. Brown, Paul L. Kirk, Identification of Typewriter Ribbons, 46 J. Crim. L. Criminology & Police Sci. 882 (1955-1956) This Criminology is brought to you for free and open access by Northwestern University School of Law Scholarly Commons. It has been accepted for inclusion in Journal of Criminal Law and Criminology by an authorized editor of Northwestern University School of Law Scholarly Commons. IDENTIFICATION OF TYPEWRITER RIBBONS* CHARLOTTE L. BROWN AND PAUL L. KIRK Mrs. Charlotte L. Brown, a member of the staff of the School of Criminology, Univer- sity of California, has collaborated with Dr. Kirk in the research and presentation of several articles that have appeared in this Journal during the last few years. Two of these, which appeared in volume 45, dealt with methods of identifying various types of writing inks. Paul L. Kirk is Professor of Criminology at the University of California and has con- tributed periodically to this Journal during the last fifteen years. He is the author of "Crime Investigation" and numerous articles on various laboratory techniques in several branches of criminalistics.-EDITOR. In the examination of typewritten documents it is frequently desirable to determine that a particular ribbon was used, that two or more documents were prepared with the same ribbon, or that more than one ribbon was used in preparing a single docu- ment.
    [Show full text]
  • Gentian Violet S010
    Gentian Violet S010 Gentian Violet is used as staining solution for monochrome staining of microbes. Composition** Ingredients Gentian violet 0.500 gm Distilled water 100.000 ml **Formula adjusted, standardized to suit performance parameters Directions 1) Prepare a smear on a clear, dry glass slide. 2) Allow it to air dry and fix with gentle heat. 3) Flood the slide with Gentian Violet (S010). 4) Allow the stain to be in contact with the smear for 1-2 minutes. 5) Wash in slow-running water, just enough to remove excess of dye. 6) Flood the smear with Iodine, drain and flood again with Iodine for 1 minute. 7) Wash with decolourizer (alcohol) for about 5-15 seconds. Wash the slide to stop the action of decolourizer. 8) Flood with safranin for 1 minute, wash very lightly. 9) Blot dry and examine under oil immersion objective. Principle And Interpretation Gentian Violet is used as a simple stain where it can render the organisms violet. Besides this it can also be used in the Gram staining for distinguishing between gram-positive and gram-negative organisms. Earlier, Gentian violet was used as the primary stain in Grams staining method, subsequently crystal violet has replaced gentian violet because of the defined chemical nature of crystal violet. Quality Control Appearance Dark purple coloured solution. Clarity Clear without any particles. Microscopic Examination Gram staining is carried out where Gentian Violet is used as one of the stains and staining characteristics of organisms are observed under microscope using oil immersion lens. Results Fq`l,onrhshudnqf`mhrlr9Uhnkds Fq`l,mdf`shudnqf`mhrlr9 Qdc Nsgdqdkdldmsr9U`qhntrrg`cdrneqdcsnotqokd Storage and Shelf Life Store below 30°C in tightly closed container and away from bright light.
    [Show full text]
  • The Sensitizing and Indicator Action of Victoria Blue and Janus Green on the Flocculation Reaction for Syphilis
    In the case of sulphonamides, cultures resistant to sulphanilamide were resistant or partially resistant to the other members of this group with the exception of marfanil. Resistance once acquired seems to be permanent, and so far we have not been successful in reducing it in vitro. REFERENCES. ALBERT, A., FRANCIS, A. E., GARROD, L. P., AND LINNELL, W. H.-(1938) Brit. J. exp. Path., 19, 41. LANDY, M., LARKUM, N. W., OswALD, E. J., AND STREIGHTOFF, F.-(1943) Science, 97, 265. LEVADITI, C., AND MCINTOSH, J.-(1910) Bull. Soc. Path. exot., 3, 368. MACLEAN, I. H., ROGERS, K. B., AND FLEMING, A.-(1939) Lancet, i, 562. MACLEOD, C. M.-(1940) J. exp. Med., 72, 217. RAMMELKAMP, C. H., AND MAXON, T.-(1942) Proc. Soc. exp. Biol., N.Y., 51, 386. RUBBO, S. D., ALBERT, A., AND MAxWELL, M.-(1942) Brit. J. exp. Path., 23, 69. TILLETT, W. S., CAMBIER, M. J., AND HARRIS, W. H.-(1943) J. clin. Invest., 22, 249. THE SENSITIZING AND INDICATOR ACTION OF VICTORIA BLUE AND JANUS GREEN ON THE FLOCCULATION REACTION FOR SYPHILIS. F. M. BERGER. From the Public Health Laboratory, County Hall, Wakefield. Received for publication November 9, 1943. DEAN (1937) found that isamine blue could act as an indicator of the reaction between an antigen and its homologous antibody. The addition of the dye to a mixture of horse serum and dilute antiserum produced a precipitate which was easily visible because it took up all the dye from the supernatant fluid. Prof. P. L. Suther- land suggested the possibility of using isamine blue as indicator in serological tests for syphilis.
    [Show full text]
  • Colloid Milium: a Histochemical Study* James H
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector THE JOURNAL OF INVESTIOATIVE DERMATOLOOY vol. 49, No. 5 Copyright 1567 by The Williams & Wilkins Co. Printed in U.S.A. COLLOID MILIUM: A HISTOCHEMICAL STUDY* JAMES H. GRAHAM, M.D. AND ANTONIO S. MARQUES, M.D. Wagner (1), in 1866, first reported colloidreaction, with and without diastase digestion; milium in a 54 year old woman who showedcolloidal iron reaction, with and without bovine testicular hyaluronidase digestion for 1 hour at lesions on the forehead, cheeks and nose. In37 C; Movat's pentachrome I stain (2); alcian patients with colloid milium, the involvedblue pH 2.5 and 0.4 (3, 4); aldehyde-fuchsin pH skin is usually hyperpigmented, thickened,1.7 and 0.4 (4), with and without elastase digestion furrowed, nnd covered with multiple 0.5—5(5); Snook's reticulum stain; phosphotungstic acid hematoxylin stain (PTAH); Prussian blue re- mm dome-shaped, discrete papules. The shiny,action for iron; Fontana-Masson stain for ar- pink or orange to yellowish white translucentgentaffin granules; thiofiavine T fluorescent stain lesions have been likened to vesieles, but are(6, 7); Congo red; alkaline Congo red method firm and only after considerable pressure can(8); crystal violet amyloid stain; methyl violet a clear to yellow mueoid substance be ex-stain for amyloid (9, 5); toluidine blue (4); and Giemsa stain. The crystal violet and methyl vio- pressed from the papules. The lesions involvelet stained sections were mounted in Highman's sun exposed sites including the dorsum of theApathy gum syrup (5) which tends to prevent hands, web between the thumb and indexbleeding and gives a more permanent preparation.
    [Show full text]
  • Removal of Methyl Violet 2B Dye from Aqueous Solution Using a Magnetic Composite As an Adsorbent L.R
    Removal of methyl violet 2B dye from aqueous solution using a magnetic composite as an adsorbent L.R. Bonetto, F Ferrarini, C. de Marco, J.S. Crespo, Régis Guégan, M Giovanela To cite this version: L.R. Bonetto, F Ferrarini, C. de Marco, J.S. Crespo, Régis Guégan, et al.. Removal of methyl violet 2B dye from aqueous solution using a magnetic composite as an adsorbent. Journal of Water Process Engineering, Elsevier, 2015, 6, pp.11-20. 10.1016/j.jwpe.2015.02.006. insu-01130235 HAL Id: insu-01130235 https://hal-insu.archives-ouvertes.fr/insu-01130235 Submitted on 11 Mar 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Removal of methyl violet 2B dye from aqueous solution using a magnetic composite as an adsorbent L. R. Bonettoa*, F. Ferrarinia, C. D. Marcoa, J. S. Crespoa, R. Guéganb, M. Giovanelaa* aCentro de Ciências Exatas e da Tecnologia, Universidade de Caxias do Sul, 95070-560 Caxias do Sul – RS, Brazil. bInstitut des Sciences de la Terre d’Orléans, UMR 7327, CNRS-Université d’Orléans, 1A Rue de la Férollerie, 45071 Orléans Cedex 2, France Authors to whom correspondence should be addressed: M.
    [Show full text]
  • Haematoxylin and Eosin in Histology
    Two hand in hand lovers on a glassy path: haematoxylin and eosin in histology Raffaella Santi, MD PhD Careggi University Hospital, Florence, Italy Paraffin-embedded tissue sections are routinely stained with H&E nowadays. Only when clinical history, gross examination or H&E study suggests it are other “special” stains employed to delineate better features poorly or not all brought out by H&E Staining is such an integral part of modern histology that it is difficult to think of being without it. H&E have become the inimitable scaffold on which many diagnoses are made every day HAEMATOXYLIN & EOSIN HAEMATOXYLIN Haematoxylum Campechianum (Logwood ) Titford M, 2005 In the early 16th century when the Spanish explored the coast of the Yucatan Peninsula in search of gold and silver, they found logwood and they introduced it to European textile makers as a competitor to indigo. Logwood soon became a target of piracy, with English, French and Dutch forces all seeking to profit from its use. Its value was such that Spain initially claimed a monopoly on all logwood sales and later, the right to profit from logwood plantations, was part of the political statement that followed the Seven Years’ War (1756-1763) between Britain, France and Spain Treaty of Paris (1763) The earliest recorded European settlers to Belize were shipwrecked British sailors, otherwise known as the “Baymen” who first arrived in 1638. The Baymen became loggers, sending tons of logwood back to England throughout 1700 and 1800s Such was their notoriety that the national flag and currency of Belize depict the Baymen still today Haematoxylin was mainly used as a fabric dye and stained the uniforms of soldiers in the American Civil War (1861-65) and subsequently in the First and the Second World Wars.
    [Show full text]
  • 1422-ABS-Methyl Violet-Fuchsine-Mdk
    The oldest synthetic organic dyestuff group: the history and analysis of the triarylmethane dyes Matthijs de Keijzer, Maarten van Bommel Netherlands Institute for Cultural Heritage, Department: Research P.O. Box 76709, NL-1070 KA, Amsterdam, The Netherlands [email protected] , [email protected] Regina Hofmann-de Keijzer University of Applied Arts Vienna, Department Archaeometry Salzgries 14/1, A-1013 Vienna, Austria [email protected] Abstract The present lecture focuses on the so-called triarylmethanes. This dyestuff class is the oldest synthetic organic group and produces brilliant hues, the range including reds, violets, blues and greens. During the second half of the 19 th century the triarylmethane dyes played an important role for dyeing textiles and for other applications. The history of this dyestuff group is studied by the original historical sources, included the patent literature. The start of this group was the discovery of the red-violet dye fuchsine, which was developed in the same year of the discovery of mauve but turned out to be much more important. In 1856 the Polish chemist Jakub Natanson (1832-1884) and two years later August Wilhelm Hofmann (1818-1892) obtained a red-violet dyestuff by using aniline. They were not aware of the use as a textile dye. In the same year François-Emmanuel Verguin (1814-1864), professor on the Collège of Lyon, developed a method to produce this dye, but he did not exploit this invention by himself. The production process came into the hand of the silk dyers Renard Frères & Franc in Lyon.
    [Show full text]
  • The Bacteriostatic Action of Gentian Violet, Crystal Violet, Basic Fuchsin
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 1934 The ab cteriostatic action of gentian violet, crystal violet, basic fuchsin, and acid fuchsin on certain Gram positive bacteria Morrison. Rogosa University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Rogosa, Morrison., "The ab cteriostatic action of gentian violet, crystal violet, basic fuchsin, and acid fuchsin on certain Gram positive bacteria" (1934). Masters Theses 1911 - February 2014. 1918. Retrieved from https://scholarworks.umass.edu/theses/1918 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. UNIVERSITY OF MASSACHUSETTS LIBRARY M 1934 R7355 Arch ives Thes is c o R s ^nR D The Bacteriostatic Action of Gentian Violet, Crystal Violet, Basic Fuohsin, and acid Fuchsin on Certain Gram Positive fiaoteri* Morrison Rogosa Thesis Submitted for the iiegree of faster of Science Massachusetts State College May 193U Page Introduction A Historical 3 Experimental Cultures employed 10 Media employed 12 Lyes employed 13 He suit b Gentian violet 5 Crystal violet 19 Basic fuchsin 21 Acid fuchsin 23 Add production 26 Discus e ion 29 Summary 37 Literature 39 -1- INTRODUCTION The study of the bacteriostatic action of dyes is of comparatively recent origin. The early use of dyes was restricted to certain staining techniques and various inves- tigations were conducted with compounds of the Triphenyl methane series.
    [Show full text]
  • Methylrosanilinium Chloride (Methylrosanilinii Chloridum)
    The International Pharmacopoeia - Sixth Edition, 2016 Methylrosanilinium chloride (Methylrosanilinii chloridum) Methylrosanilinium chloride (Methylrosanilinii chloridum) C H ClN 25 30 3 Relative molecular mass. 408.0 Chemical name. C.I. Basic violet 3; N-[4-[bis[4-(dimethylamino)phenyl] methylene]-2,5-cyclohexadien-1-ylidene]-N- methylmethanaminium chloride; CAS Reg. No. 548-62-9. Other names. Crystal violet, gentian violet. Description. A dark green powder or greenish, glistening pieces having a metallic lustre; odourless or almost odourless. Solubility. Sparingly soluble in water; soluble in ethanol (~750 g/l) TS and glycerol R; practically insoluble in ether R. Category. Anti-infective drug. Storage. Methylrosanilinium chloride should be kept in a tightly closed container, protected from light. Requirements Methylrosanilinium chloride contains not less than 96.0% and not more than the equivalent of 101.0% of C25H30ClN3, calculated with reference to the anhydrous substance. Identity tests A. See the test described below under "Related substances". The principal spot obtained with solution A corresponds to the spot with the lowest Rf -value of the three distinct spots obtained with solution B. A spot other than the principal spot may be present on the chromatogram obtained with solution A; this other spot corresponds to the spot with intermediate R -value obtained with solution B. f B. Dissolve about 20 mg in 10 mL of water and add 5 drops of hydrochloric acid (~420 g/l) TS. To 5ml of this solution add tannic acid (50 g/l) TS, drop by drop; a blue precipitate is produced (keep the remaining solution for test C). C. To the remaining solution from test B add 0.5 g of zinc R powder, and warm the mixture; the solution discolours rapidly.
    [Show full text]
  • International Journal of Health Sciences and Research ISSN: 2249-9571
    International Journal of Health Sciences and Research www.ijhsr.org ISSN: 2249-9571 Original Research Article A Newly Identified Stain for Mast Cells in Human Mesentery Roopa Ravindranath, R.Victor, Amith Ramos*, V. Sumitra Histology Laboratory, Dept. of Anatomy, St. John’s Medical College, Bangalore-560034. *Correspondence Email: [email protected] Received: 03/01//2013 Revised: 31/01/2013 Accepted: 04/02/2013 ABSTRACT For invitro studies in mesentery toluidine blue and thioninare generally used. We have identified a new stain and found it to be good as it showed good contrast between Mast cells and the background tissue. A simple, cost effective and rapid method for staining mast cells in human mesentery is described. Mesentery was removed from embalmed cadaver and cut into pieces, spread on glass slides, tied with the thread on both sides and fixed in 10% formalin overnight and stored in 70% alcohol. Small pieces of convenient size were cut and transferred into a petri dish, washed thoroughly and was spread on a glass slide. The tissue was stained with Methyl Violet 10B (MV10B) stain for 1 minute, washed, dehydrated, cleared and mounted in DPX. Mast cells were seen against light connective tissue background. Key words: Stain, Mast Cells, Human Mesentery INTRODUCTION can be used to advantage for routine study of Mast cell function has been mast cells. attributed to wound healing, immune allergic reaction and regeneration among MATERIALS AND METHODS other functions. They are widely distributed Mesentery was removed from in the connective tissue. The abundant embalmed cadaver during the routine granules stain metachromatically with dissection of the abdomen.
    [Show full text]
  • The Color of Tissue Diagnostics Routine Stains, Special Stains and Ancillary Reagents
    The Color of Tissue Diagnostics Routine Stains, Special Stains and Ancillary Reagents The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the U.S. and Canada. For over years, 100routine stains, special stains and ancillary reagents have been part of the MilliporeSigma product range. This tradition and experience has made MilliporeSigma one of the world’s leading suppliers of microscopy products. The products for microscopy, a comprehensive range for classical hematology, histology, cytology, and microbiology, are constantly being expanded and adapted to the needs of the user and to comply with all relevant global regulations. Many of MilliporeSigma’s microscopy products are classified as in vitro diagnostic (IVD) medical devices. Quality Means Trust As a result of MilliporeSigma’s focus on quality control, microscopy products are renowned for excellent reproducibility of results. MilliporeSigma products are manufactured in accordance with a quality management system using raw materials and solvents that meet the most stringent quality criteria. Prior to releasing the products for particular applications, relevant chemical and physical parameters are checked along with product functionality. The methods used for testing comply with international standards. For over Contents Ancillary Reagents Microbiology 3-4 Fixing Media 28-29 Staining Solutions and Kits years, 5-6 Embedding Media 30 Staining of Mycobacteria 100 6 Decalcifiers and Tissue Softeners 30 Control Slides 7 Mounting Media Cytology 8 Immersion
    [Show full text]
  • Finger Mark Development Techniques Within Scope of ISO 17025, Sections 1
    Fingerprint Source Book – Chapter 3: Finger mark development techniques within scope of ISO 17025 Chapter 3: Finger mark development techniques within scope of ISO 17025 3.1 Acid dyes (acid black 1, acid violet 17, acid yellow 7) 1. History 1.1 Fingerprints may deposited in a number of contaminants at crime scenes, and of all these blood is the most commonly observed This is possibly because, when present even in small quantities, it is easily seen as it strongly absorbs light throughout the visible spectrum. However, when present in minute amounts, or on dark, patterned or multicoloured confusing backgrounds, the blood may require enhancement to make it more useful for evidential purposes. Additionally, proof that a stain is actually blood rather than an innocuous substance may be important in assessing guilt or innocence, and may even be a matter of life or death in some cases. 1.2 The history of proving the presence of blood evidence in forensic investigation dates back over 150 years using chemical means, and further still when microscopical methods are considered. Anton van Leeuwenhoek was said to be the first person to describe and illustrate blood cells in the latter part of the 17th century, although this is disputed. 1.3 The earliest tests for blood were of two types, both relying on the presence of the haem group present in the red blood cells. The early tests included those that reacted with haem to produce crystals and those that relied on its catalytic nature. More recently (1999) a third test relying on antibodies has been introduced.
    [Show full text]