Tunica), the Cells of Which Show a Preferred Plane of Cell Division
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Untangling Phylogenetic Patterns and Taxonomic Confusion in Tribe Caryophylleae (Caryophyllaceae) with Special Focus on Generic
TAXON 67 (1) • February 2018: 83–112 Madhani & al. • Phylogeny and taxonomy of Caryophylleae (Caryophyllaceae) Untangling phylogenetic patterns and taxonomic confusion in tribe Caryophylleae (Caryophyllaceae) with special focus on generic boundaries Hossein Madhani,1 Richard Rabeler,2 Atefeh Pirani,3 Bengt Oxelman,4 Guenther Heubl5 & Shahin Zarre1 1 Department of Plant Science, Center of Excellence in Phylogeny of Living Organisms, School of Biology, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran 2 University of Michigan Herbarium-EEB, 3600 Varsity Drive, Ann Arbor, Michigan 48108-2228, U.S.A. 3 Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, P.O. Box 91775-1436, Mashhad, Iran 4 Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530 Göteborg, Sweden 5 Biodiversity Research – Systematic Botany, Department of Biology I, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638 München, Germany; and GeoBio Center LMU Author for correspondence: Shahin Zarre, [email protected] DOI https://doi.org/10.12705/671.6 Abstract Assigning correct names to taxa is a challenging goal in the taxonomy of many groups within the Caryophyllaceae. This challenge is most serious in tribe Caryophylleae since the supposed genera seem to be highly artificial, and the available morphological evidence cannot effectively be used for delimitation and exact determination of taxa. The main goal of the present study was to re-assess the monophyly of the genera currently recognized in this tribe using molecular phylogenetic data. We used the sequences of nuclear ribosomal internal transcribed spacer (ITS) and the chloroplast gene rps16 for 135 and 94 accessions, respectively, representing all 16 genera currently recognized in the tribe Caryophylleae, with a rich sampling of Gypsophila as one of the most heterogeneous groups in the tribe. -
Principal Types of Vegetative Shoot Apex Organization in Vascular Plants1
PRINCIPAL TYPES OF VEGETATIVE SHOOT APEX ORGANIZATION IN VASCULAR PLANTS1 RICHARD A. POPHAM Department of Botany and Plant Pathology, The Ohio State University, Columbus 10 Before progress can be made in research, a problem must be recognized. Once the problem has been perceived, a research program may be directed toward a solution. The problem of how and where a shoot grows and the organization of the shoot apex was apparently first conceived by Kaspar Friedrich Wolff (1759). Although his observations on the structure, formation, and growth of cells were fantastically inaccurate, he made a great contribution to our knowledge of the growing plant by setting forth a new and important problem. In a very real sense, Wolff is the father of developmental plant anatomy. Disagreement is the life blood of many research problems. Strenuous opposition is often engendered by a dogmatic statement or a theory which is proposed as a universal truth. Opposition to Wolff's (1759) original proposition regarding the organization and growth of shoot apices prompted plant anatomists, some 85 years later, to investigate the truth of the statement. The factual solution of the problem of shoot apex organization had its beginnings in the work of Nageli (1845). Following this work on many lower cryptogams, Nageli concluded that the cells of all tissues of the shoot of cryptogams and higher plants have their genesis in a single apical cell. The new-born apical cell theory supported by Hofmeister (1851) and others provided the impetus for a renewed, vigorous attack on the problem of shoot apex organization. A little later a new proposal, Hanstein's (1868) histogen theory was born of more careful observations and in a mind unfettered by the prevailing fanaticism of the apical cell theorists. -
Tecophilaeaceae 429 Tecophilaeaceae M.G
Tecophilaeaceae 429 Tecophilaeaceae M.G. SIMPSONand P.J. RUDALL Tecophilaeaceae Leyb., Bonplandia JO: 370 (1862), nom . cons . Cyanastraceae Engler (1900). Erect, perennial, terrestrial herbs. Roots fibrous. Subterranean stem a globose to ellipsoid corm, 1- 4 cm in diameter, in some genera with a membra nous to fibrous tunic consisting of persistent sheathing leaves or fibrovascular bundles . Leaves basal to subbasal, or cauline in Walleria, spiral; base sheathing or non-sheathing, blades narrowly linear to lanceolate -ovate, or more or less petiolate in Cyanastrum and Kabuyea; entire, glabrous, flat, or marginally undulate; venation parallel with a major central vein. Flowers terminal and either Fig. 122A-F. Tecophilaeaceae. Cyanastrum cordifolium . A Flowering plant. B Tepals with sta mens. C Stamens. D Pistil. E solitary (or in small groups) and a panicle or (in Ovary, longitudinal section. F Capsule. (Takh tajan 1982) Walleria) solitary in the axils of cauline leaves. Bracts and bracteoles (prophylls) often present on pedicel. Flowers 1- 3 cm long, pedicellate, bisexual , trimero us. Perianth variable in color, zygomor fibrous scale leaves or leaf bases or the reticulate phic or actinomorphic, homochlamydeous, ba fibrovascular remains of these scale leaves (Fig. sally syntepalous; perianth lobes 6, imbricate in 2 123). The tunic often continues above the corm, in whorls, the outer median tepal positioned anteri some cases forming an apical tuft. Corms of orly; minute corona appendages present between Walleria, Cyanastrum, and Kabuyea lack a corm adjacent stamens in some taxa. Androecium aris tunic (Fig. 122). ing at mouth of perianth tube, opposite the tepals Leaves are bifacial and spirally arranged. -
NRAES-093.Pdf (5.290Mb)
Acknowledgments This publication is an update and expansion of the 1987 Cornell Guidelines on Perennial Production. Informa- tion in chapter 3 was adapted from a presentation given in March 1996 by John Bartok, professor emeritus of agricultural engineering at the University of Connecticut, at the Connecticut Perennials Shortcourse, and from articles in the Connecticut Greenhouse Newsletter, a publication put out by the Department of Plant Science at the University of Connecticut. Much of the information in chapter 10 about pest control was adapted from presentations given by Tim Abbey, extension educator with the Integrated Pest Management Program at the University of Connecticut, and Leanne Pundt, extension educator at the Haddam Cooperative Extension Center at the University of Connecticut, at the March 1996 Connecticut Perennials Shortcourse, and from presenta- tions by Margery Daughtrey, senior extension associate in plant pathology at the Long Island Horticultural Research Laboratory, Cornell Cooperative Extension. This publication has been peer-reviewed by the persons listed below. It was judged to be technically accurate and useful for cooperative extension programs and for the intended audience. The author is grateful for the comments provided by reviewers, as they helped to add clarity and depth to the information in this publication. • Raul I. Cabrera, Extension Specialist and Assistant Professor Nursery Crops Management Cook College, Rutgers University • Stanton Gill, Regional Specialist Nursery and Greenhouse Management University of Maryland Cooperative Extension • George L. Good, Professor Department of Floriculture and Ornamental Horticulture Cornell University • Leanne Pundt, Extension Educator, Commercial Horticulture Haddam Cooperative Extension Center University of Connecticut • David S. Ross, Extension Agricultural Engineer Department of Biological Resources Engineering University of Maryland • Thomas C. -
Morphology, Anatomy and Cytology of the Genus Lithachne (Poaceae: Bambusoideae)
Rev. Biol. Trop. , 40 (1): 47-72, 1992 Morphology, anatomy and cytology of the genus Lithachne (Poaceae: Bambusoideae) Yingyong Paisooksantivatana* and Richard W. Pohl** * 4135 Ladyaao,Bangkhen, Bangkok 10900, Thailand. ** Dept. ofBotany, Iowa State University, Ames, Iowa 50011, U.S.A. (Rec. 4-11-1991. Acep.8-VI1I-1991) Abstrad: Lilhachne pauciflora ánd L. humilis were studied anatomically, rnorphologically and cytologically. They are typical hemaceous bambusoid grasses of the tribe Ol yreae, occurring in forested tropical habitats in Central America. Both species are rnonoecious, with both sexes in the same axillary inflorescence in L. pauciflora or in sepa rate lateral pistillate inflorescences and terminal starninate panicles in L. humilis. Starninate spikelets lack glurnes and have three truncale lodicules. Pistillate spikelels have subequal long glurnes and a single bonytruncate fmit case. Leaf anatomy is typically bambusoid with a papillate epidermis bearing acute bicellular rnicrohairs of two equal cells, sili ceous cells, and rhombic stomala. In transection, blades have fusoid cells and chlorenchyrna with arm cells. Chromosome number in L. pauciflora is n = 11. Key words: Lithachne, anatomy, morphology, cytology. Lithachne is a small genus of herbaceous Hate spikelets occur in the lateral infloresen bambusoid grasses of the American tropics, ces, and staminate spikelets are borne in a presentIy with four known species. This study small terminal panicle. An outstanding featu is based upon the two Central American spe re of this genus is the obtriangular truncate la cies. Lithachne pauciflora (Sw.)Beauv. is a wi terally compressed bony fruits (lemma and despread species found in forests from sea level palea), which give the genus its name, signif to about 1000 m elevation, from Mexico to ying "stone chaff" . -
Rare Plant Register
1 BSBI RARE PLANT REGISTER Berkshire & South Oxfordshire V.C. 22 MICHAEL J. CRAWLEY FRS UPDATED APRIL 2005 2 Symbols and conventions The Latin binomial (from Stace, 1997) appears on the left of the first line in bold, followed by the authority in Roman font and the English Name in italics. Names on subsequent lines in Roman font are synonyms (including names that appear in Druce’s (1897) or Bowen’s (1964) Flora of Berkshire that are different from the name of the same species in Stace). At the right hand side of the first line is a set of symbols showing - status (if non-native) - growth form - flowering time - trend in abundance (if any) The status is one of three categories: if the plant arrived in Britain after the last ice age without the direct help of humans it is defined as a native, and there is no symbol in this position. If the archaeological or documentary evidence indicates that a plant was brought to Berkshire intentionally of unintentionally by people, then that species is an alien. The alien species are in two categories ● neophytes ○ archaeophytes Neophytes are aliens that were introduced by people in recent times (post-1500 by convention) and for which we typically have precise dates for their first British and first Berkshire records. Neophytes may be naturalized (forming self-replacing populations) or casual (relying on repeated introduction). Archaeophytes are naturalized aliens that were carried about by people in pre-historic times, either intentionally for their utility, or unintentionally as contaminants of crop seeds. Archaeophytes were typically classified as natives in older floras. -
Tr Aditions and Perspec Tives Plant Anatomy
МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ М.В. ЛОМОНОСОВА БИОЛОГИЧЕСКИЙ ФАКУЛЬТЕТ PLANT ANATOMY: TRADITIONS AND PERSPECTIVES Международный симпозиум, АНАТОМИЯ РАСТЕНИЙ: посвященный 90-летию профессора PLANT ANATOMY: TRADITIONS AND PERSPECTIVES AND TRADITIONS ANATOMY: PLANT ТРАДИЦИИ И ПЕРСПЕКТИВЫ Людмилы Ивановны Лотовой 1 ЧАСТЬ 1 московский госУдАрствеННый УНиверситет имени м. в. ломоНосовА Биологический факультет АНАТОМИЯ РАСТЕНИЙ: ТРАДИЦИИ И ПЕРСПЕКТИВЫ Ìàòåðèàëû Ìåæäóíàðîäíîãî ñèìïîçèóìà, ïîñâÿùåííîãî 90-ëåòèþ ïðîôåññîðà ËÞÄÌÈËÛ ÈÂÀÍÎÂÍÛ ËÎÒÎÂÎÉ 16–22 ñåíòÿáðÿ 2019 ã.  двуõ ÷àñòÿõ ×àñòü 1 МАТЕРИАЛЫ НА АНГЛИЙСКОМ ЯЗЫКЕ PLANT ANATOMY: ТRADITIONS AND PERSPECTIVES Materials of the International Symposium dedicated to the 90th anniversary of Prof. LUDMILA IVANOVNA LOTOVA September 16–22, Moscow In two parts Part 1 CONTRIBUTIONS IN ENGLISH москва – 2019 Удк 58 DOI 10.29003/m664.conf-lotova2019_part1 ББк 28.56 A64 Издание осуществлено при финансовой поддержке Российского фонда фундаментальных исследований по проекту 19-04-20097 Анатомия растений: традиции и перспективы. материалы международного A64 симпозиума, посвященного 90-летию профессора людмилы ивановны лотовой. 16–22 сентября 2019 г. в двух частях. – москва : мАкс пресс, 2019. ISBN 978-5-317-06198-2 Чaсть 1. материалы на английском языке / ред.: А. к. тимонин, д. д. соколов. – 308 с. ISBN 978-5-317-06174-6 Удк 58 ББк 28.56 Plant anatomy: traditions and perspectives. Materials of the International Symposium dedicated to the 90th anniversary of Prof. Ludmila Ivanovna Lotova. September 16–22, 2019. In two parts. – Moscow : MAKS Press, 2019. ISBN 978-5-317-06198-2 Part 1. Contributions in English / Ed. by A. C. Timonin, D. D. Sokoloff. – 308 p. ISBN 978-5-317-06174-6 Издание доступно на ресурсе E-library ISBN 978-5-317-06198-2 © Авторы статей, 2019 ISBN 978-5-317-06174-6 (Часть 1) © Биологический факультет мгУ имени м. -
Development of the Helicoid Andscorpioid Cymes in Myosotis Laxa Lehm
Proceedings of the Iowa Academy of Science Volume 67 Annual Issue Article 11 1960 Development of the Helicoid andScorpioid Cymes in Myosotis laxa Lehm. and Mertensia virginica L. Paul V. Prior Texas Technological College Let us know how access to this document benefits ouy Copyright ©1960 Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation Prior, Paul V. (1960) "Development of the Helicoid andScorpioid Cymes in Myosotis laxa Lehm. and Mertensia virginica L.," Proceedings of the Iowa Academy of Science, 67(1), 76-81. Available at: https://scholarworks.uni.edu/pias/vol67/iss1/11 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Prior: Development of the Helicoid andScorpioid Cymes in Myosotis laxa L Development of the Helicoid and Scorpioid Cymes in M yosotis laxa Lehm. and M ertensia virginica L. PAUL v. PRIORl Abstract. The vegetative and inflorescence apices of Myosotis laxa and Mertensia virginica have been compared and contrasted in order to determine how helicoid and scorpioid cymes differ in development. The apices have been interpreted on the basis of the tunica-corpus theory, since no clear histogenic layers could be determined for these species. The stem apex enlarges and broadens at the onset of flowering, and apical dominance is lost. The num ber of tunica layers is reduced in both cases, and the enlargement of the apex is found to be due to more, not larger cells. -
XI. Magnoliophyta: the Flowering Plants We Come in the End to The
XI. Magnoliophyta: The Flowering Plants We come in the end to the largest of all vascular plant groups, the flowering plants. There are about 250,000 of them in about 462 families and 40 orders. Three features of flowering plants set them apart from all of the other vascular plants: 1) a folded and sealed leaf called the carpel, which encloses the ovules; 2) a highly reduced female gametophyte, of just eight nuclei in seven cells; and 3) double fertilization, that is the fusion of one sperm with an egg and a second sperm with a neighboring cell of the female gametophyte to yield a nutritive tissue called the endosperm. A. Apical Meristems Angiosperms share an unusual kind of meristem with the Gnetophyta (a group we will mention in lecture, but which won't be examined in lab). This meristem, called the tunica-corpus meristem, is well known to biology students because it figures prominently in introductory biology. However, not many divisions of vascular plants have this type of meristem. 1. Examine the prepared slides of Coleus apical meristems available in the lab. The tunica and corpus are visible at the very summit of the stem (the apical dome), along with the primordia (mounds of tissue destined to be leaves and buds). DIAGRAM the Coleus shoot. Label tunica, corpus, leaf primordia, bud primordia, and leaf trace. B. Variations in Vegetative Features of the Flowering Plants 1. Many different orders of flowering plants include species that are adapted to xeric (dry) environments. At some point during the lab have a look at the following: a. -
Abstract a Morphological and Anatomical
ABSTRACT A MORPHOLOGICAL AND ANATOMICAL INVESTIGATION OF SHOOT APICAL MERISTEMS EXPRESSING RING FASCIATION IN CLARKIA TEMBLORIENSIS by Kilian TysonMayer Fasciation is a growth abnormality in shoot and root meristems of many vascular plants which leads to the development of enlarged, supernumerary, and misshapen stems, leaves, floral organs, and fruits. Artificial selection for modified phenotypes has occurred since the dawn of agriculture and is responsible for many commercially available fruits and vegetables today. Clarkia tembloriensis is a California wildflower expressing fasciation in certain populations when grown under abnormal environmental conditions in a laboratory setting. This makes it an excellent model organism to study the effect of abnormal environmental conditions on the expression of fasciation. In this investigation, shoot apex morphology and anatomy were observed throughout the development of wild- type plants and those expressing fasciation via scanning electron microscopy (SEM) and light microscopy. These observations revealed morphological and anatomical abnormalities of shoot apical meristem (SAM) development including an enlarged ring- shaped meristem, abnormal organs, and callus tissue. Comparing these observations with current literature for genetic and hormonal interactions in the SAM of plants, it is proposed that ring fasciation and callus formation in Clarkia tembloriensis occur as a result of abnormal environmental conditions via abnormal signaling of phytohormones and other developmental regulators which function in maintenance of meristem size and organ initiation. A MORPHOLOGICAL AND ANATOMICAL INVESTIGATION OF SHOOT APICAL MERISTEMS EXPRESSING RING FASCIATION IN CLARKIA TEMBLORIENSIS A Thesis Submitted to the Faculty of Miami University in partial fulfillment of the requirements for the degree of Master of Science by Kilian TysonMayer Miami University Oxford, Ohio 2019 Advisor: Nancy L. -
The Names of Plants, Third Edition
THE NAMES OF PLANTS The Names of Plants is a handy, two-part reference book for the botanist and amateur gardener. The book begins by documenting the historical problems associated with an ever-increasing number of common names of plants and the resolution of these problems through the introduction of International Codes for both botanical and horticultural nomenclature. It also outlines the rules to be followed when plant breeders name a new species or cultivar of plant. The second part of the book comprises an alphabetical glossary of generic and specific plant names, and components of these, from which the reader may interpret the existing names of plants and construct new names. For the third edition, the book has been updated to include explanations of the International Codes for both Botanical Nomen- clature (2000) and Nomenclature for Cultivated Plants (1995). The glossary has similarly been expanded to incorporate many more commemorative names. THE NAMES OF PLANTS THIRD EDITION David Gledhill Formerly Senior Lecturer, Department of Botany, University of Bristol and Curator of Bristol University Botanic Garden Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge , United Kingdom Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521818636 © Cambridge University Press 2002 This book is in copyright. Subject to statutory exception and to the provision of -
Point Reyes National Seashore Flowering Plants Species List
Flowering Plants of Point Reyes National Seashore Aceraceae (Maple Famly) Euphorbiaceae (Spurge Family) Papaveraceae (Poppy Family) Agavaceae (Agave Family) Fabaceae (Legume Family) Philadelphaceae (Mockorange Family) Aizoaceae (Fig-marigold Family) Fagaceae (Oak Family) Pittosporaceae (Pittosporum Family) Alismataceae (Water-plantain Family) Frankeniaceae (Frankenia Family) Plantaginaceae (Plantain Family) Amaranthaceae (Amaranth Family) Garryaceae (Silk Tassel Family) Platanaceae (Sycamore Family) Anacardiaceae (Sumac Family) Gentianaceae (Gentian Family) Plumbaginaceae (Leadwort Family) Apiaceae (Carrot Family) Geraniaceae (Geranium Family) Poaceae (Grass Family) Apocynaceae (Dogbane Family) Grossulariaceae (Gooseberry Family) Polemoniaceae (Phlox Family) Aquifoliaceae (Holly Family) Gunneraceae (Gunnera Family) Polygalaceae (Milkwort Family) Araceae (Arum Family) Haloragaceae (Water-milfoil Family) Polygonaceae ((Buckwheat Family) Araliaceae (Ginseng Family) Hippocastanaceae (Buckeye Family) Polypodiaceae (Polypod Family) Aristolochiaceae (Pipevine Family) Hydrophyllacea (Waterleaf Family) Portulacaceae (Purslane Family) Asteraceae (Sunflower Family) Hypericaceae (St. John's Wort Family) Potamogetonaceae (Pondweed Family) Berberidaceae (Barberry Family) Iridaceae (Iris Family) Primulaceae (Primrose Family) Betulaceae (Birch Family) Juncaceae (Rush Family) Ranunculaceae (Buttercup Family) Boraginaceae (Borage Family) Juncaginaceae (Arrow-grass Family) Rhamnaceae (Buckthorn Family) Brassicaceae (Mustard Family) Lamiaceae (Mint Family)